This site belongs to UNESCO's International Institute for Educational Planning

Home

IIEP Learning Portal

conclusion of importance of ict in education

Search form

  • issue briefs
  • Improve learning

Information and communication technology (ICT) in education

Information and communications technology (ict) can impact student learning when teachers are digitally literate and understand how to integrate it into curriculum..

Schools use a diverse set of ICT tools to communicate, create, disseminate, store, and manage information.(6) In some contexts, ICT has also become integral to the teaching-learning interaction, through such approaches as replacing chalkboards with interactive digital whiteboards, using students’ own smartphones or other devices for learning during class time, and the “flipped classroom” model where students watch lectures at home on the computer and use classroom time for more interactive exercises.

When teachers are digitally literate and trained to use ICT, these approaches can lead to higher order thinking skills, provide creative and individualized options for students to express their understandings, and leave students better prepared to deal with ongoing technological change in society and the workplace.(18)

ICT issues planners must consider include: considering the total cost-benefit equation, supplying and maintaining the requisite infrastructure, and ensuring investments are matched with teacher support and other policies aimed at effective ICT use.(16)

Issues and Discussion

Digital culture and digital literacy: Computer technologies and other aspects of digital culture have changed the ways people live, work, play, and learn, impacting the construction and distribution of knowledge and power around the world.(14) Graduates who are less familiar with digital culture are increasingly at a disadvantage in the national and global economy. Digital literacy—the skills of searching for, discerning, and producing information, as well as the critical use of new media for full participation in society—has thus become an important consideration for curriculum frameworks.(8)

In many countries, digital literacy is being built through the incorporation of information and communication technology (ICT) into schools. Some common educational applications of ICT include:

  • One laptop per child: Less expensive laptops have been designed for use in school on a 1:1 basis with features like lower power consumption, a low cost operating system, and special re-programming and mesh network functions.(42) Despite efforts to reduce costs, however, providing one laptop per child may be too costly for some developing countries.(41)
  • Tablets: Tablets are small personal computers with a touch screen, allowing input without a keyboard or mouse. Inexpensive learning software (“apps”) can be downloaded onto tablets, making them a versatile tool for learning.(7)(25) The most effective apps develop higher order thinking skills and provide creative and individualized options for students to express their understandings.(18)
  • Interactive White Boards or Smart Boards : Interactive white boards allow projected computer images to be displayed, manipulated, dragged, clicked, or copied.(3) Simultaneously, handwritten notes can be taken on the board and saved for later use. Interactive white boards are associated with whole-class instruction rather than student-centred activities.(38) Student engagement is generally higher when ICT is available for student use throughout the classroom.(4)
  • E-readers : E-readers are electronic devices that can hold hundreds of books in digital form, and they are increasingly utilized in the delivery of reading material.(19) Students—both skilled readers and reluctant readers—have had positive responses to the use of e-readers for independent reading.(22) Features of e-readers that can contribute to positive use include their portability and long battery life, response to text, and the ability to define unknown words.(22) Additionally, many classic book titles are available for free in e-book form.
  • Flipped Classrooms: The flipped classroom model, involving lecture and practice at home via computer-guided instruction and interactive learning activities in class, can allow for an expanded curriculum. There is little investigation on the student learning outcomes of flipped classrooms.(5) Student perceptions about flipped classrooms are mixed, but generally positive, as they prefer the cooperative learning activities in class over lecture.(5)(35)

ICT and Teacher Professional Development: Teachers need specific professional development opportunities in order to increase their ability to use ICT for formative learning assessments, individualized instruction, accessing online resources, and for fostering student interaction and collaboration.(15) Such training in ICT should positively impact teachers’ general attitudes towards ICT in the classroom, but it should also provide specific guidance on ICT teaching and learning within each discipline. Without this support, teachers tend to use ICT for skill-based applications, limiting student academic thinking.(32) To sup­port teachers as they change their teaching, it is also essential for education managers, supervisors, teacher educators, and decision makers to be trained in ICT use.(11)

Ensuring benefits of ICT investments: To ensure the investments made in ICT benefit students, additional conditions must be met. School policies need to provide schools with the minimum acceptable infrastructure for ICT, including stable and affordable internet connectivity and security measures such as filters and site blockers. Teacher policies need to target basic ICT literacy skills, ICT use in pedagogical settings, and discipline-specific uses. (21) Successful imple­mentation of ICT requires integration of ICT in the curriculum. Finally, digital content needs to be developed in local languages and reflect local culture. (40) Ongoing technical, human, and organizational supports on all of these issues are needed to ensure access and effective use of ICT. (21)

Resource Constrained Contexts: The total cost of ICT ownership is considerable: training of teachers and administrators, connectivity, technical support, and software, amongst others. (42) When bringing ICT into classrooms, policies should use an incremental pathway, establishing infrastructure and bringing in sustainable and easily upgradable ICT. (16) Schools in some countries have begun allowing students to bring their own mobile technology (such as laptop, tablet, or smartphone) into class rather than providing such tools to all students—an approach called Bring Your Own Device. (1)(27)(34) However, not all families can afford devices or service plans for their children. (30) Schools must ensure all students have equitable access to ICT devices for learning.

Inclusiveness Considerations

Digital Divide: The digital divide refers to disparities of digital media and internet access both within and across countries, as well as the gap between people with and without the digital literacy and skills to utilize media and internet.(23)(26)(31) The digital divide both creates and reinforces socio-economic inequalities of the world’s poorest people. Policies need to intentionally bridge this divide to bring media, internet, and digital literacy to all students, not just those who are easiest to reach.

Minority language groups: Students whose mother tongue is different from the official language of instruction are less likely to have computers and internet connections at home than students from the majority. There is also less material available to them online in their own language, putting them at a disadvantage in comparison to their majority peers who gather information, prepare talks and papers, and communicate more using ICT. (39) Yet ICT tools can also help improve the skills of minority language students—especially in learning the official language of instruction—through features such as automatic speech recognition, the availability of authentic audio-visual materials, and chat functions. (2)(17)

Students with different styles of learning: ICT can provide diverse options for taking in and processing information, making sense of ideas, and expressing learning. Over 87% of students learn best through visual and tactile modalities, and ICT can help these students ‘experience’ the information instead of just reading and hearing it. (20)(37) Mobile devices can also offer programmes (“apps”) that provide extra support to students with special needs, with features such as simplified screens and instructions, consistent placement of menus and control features, graphics combined with text, audio feedback, ability to set pace and level of difficulty, appropriate and unambiguous feedback, and easy error correction. (24)(29)

Plans and policies

  • India [ PDF ]
  • Detroit, USA [ PDF ]
  • Finland [ PDF ]
  • Alberta Education. 2012. Bring your own device: A guide for schools . Retrieved from http://education.alberta.ca/admin/technology/research.aspx
  • Alsied, S.M. and Pathan, M.M. 2015. ‘The use of computer technology in EFL classroom: Advantages and implications.’ International Journal of English Language and Translation Studies . 1 (1).
  • BBC. N.D. ‘What is an interactive whiteboard?’ Retrieved from http://www.bbcactive.com/BBCActiveIdeasandResources/Whatisaninteractivewhiteboard.aspx
  • Beilefeldt, T. 2012. ‘Guidance for technology decisions from classroom observation.’ Journal of Research on Technology in Education . 44 (3).
  • Bishop, J.L. and Verleger, M.A. 2013. ‘The flipped classroom: A survey of the research.’ Presented at the 120th ASEE Annual Conference and Exposition. Atlanta, Georgia.
  • Blurton, C. 2000. New Directions of ICT-Use in Education . United National Education Science and Culture Organization (UNESCO).
  • Bryant, B.R., Ok, M., Kang, E.Y., Kim, M.K., Lang, R., Bryant, D.P. and Pfannestiel, K. 2015. ‘Performance of fourth-grade students with learning disabilities on multiplication facts comparing teacher-mediated and technology-mediated interventions: A preliminary investigation. Journal of Behavioral Education. 24.
  • Buckingham, D. 2005. Educación en medios. Alfabetización, aprendizaje y cultura contemporánea, Barcelona, Paidós.
  • Buckingham, D., Sefton-Green, J., and Scanlon, M. 2001. 'Selling the Digital Dream: Marketing Education Technologies to Teachers and Parents.'  ICT, Pedagogy, and the Curriculum: Subject to Change . London: Routledge.
  • "Burk, R. 2001. 'E-book devices and the marketplace: In search of customers.' Library Hi Tech 19 (4)."
  • Chapman, D., and Mählck, L. (Eds). 2004. Adapting technology for school improvement: a global perspective. Paris: International Institute for Educational Planning.
  • Cheung, A.C.K and Slavin, R.E. 2012. ‘How features of educational technology applications affect student reading outcomes: A meta-analysis.’ Educational Research Review . 7.
  • Cheung, A.C.K and Slavin, R.E. 2013. ‘The effectiveness of educational technology applications for enhancing mathematics achievement in K-12 classrooms: A meta-analysis.’ Educational Research Review . 9.
  • Deuze, M. 2006. 'Participation Remediation Bricolage - Considering Principal Components of a Digital Culture.' The Information Society . 22 .
  • Dunleavy, M., Dextert, S. and Heinecke, W.F. 2007. ‘What added value does a 1:1 student to laptop ratio bring to technology-supported teaching and learning?’ Journal of Computer Assisted Learning . 23.
  • Enyedy, N. 2014. Personalized Instruction: New Interest, Old Rhetoric, Limited Results, and the Need for a New Direction for Computer-Mediated Learning . Boulder, CO: National Education Policy Center.
  • Golonka, E.M., Bowles, A.R., Frank, V.M., Richardson, D.L. and Freynik, S. 2014. ‘Technologies for foreign language learning: A review of technology types and their effectiveness.’ Computer Assisted Language Learning . 27 (1).
  • Goodwin, K. 2012. Use of Tablet Technology in the Classroom . Strathfield, New South Wales: NSW Curriculum and Learning Innovation Centre.
  • Jung, J., Chan-Olmsted, S., Park, B., and Kim, Y. 2011. 'Factors affecting e-book reader awareness, interest, and intention to use.' New Media & Society . 14 (2)
  • Kenney, L. 2011. ‘Elementary education, there’s an app for that. Communication technology in the elementary school classroom.’ The Elon Journal of Undergraduate Research in Communications . 2 (1).
  • Kopcha, T.J. 2012. ‘Teachers’ perceptions of the barriers to technology integration and practices with technology under situated professional development.’ Computers and Education . 59.
  • Miranda, T., Williams-Rossi, D., Johnson, K., and McKenzie, N. 2011. "Reluctant readers in middle school: Successful engagement with text using the e-reader.' International journal of applied science and technology . 1 (6).
  • Moyo, L. 2009. 'The digital divide: scarcity, inequality and conflict.' Digital Cultures . New York: Open University Press.
  • Newton, D.A. and Dell, A.G. 2011. ‘Mobile devices and students with disabilities: What do best practices tell us?’ Journal of Special Education Technology . 26 (3).
  • Nirvi, S. (2011). ‘Special education pupils find learning tool in iPad applications.’ Education Week . 30 .
  • Norris, P. 2001. Digital Divide: Civic Engagement, Information Poverty, and the Internet Worldwide . Cambridge, USA: Cambridge University Press.
  • Project Tomorrow. 2012. Learning in the 21st century: Mobile devices + social media = personalized learning . Washington, D.C.: Blackboard K-12.
  • Riasati, M.J., Allahyar, N. and Tan, K.E. 2012. ‘Technology in language education: Benefits and barriers.’ Journal of Education and Practice . 3 (5).
  • Rodriquez, C.D., Strnadova, I. and Cumming, T. 2013. ‘Using iPads with students with disabilities: Lessons learned from students, teachers, and parents.’ Intervention in School and Clinic . 49 (4).
  • Sangani, K. 2013. 'BYOD to the classroom.' Engineering & Technology . 3 (8).
  • Servon, L. 2002. Redefining the Digital Divide: Technology, Community and Public Policy . Malden, MA: Blackwell Publishers.
  • Smeets, E. 2005. ‘Does ICT contribute to powerful learning environments in primary education?’ Computers and Education. 44 .
  • Smith, G.E. and Thorne, S. 2007. Differentiating Instruction with Technology in K-5 Classrooms . Eugene, OR: International Society for Technology in Education.
  • Song, Y. 2014. '"Bring your own device (BYOD)" for seamless science inquiry in a primary school.' Computers & Education. 74 .
  • Strayer, J.F. 2012. ‘How learning in an inverted classroom influences cooperation, innovation and task orientation.’ Learning Environment Research. 15.
  • Tamim, R.M., Bernard, R.M., Borokhovski, E., Abrami, P.C. and Schmid, R.F. 2011. ‘What forty years of research says about the impact of technology on learning: A second-order meta-analysis and validation study. Review of Educational Research. 81 (1).
  • Tileston, D.W. 2003. What Every Teacher Should Know about Media and Technology. Thousand Oaks, CA: Corwin Press.
  • Turel, Y.K. and Johnson, T.E. 2012. ‘Teachers’ belief and use of interactive whiteboards for teaching and learning.’ Educational Technology and Society . 15(1).
  • Volman, M., van Eck, E., Heemskerk, I. and Kuiper, E. 2005. ‘New technologies, new differences. Gender and ethnic differences in pupils’ use of ICT in primary and secondary education.’ Computers and Education. 45 .
  • Voogt, J., Knezek, G., Cox, M., Knezek, D. and ten Brummelhuis, A. 2013. ‘Under which conditions does ICT have a positive effect on teaching and learning? A call to action.’ Journal of Computer Assisted Learning. 29 (1).
  • Warschauer, M. and Ames, M. 2010. ‘Can one laptop per child save the world’s poor?’ Journal of International Affairs. 64 (1).
  • Zuker, A.A. and Light, D. 2009. ‘Laptop programs for students.’ Science. 323 (5910).

Related information

  • Information and communication technologies (ICT)

REALIZING THE PROMISE:

Leading up to the 75th anniversary of the UN General Assembly, this “Realizing the promise: How can education technology improve learning for all?” publication kicks off the Center for Universal Education’s first playbook in a series to help improve education around the world.

It is intended as an evidence-based tool for ministries of education, particularly in low- and middle-income countries, to adopt and more successfully invest in education technology.

While there is no single education initiative that will achieve the same results everywhere—as school systems differ in learners and educators, as well as in the availability and quality of materials and technologies—an important first step is understanding how technology is used given specific local contexts and needs.

The surveys in this playbook are designed to be adapted to collect this information from educators, learners, and school leaders and guide decisionmakers in expanding the use of technology.  

Introduction

While technology has disrupted most sectors of the economy and changed how we communicate, access information, work, and even play, its impact on schools, teaching, and learning has been much more limited. We believe that this limited impact is primarily due to technology being been used to replace analog tools, without much consideration given to playing to technology’s comparative advantages. These comparative advantages, relative to traditional “chalk-and-talk” classroom instruction, include helping to scale up standardized instruction, facilitate differentiated instruction, expand opportunities for practice, and increase student engagement. When schools use technology to enhance the work of educators and to improve the quality and quantity of educational content, learners will thrive.

Further, COVID-19 has laid bare that, in today’s environment where pandemics and the effects of climate change are likely to occur, schools cannot always provide in-person education—making the case for investing in education technology.

Here we argue for a simple yet surprisingly rare approach to education technology that seeks to:

  • Understand the needs, infrastructure, and capacity of a school system—the diagnosis;
  • Survey the best available evidence on interventions that match those conditions—the evidence; and
  • Closely monitor the results of innovations before they are scaled up—the prognosis.

RELATED CONTENT

conclusion of importance of ict in education

Podcast: How education technology can improve learning for all students

conclusion of importance of ict in education

To make ed tech work, set clear goals, review the evidence, and pilot before you scale

The framework.

Our approach builds on a simple yet intuitive theoretical framework created two decades ago by two of the most prominent education researchers in the United States, David K. Cohen and Deborah Loewenberg Ball. They argue that what matters most to improve learning is the interactions among educators and learners around educational materials. We believe that the failed school-improvement efforts in the U.S. that motivated Cohen and Ball’s framework resemble the ed-tech reforms in much of the developing world to date in the lack of clarity improving the interactions between educators, learners, and the educational material. We build on their framework by adding parents as key agents that mediate the relationships between learners and educators and the material (Figure 1).

Figure 1: The instructional core

Adapted from Cohen and Ball (1999)

As the figure above suggests, ed-tech interventions can affect the instructional core in a myriad of ways. Yet, just because technology can do something, it does not mean it should. School systems in developing countries differ along many dimensions and each system is likely to have different needs for ed-tech interventions, as well as different infrastructure and capacity to enact such interventions.

The diagnosis:

How can school systems assess their needs and preparedness.

A useful first step for any school system to determine whether it should invest in education technology is to diagnose its:

  • Specific needs to improve student learning (e.g., raising the average level of achievement, remediating gaps among low performers, and challenging high performers to develop higher-order skills);
  • Infrastructure to adopt technology-enabled solutions (e.g., electricity connection, availability of space and outlets, stock of computers, and Internet connectivity at school and at learners’ homes); and
  • Capacity to integrate technology in the instructional process (e.g., learners’ and educators’ level of familiarity and comfort with hardware and software, their beliefs about the level of usefulness of technology for learning purposes, and their current uses of such technology).

Before engaging in any new data collection exercise, school systems should take full advantage of existing administrative data that could shed light on these three main questions. This could be in the form of internal evaluations but also international learner assessments, such as the Program for International Student Assessment (PISA), the Trends in International Mathematics and Science Study (TIMSS), and/or the Progress in International Literacy Study (PIRLS), and the Teaching and Learning International Study (TALIS). But if school systems lack information on their preparedness for ed-tech reforms or if they seek to complement existing data with a richer set of indicators, we developed a set of surveys for learners, educators, and school leaders. Download the full report to see how we map out the main aspects covered by these surveys, in hopes of highlighting how they could be used to inform decisions around the adoption of ed-tech interventions.

The evidence:

How can school systems identify promising ed-tech interventions.

There is no single “ed-tech” initiative that will achieve the same results everywhere, simply because school systems differ in learners and educators, as well as in the availability and quality of materials and technologies. Instead, to realize the potential of education technology to accelerate student learning, decisionmakers should focus on four potential uses of technology that play to its comparative advantages and complement the work of educators to accelerate student learning (Figure 2). These comparative advantages include:

  • Scaling up quality instruction, such as through prerecorded quality lessons.
  • Facilitating differentiated instruction, through, for example, computer-adaptive learning and live one-on-one tutoring.
  • Expanding opportunities to practice.
  • Increasing learner engagement through videos and games.

Figure 2: Comparative advantages of technology

Here we review the evidence on ed-tech interventions from 37 studies in 20 countries*, organizing them by comparative advantage. It’s important to note that ours is not the only way to classify these interventions (e.g., video tutorials could be considered as a strategy to scale up instruction or increase learner engagement), but we believe it may be useful to highlight the needs that they could address and why technology is well positioned to do so.

When discussing specific studies, we report the magnitude of the effects of interventions using standard deviations (SDs). SDs are a widely used metric in research to express the effect of a program or policy with respect to a business-as-usual condition (e.g., test scores). There are several ways to make sense of them. One is to categorize the magnitude of the effects based on the results of impact evaluations. In developing countries, effects below 0.1 SDs are considered to be small, effects between 0.1 and 0.2 SDs are medium, and those above 0.2 SDs are large (for reviews that estimate the average effect of groups of interventions, called “meta analyses,” see e.g., Conn, 2017; Kremer, Brannen, & Glennerster, 2013; McEwan, 2014; Snilstveit et al., 2015; Evans & Yuan, 2020.)

*In surveying the evidence, we began by compiling studies from prior general and ed-tech specific evidence reviews that some of us have written and from ed-tech reviews conducted by others. Then, we tracked the studies cited by the ones we had previously read and reviewed those, as well. In identifying studies for inclusion, we focused on experimental and quasi-experimental evaluations of education technology interventions from pre-school to secondary school in low- and middle-income countries that were released between 2000 and 2020. We only included interventions that sought to improve student learning directly (i.e., students’ interaction with the material), as opposed to interventions that have impacted achievement indirectly, by reducing teacher absence or increasing parental engagement. This process yielded 37 studies in 20 countries (see the full list of studies in Appendix B).

Scaling up standardized instruction

One of the ways in which technology may improve the quality of education is through its capacity to deliver standardized quality content at scale. This feature of technology may be particularly useful in three types of settings: (a) those in “hard-to-staff” schools (i.e., schools that struggle to recruit educators with the requisite training and experience—typically, in rural and/or remote areas) (see, e.g., Urquiola & Vegas, 2005); (b) those in which many educators are frequently absent from school (e.g., Chaudhury, Hammer, Kremer, Muralidharan, & Rogers, 2006; Muralidharan, Das, Holla, & Mohpal, 2017); and/or (c) those in which educators have low levels of pedagogical and subject matter expertise (e.g., Bietenbeck, Piopiunik, & Wiederhold, 2018; Bold et al., 2017; Metzler & Woessmann, 2012; Santibañez, 2006) and do not have opportunities to observe and receive feedback (e.g., Bruns, Costa, & Cunha, 2018; Cilliers, Fleisch, Prinsloo, & Taylor, 2018). Technology could address this problem by: (a) disseminating lessons delivered by qualified educators to a large number of learners (e.g., through prerecorded or live lessons); (b) enabling distance education (e.g., for learners in remote areas and/or during periods of school closures); and (c) distributing hardware preloaded with educational materials.

Prerecorded lessons

Technology seems to be well placed to amplify the impact of effective educators by disseminating their lessons. Evidence on the impact of prerecorded lessons is encouraging, but not conclusive. Some initiatives that have used short instructional videos to complement regular instruction, in conjunction with other learning materials, have raised student learning on independent assessments. For example, Beg et al. (2020) evaluated an initiative in Punjab, Pakistan in which grade 8 classrooms received an intervention that included short videos to substitute live instruction, quizzes for learners to practice the material from every lesson, tablets for educators to learn the material and follow the lesson, and LED screens to project the videos onto a classroom screen. After six months, the intervention improved the performance of learners on independent tests of math and science by 0.19 and 0.24 SDs, respectively but had no discernible effect on the math and science section of Punjab’s high-stakes exams.

One study suggests that approaches that are far less technologically sophisticated can also improve learning outcomes—especially, if the business-as-usual instruction is of low quality. For example, Naslund-Hadley, Parker, and Hernandez-Agramonte (2014) evaluated a preschool math program in Cordillera, Paraguay that used audio segments and written materials four days per week for an hour per day during the school day. After five months, the intervention improved math scores by 0.16 SDs, narrowing gaps between low- and high-achieving learners, and between those with and without educators with formal training in early childhood education.

Yet, the integration of prerecorded material into regular instruction has not always been successful. For example, de Barros (2020) evaluated an intervention that combined instructional videos for math and science with infrastructure upgrades (e.g., two “smart” classrooms, two TVs, and two tablets), printed workbooks for students, and in-service training for educators of learners in grades 9 and 10 in Haryana, India (all materials were mapped onto the official curriculum). After 11 months, the intervention negatively impacted math achievement (by 0.08 SDs) and had no effect on science (with respect to business as usual classes). It reduced the share of lesson time that educators devoted to instruction and negatively impacted an index of instructional quality. Likewise, Seo (2017) evaluated several combinations of infrastructure (solar lights and TVs) and prerecorded videos (in English and/or bilingual) for grade 11 students in northern Tanzania and found that none of the variants improved student learning, even when the videos were used. The study reports effects from the infrastructure component across variants, but as others have noted (Muralidharan, Romero, & Wüthrich, 2019), this approach to estimating impact is problematic.

A very similar intervention delivered after school hours, however, had sizeable effects on learners’ basic skills. Chiplunkar, Dhar, and Nagesh (2020) evaluated an initiative in Chennai (the capital city of the state of Tamil Nadu, India) delivered by the same organization as above that combined short videos that explained key concepts in math and science with worksheets, facilitator-led instruction, small groups for peer-to-peer learning, and occasional career counseling and guidance for grade 9 students. These lessons took place after school for one hour, five times a week. After 10 months, it had large effects on learners’ achievement as measured by tests of basic skills in math and reading, but no effect on a standardized high-stakes test in grade 10 or socio-emotional skills (e.g., teamwork, decisionmaking, and communication).

Drawing general lessons from this body of research is challenging for at least two reasons. First, all of the studies above have evaluated the impact of prerecorded lessons combined with several other components (e.g., hardware, print materials, or other activities). Therefore, it is possible that the effects found are due to these additional components, rather than to the recordings themselves, or to the interaction between the two (see Muralidharan, 2017 for a discussion of the challenges of interpreting “bundled” interventions). Second, while these studies evaluate some type of prerecorded lessons, none examines the content of such lessons. Thus, it seems entirely plausible that the direction and magnitude of the effects depends largely on the quality of the recordings (e.g., the expertise of the educator recording it, the amount of preparation that went into planning the recording, and its alignment with best teaching practices).

These studies also raise three important questions worth exploring in future research. One of them is why none of the interventions discussed above had effects on high-stakes exams, even if their materials are typically mapped onto the official curriculum. It is possible that the official curricula are simply too challenging for learners in these settings, who are several grade levels behind expectations and who often need to reinforce basic skills (see Pritchett & Beatty, 2015). Another question is whether these interventions have long-term effects on teaching practices. It seems plausible that, if these interventions are deployed in contexts with low teaching quality, educators may learn something from watching the videos or listening to the recordings with learners. Yet another question is whether these interventions make it easier for schools to deliver instruction to learners whose native language is other than the official medium of instruction.

Distance education

Technology can also allow learners living in remote areas to access education. The evidence on these initiatives is encouraging. For example, Johnston and Ksoll (2017) evaluated a program that broadcasted live instruction via satellite to rural primary school students in the Volta and Greater Accra regions of Ghana. For this purpose, the program also equipped classrooms with the technology needed to connect to a studio in Accra, including solar panels, a satellite modem, a projector, a webcam, microphones, and a computer with interactive software. After two years, the intervention improved the numeracy scores of students in grades 2 through 4, and some foundational literacy tasks, but it had no effect on attendance or classroom time devoted to instruction, as captured by school visits. The authors interpreted these results as suggesting that the gains in achievement may be due to improving the quality of instruction that children received (as opposed to increased instructional time). Naik, Chitre, Bhalla, and Rajan (2019) evaluated a similar program in the Indian state of Karnataka and also found positive effects on learning outcomes, but it is not clear whether those effects are due to the program or due to differences in the groups of students they compared to estimate the impact of the initiative.

In one context (Mexico), this type of distance education had positive long-term effects. Navarro-Sola (2019) took advantage of the staggered rollout of the telesecundarias (i.e., middle schools with lessons broadcasted through satellite TV) in 1968 to estimate its impact. The policy had short-term effects on students’ enrollment in school: For every telesecundaria per 50 children, 10 students enrolled in middle school and two pursued further education. It also had a long-term influence on the educational and employment trajectory of its graduates. Each additional year of education induced by the policy increased average income by nearly 18 percent. This effect was attributable to more graduates entering the labor force and shifting from agriculture and the informal sector. Similarly, Fabregas (2019) leveraged a later expansion of this policy in 1993 and found that each additional telesecundaria per 1,000 adolescents led to an average increase of 0.2 years of education, and a decline in fertility for women, but no conclusive evidence of long-term effects on labor market outcomes.

It is crucial to interpret these results keeping in mind the settings where the interventions were implemented. As we mention above, part of the reason why they have proven effective is that the “counterfactual” conditions for learning (i.e., what would have happened to learners in the absence of such programs) was either to not have access to schooling or to be exposed to low-quality instruction. School systems interested in taking up similar interventions should assess the extent to which their learners (or parts of their learner population) find themselves in similar conditions to the subjects of the studies above. This illustrates the importance of assessing the needs of a system before reviewing the evidence.

Preloaded hardware

Technology also seems well positioned to disseminate educational materials. Specifically, hardware (e.g., desktop computers, laptops, or tablets) could also help deliver educational software (e.g., word processing, reference texts, and/or games). In theory, these materials could not only undergo a quality assurance review (e.g., by curriculum specialists and educators), but also draw on the interactions with learners for adjustments (e.g., identifying areas needing reinforcement) and enable interactions between learners and educators.

In practice, however, most initiatives that have provided learners with free computers, laptops, and netbooks do not leverage any of the opportunities mentioned above. Instead, they install a standard set of educational materials and hope that learners find them helpful enough to take them up on their own. Students rarely do so, and instead use the laptops for recreational purposes—often, to the detriment of their learning (see, e.g., Malamud & Pop-Eleches, 2011). In fact, free netbook initiatives have not only consistently failed to improve academic achievement in math or language (e.g., Cristia et al., 2017), but they have had no impact on learners’ general computer skills (e.g., Beuermann et al., 2015). Some of these initiatives have had small impacts on cognitive skills, but the mechanisms through which those effects occurred remains unclear.

To our knowledge, the only successful deployment of a free laptop initiative was one in which a team of researchers equipped the computers with remedial software. Mo et al. (2013) evaluated a version of the One Laptop per Child (OLPC) program for grade 3 students in migrant schools in Beijing, China in which the laptops were loaded with a remedial software mapped onto the national curriculum for math (similar to the software products that we discuss under “practice exercises” below). After nine months, the program improved math achievement by 0.17 SDs and computer skills by 0.33 SDs. If a school system decides to invest in free laptops, this study suggests that the quality of the software on the laptops is crucial.

To date, however, the evidence suggests that children do not learn more from interacting with laptops than they do from textbooks. For example, Bando, Gallego, Gertler, and Romero (2016) compared the effect of free laptop and textbook provision in 271 elementary schools in disadvantaged areas of Honduras. After seven months, students in grades 3 and 6 who had received the laptops performed on par with those who had received the textbooks in math and language. Further, even if textbooks essentially become obsolete at the end of each school year, whereas laptops can be reloaded with new materials for each year, the costs of laptop provision (not just the hardware, but also the technical assistance, Internet, and training associated with it) are not yet low enough to make them a more cost-effective way of delivering content to learners.

Evidence on the provision of tablets equipped with software is encouraging but limited. For example, de Hoop et al. (2020) evaluated a composite intervention for first grade students in Zambia’s Eastern Province that combined infrastructure (electricity via solar power), hardware (projectors and tablets), and educational materials (lesson plans for educators and interactive lessons for learners, both loaded onto the tablets and mapped onto the official Zambian curriculum). After 14 months, the intervention had improved student early-grade reading by 0.4 SDs, oral vocabulary scores by 0.25 SDs, and early-grade math by 0.22 SDs. It also improved students’ achievement by 0.16 on a locally developed assessment. The multifaceted nature of the program, however, makes it challenging to identify the components that are driving the positive effects. Pitchford (2015) evaluated an intervention that provided tablets equipped with educational “apps,” to be used for 30 minutes per day for two months to develop early math skills among students in grades 1 through 3 in Lilongwe, Malawi. The evaluation found positive impacts in math achievement, but the main study limitation is that it was conducted in a single school.

Facilitating differentiated instruction

Another way in which technology may improve educational outcomes is by facilitating the delivery of differentiated or individualized instruction. Most developing countries massively expanded access to schooling in recent decades by building new schools and making education more affordable, both by defraying direct costs, as well as compensating for opportunity costs (Duflo, 2001; World Bank, 2018). These initiatives have not only rapidly increased the number of learners enrolled in school, but have also increased the variability in learner’ preparation for schooling. Consequently, a large number of learners perform well below grade-based curricular expectations (see, e.g., Duflo, Dupas, & Kremer, 2011; Pritchett & Beatty, 2015). These learners are unlikely to get much from “one-size-fits-all” instruction, in which a single educator delivers instruction deemed appropriate for the middle (or top) of the achievement distribution (Banerjee & Duflo, 2011). Technology could potentially help these learners by providing them with: (a) instruction and opportunities for practice that adjust to the level and pace of preparation of each individual (known as “computer-adaptive learning” (CAL)); or (b) live, one-on-one tutoring.

Computer-adaptive learning

One of the main comparative advantages of technology is its ability to diagnose students’ initial learning levels and assign students to instruction and exercises of appropriate difficulty. No individual educator—no matter how talented—can be expected to provide individualized instruction to all learners in his/her class simultaneously . In this respect, technology is uniquely positioned to complement traditional teaching. This use of technology could help learners master basic skills and help them get more out of schooling.

Although many software products evaluated in recent years have been categorized as CAL, many rely on a relatively coarse level of differentiation at an initial stage (e.g., a diagnostic test) without further differentiation. We discuss these initiatives under the category of “increasing opportunities for practice” below. CAL initiatives complement an initial diagnostic with dynamic adaptation (i.e., at each response or set of responses from learners) to adjust both the initial level of difficulty and rate at which it increases or decreases, depending on whether learners’ responses are correct or incorrect.

Existing evidence on this specific type of programs is highly promising. Most famously, Banerjee et al. (2007) evaluated CAL software in Vadodara, in the Indian state of Gujarat, in which grade 4 students were offered two hours of shared computer time per week before and after school, during which they played games that involved solving math problems. The level of difficulty of such problems adjusted based on students’ answers. This program improved math achievement by 0.35 and 0.47 SDs after one and two years of implementation, respectively. Consistent with the promise of personalized learning, the software improved achievement for all students. In fact, one year after the end of the program, students assigned to the program still performed 0.1 SDs better than those assigned to a business as usual condition. More recently, Muralidharan, et al. (2019) evaluated a “blended learning” initiative in which students in grades 4 through 9 in Delhi, India received 45 minutes of interaction with CAL software for math and language, and 45 minutes of small group instruction before or after going to school. After only 4.5 months, the program improved achievement by 0.37 SDs in math and 0.23 SDs in Hindi. While all learners benefited from the program in absolute terms, the lowest performing learners benefited the most in relative terms, since they were learning very little in school.

We see two important limitations from this body of research. First, to our knowledge, none of these initiatives has been evaluated when implemented during the school day. Therefore, it is not possible to distinguish the effect of the adaptive software from that of additional instructional time. Second, given that most of these programs were facilitated by local instructors, attempts to distinguish the effect of the software from that of the instructors has been mostly based on noncausal evidence. A frontier challenge in this body of research is to understand whether CAL software can increase the effectiveness of school-based instruction by substituting part of the regularly scheduled time for math and language instruction.

Live one-on-one tutoring

Recent improvements in the speed and quality of videoconferencing, as well as in the connectivity of remote areas, have enabled yet another way in which technology can help personalization: live (i.e., real-time) one-on-one tutoring. While the evidence on in-person tutoring is scarce in developing countries, existing studies suggest that this approach works best when it is used to personalize instruction (see, e.g., Banerjee et al., 2007; Banerji, Berry, & Shotland, 2015; Cabezas, Cuesta, & Gallego, 2011).

There are almost no studies on the impact of online tutoring—possibly, due to the lack of hardware and Internet connectivity in low- and middle-income countries. One exception is Chemin and Oledan (2020)’s recent evaluation of an online tutoring program for grade 6 students in Kianyaga, Kenya to learn English from volunteers from a Canadian university via Skype ( videoconferencing software) for one hour per week after school. After 10 months, program beneficiaries performed 0.22 SDs better in a test of oral comprehension, improved their comfort using technology for learning, and became more willing to engage in cross-cultural communication. Importantly, while the tutoring sessions used the official English textbooks and sought in part to help learners with their homework, tutors were trained on several strategies to teach to each learner’s individual level of preparation, focusing on basic skills if necessary. To our knowledge, similar initiatives within a country have not yet been rigorously evaluated.

Expanding opportunities for practice

A third way in which technology may improve the quality of education is by providing learners with additional opportunities for practice. In many developing countries, lesson time is primarily devoted to lectures, in which the educator explains the topic and the learners passively copy explanations from the blackboard. This setup leaves little time for in-class practice. Consequently, learners who did not understand the explanation of the material during lecture struggle when they have to solve homework assignments on their own. Technology could potentially address this problem by allowing learners to review topics at their own pace.

Practice exercises

Technology can help learners get more out of traditional instruction by providing them with opportunities to implement what they learn in class. This approach could, in theory, allow some learners to anchor their understanding of the material through trial and error (i.e., by realizing what they may not have understood correctly during lecture and by getting better acquainted with special cases not covered in-depth in class).

Existing evidence on practice exercises reflects both the promise and the limitations of this use of technology in developing countries. For example, Lai et al. (2013) evaluated a program in Shaanxi, China where students in grades 3 and 5 were required to attend two 40-minute remedial sessions per week in which they first watched videos that reviewed the material that had been introduced in their math lessons that week and then played games to practice the skills introduced in the video. After four months, the intervention improved math achievement by 0.12 SDs. Many other evaluations of comparable interventions have found similar small-to-moderate results (see, e.g., Lai, Luo, Zhang, Huang, & Rozelle, 2015; Lai et al., 2012; Mo et al., 2015; Pitchford, 2015). These effects, however, have been consistently smaller than those of initiatives that adjust the difficulty of the material based on students’ performance (e.g., Banerjee et al., 2007; Muralidharan, et al., 2019). We hypothesize that these programs do little for learners who perform several grade levels behind curricular expectations, and who would benefit more from a review of foundational concepts from earlier grades.

We see two important limitations from this research. First, most initiatives that have been evaluated thus far combine instructional videos with practice exercises, so it is hard to know whether their effects are driven by the former or the latter. In fact, the program in China described above allowed learners to ask their peers whenever they did not understand a difficult concept, so it potentially also captured the effect of peer-to-peer collaboration. To our knowledge, no studies have addressed this gap in the evidence.

Second, most of these programs are implemented before or after school, so we cannot distinguish the effect of additional instructional time from that of the actual opportunity for practice. The importance of this question was first highlighted by Linden (2008), who compared two delivery mechanisms for game-based remedial math software for students in grades 2 and 3 in a network of schools run by a nonprofit organization in Gujarat, India: one in which students interacted with the software during the school day and another one in which students interacted with the software before or after school (in both cases, for three hours per day). After a year, the first version of the program had negatively impacted students’ math achievement by 0.57 SDs and the second one had a null effect. This study suggested that computer-assisted learning is a poor substitute for regular instruction when it is of high quality, as was the case in this well-functioning private network of schools.

In recent years, several studies have sought to remedy this shortcoming. Mo et al. (2014) were among the first to evaluate practice exercises delivered during the school day. They evaluated an initiative in Shaanxi, China in which students in grades 3 and 5 were required to interact with the software similar to the one in Lai et al. (2013) for two 40-minute sessions per week. The main limitation of this study, however, is that the program was delivered during regularly scheduled computer lessons, so it could not determine the impact of substituting regular math instruction. Similarly, Mo et al. (2020) evaluated a self-paced and a teacher-directed version of a similar program for English for grade 5 students in Qinghai, China. Yet, the key shortcoming of this study is that the teacher-directed version added several components that may also influence achievement, such as increased opportunities for teachers to provide students with personalized assistance when they struggled with the material. Ma, Fairlie, Loyalka, and Rozelle (2020) compared the effectiveness of additional time-delivered remedial instruction for students in grades 4 to 6 in Shaanxi, China through either computer-assisted software or using workbooks. This study indicates whether additional instructional time is more effective when using technology, but it does not address the question of whether school systems may improve the productivity of instructional time during the school day by substituting educator-led with computer-assisted instruction.

Increasing learner engagement

Another way in which technology may improve education is by increasing learners’ engagement with the material. In many school systems, regular “chalk and talk” instruction prioritizes time for educators’ exposition over opportunities for learners to ask clarifying questions and/or contribute to class discussions. This, combined with the fact that many developing-country classrooms include a very large number of learners (see, e.g., Angrist & Lavy, 1999; Duflo, Dupas, & Kremer, 2015), may partially explain why the majority of those students are several grade levels behind curricular expectations (e.g., Muralidharan, et al., 2019; Muralidharan & Zieleniak, 2014; Pritchett & Beatty, 2015). Technology could potentially address these challenges by: (a) using video tutorials for self-paced learning and (b) presenting exercises as games and/or gamifying practice.

Video tutorials

Technology can potentially increase learner effort and understanding of the material by finding new and more engaging ways to deliver it. Video tutorials designed for self-paced learning—as opposed to videos for whole class instruction, which we discuss under the category of “prerecorded lessons” above—can increase learner effort in multiple ways, including: allowing learners to focus on topics with which they need more help, letting them correct errors and misconceptions on their own, and making the material appealing through visual aids. They can increase understanding by breaking the material into smaller units and tackling common misconceptions.

In spite of the popularity of instructional videos, there is relatively little evidence on their effectiveness. Yet, two recent evaluations of different versions of the Khan Academy portal, which mainly relies on instructional videos, offer some insight into their impact. First, Ferman, Finamor, and Lima (2019) evaluated an initiative in 157 public primary and middle schools in five cities in Brazil in which the teachers of students in grades 5 and 9 were taken to the computer lab to learn math from the platform for 50 minutes per week. The authors found that, while the intervention slightly improved learners’ attitudes toward math, these changes did not translate into better performance in this subject. The authors hypothesized that this could be due to the reduction of teacher-led math instruction.

More recently, Büchel, Jakob, Kühnhanss, Steffen, and Brunetti (2020) evaluated an after-school, offline delivery of the Khan Academy portal in grades 3 through 6 in 302 primary schools in Morazán, El Salvador. Students in this study received 90 minutes per week of additional math instruction (effectively nearly doubling total math instruction per week) through teacher-led regular lessons, teacher-assisted Khan Academy lessons, or similar lessons assisted by technical supervisors with no content expertise. (Importantly, the first group provided differentiated instruction, which is not the norm in Salvadorian schools). All three groups outperformed both schools without any additional lessons and classrooms without additional lessons in the same schools as the program. The teacher-assisted Khan Academy lessons performed 0.24 SDs better, the supervisor-led lessons 0.22 SDs better, and the teacher-led regular lessons 0.15 SDs better, but the authors could not determine whether the effects across versions were different.

Together, these studies suggest that instructional videos work best when provided as a complement to, rather than as a substitute for, regular instruction. Yet, the main limitation of these studies is the multifaceted nature of the Khan Academy portal, which also includes other components found to positively improve learner achievement, such as differentiated instruction by students’ learning levels. While the software does not provide the type of personalization discussed above, learners are asked to take a placement test and, based on their score, educators assign them different work. Therefore, it is not clear from these studies whether the effects from Khan Academy are driven by its instructional videos or to the software’s ability to provide differentiated activities when combined with placement tests.

Games and gamification

Technology can also increase learner engagement by presenting exercises as games and/or by encouraging learner to play and compete with others (e.g., using leaderboards and rewards)—an approach known as “gamification.” Both approaches can increase learner motivation and effort by presenting learners with entertaining opportunities for practice and by leveraging peers as commitment devices.

There are very few studies on the effects of games and gamification in low- and middle-income countries. Recently, Araya, Arias Ortiz, Bottan, and Cristia (2019) evaluated an initiative in which grade 4 students in Santiago, Chile were required to participate in two 90-minute sessions per week during the school day with instructional math software featuring individual and group competitions (e.g., tracking each learner’s standing in his/her class and tournaments between sections). After nine months, the program led to improvements of 0.27 SDs in the national student assessment in math (it had no spillover effects on reading). However, it had mixed effects on non-academic outcomes. Specifically, the program increased learners’ willingness to use computers to learn math, but, at the same time, increased their anxiety toward math and negatively impacted learners’ willingness to collaborate with peers. Finally, given that one of the weekly sessions replaced regular math instruction and the other one represented additional math instructional time, it is not clear whether the academic effects of the program are driven by the software or the additional time devoted to learning math.

The prognosis:

How can school systems adopt interventions that match their needs.

Here are five specific and sequential guidelines for decisionmakers to realize the potential of education technology to accelerate student learning.

1. Take stock of how your current schools, educators, and learners are engaging with technology .

Carry out a short in-school survey to understand the current practices and potential barriers to adoption of technology (we have included suggested survey instruments in the Appendices); use this information in your decisionmaking process. For example, we learned from conversations with current and former ministers of education from various developing regions that a common limitation to technology use is regulations that hold school leaders accountable for damages to or losses of devices. Another common barrier is lack of access to electricity and Internet, or even the availability of sufficient outlets for charging devices in classrooms. Understanding basic infrastructure and regulatory limitations to the use of education technology is a first necessary step. But addressing these limitations will not guarantee that introducing or expanding technology use will accelerate learning. The next steps are thus necessary.

“In Africa, the biggest limit is connectivity. Fiber is expensive, and we don’t have it everywhere. The continent is creating a digital divide between cities, where there is fiber, and the rural areas.  The [Ghanaian] administration put in schools offline/online technologies with books, assessment tools, and open source materials. In deploying this, we are finding that again, teachers are unfamiliar with it. And existing policies prohibit students to bring their own tablets or cell phones. The easiest way to do it would have been to let everyone bring their own device. But policies are against it.” H.E. Matthew Prempeh, Minister of Education of Ghana, on the need to understand the local context.

2. Consider how the introduction of technology may affect the interactions among learners, educators, and content .

Our review of the evidence indicates that technology may accelerate student learning when it is used to scale up access to quality content, facilitate differentiated instruction, increase opportunities for practice, or when it increases learner engagement. For example, will adding electronic whiteboards to classrooms facilitate access to more quality content or differentiated instruction? Or will these expensive boards be used in the same way as the old chalkboards? Will providing one device (laptop or tablet) to each learner facilitate access to more and better content, or offer students more opportunities to practice and learn? Solely introducing technology in classrooms without additional changes is unlikely to lead to improved learning and may be quite costly. If you cannot clearly identify how the interactions among the three key components of the instructional core (educators, learners, and content) may change after the introduction of technology, then it is probably not a good idea to make the investment. See Appendix A for guidance on the types of questions to ask.

3. Once decisionmakers have a clear idea of how education technology can help accelerate student learning in a specific context, it is important to define clear objectives and goals and establish ways to regularly assess progress and make course corrections in a timely manner .

For instance, is the education technology expected to ensure that learners in early grades excel in foundational skills—basic literacy and numeracy—by age 10? If so, will the technology provide quality reading and math materials, ample opportunities to practice, and engaging materials such as videos or games? Will educators be empowered to use these materials in new ways? And how will progress be measured and adjusted?

4. How this kind of reform is approached can matter immensely for its success.

It is easy to nod to issues of “implementation,” but that needs to be more than rhetorical. Keep in mind that good use of education technology requires thinking about how it will affect learners, educators, and parents. After all, giving learners digital devices will make no difference if they get broken, are stolen, or go unused. Classroom technologies only matter if educators feel comfortable putting them to work. Since good technology is generally about complementing or amplifying what educators and learners already do, it is almost always a mistake to mandate programs from on high. It is vital that technology be adopted with the input of educators and families and with attention to how it will be used. If technology goes unused or if educators use it ineffectually, the results will disappoint—no matter the virtuosity of the technology. Indeed, unused education technology can be an unnecessary expenditure for cash-strapped education systems. This is why surveying context, listening to voices in the field, examining how technology is used, and planning for course correction is essential.

5. It is essential to communicate with a range of stakeholders, including educators, school leaders, parents, and learners .

Technology can feel alien in schools, confuse parents and (especially) older educators, or become an alluring distraction. Good communication can help address all of these risks. Taking care to listen to educators and families can help ensure that programs are informed by their needs and concerns. At the same time, deliberately and consistently explaining what technology is and is not supposed to do, how it can be most effectively used, and the ways in which it can make it more likely that programs work as intended. For instance, if teachers fear that technology is intended to reduce the need for educators, they will tend to be hostile; if they believe that it is intended to assist them in their work, they will be more receptive. Absent effective communication, it is easy for programs to “fail” not because of the technology but because of how it was used. In short, past experience in rolling out education programs indicates that it is as important to have a strong intervention design as it is to have a solid plan to socialize it among stakeholders.

conclusion of importance of ict in education

Beyond reopening: A leapfrog moment to transform education?

On September 14, the Center for Universal Education (CUE) will host a webinar to discuss strategies, including around the effective use of education technology, for ensuring resilient schools in the long term and to launch a new education technology playbook “Realizing the promise: How can education technology improve learning for all?”

file-pdf Full Playbook – Realizing the promise: How can education technology improve learning for all? file-pdf References file-pdf Appendix A – Instruments to assess availability and use of technology file-pdf Appendix B – List of reviewed studies file-pdf Appendix C – How may technology affect interactions among students, teachers, and content?

About the Authors

Alejandro j. ganimian, emiliana vegas, frederick m. hess.

  • Media Relations
  • Terms and Conditions
  • Privacy Policy

digital education

Digital learning and transformation of education

Digital technologies have evolved from stand-alone projects to networks of tools and programmes that connect people and things across the world, and help address personal and global challenges. Digital innovation has demonstrated powers to complement, enrich and transform education, and has the potential to speed up progress towards Sustainable Development Goal 4 (SDG 4) for education and transform modes of provision of universal access to learning. It can enhance the quality and relevance of learning, strengthen inclusion, and improve education administration and governance. In times of crises, distance learning can mitigate the effects of education disruption and school closures.

What you need to know about digital learning and transformation of education

2-5 September 2024, UNESCO Headquarters, Paris, France

Digital competencies of teachers

in Member States of the Group of 77 and China

Best practices

The call for applications and nominations for the 2023 edition is open until 21 February 2024

Upcoming events

Subregional seminar "Priorities for Youth in the Digital World: Jobs and Education"

Open educational resources

conclusion of importance of ict in education

A translation campaign to facilitate home-based early age reading

conclusion of importance of ict in education

or 63%of the world’s population, were using the Internet in 2021

do not have a household computer and 43% of learners do not have household Internet.

to access information because they are not covered by mobile networks

in sub-Saharan Africa have received minimum training

0000386693

Contact us at  [email protected]

Importance of ICT in Education Essay

Ict: introduction, teachers and their role in education, impact of ict in education, use of ict in education, importance of ict to students, works cited.

Information and Communication Technology is among the most indispensable tools that the business world relies on today. Virtually all businesses, in one way or another, rely on technology tools to carry out operations. Other organizations like learning institutions are not left behind technology-wise. ICT is increasingly being employed in contemporary learning institutions to ease the work of students and teachers.

Among the most commendable successes of employing ICT in learning institutions is e-learning, in which the ICT tools are used to access classrooms remotely. This paper explores the importance of the tools of the tools of ICT in education and the roles that these tools have played in making learning better and easier.

Teachers are scholars who have mastered specific subjects that form part of their specialty and help in imparting knowledge to students. Some of the roles that teachers play in academic institutions include designing syllabuses, preparing timetables, preparing for lessons and convening students for lessons, and carrying out continuous assessments on students.

Others include keeping records of academic reports, disciplinary records, and other records related to the activities of students in school, like the participation of students in games and other activities.

In cases where there are limitations such that it is impossible to convene people and resources together for learning. E-learning provides a very important and convenient way of teaching people. In such a case, a teacher provides learning materials and lessons online, which can be accessed by his/her students at their convenience.

The materials can be audio files of recorded classroom lessons, audio-visual files for lessons requiring visual information like practical or even text documents, and hypertext documents (Tinio 1). This method of teaching is also convenient for teachers because they are able to record lessons at their convenience, and the assessment of students involves less documentation.

This is because with the use of the internet, teachers are able to upload assignments and continuous assessments on the e-learning systems, and after students are done with the assignments, they use the system or emails to send their completed assignments to their teachers. This comes with a number of advantages which are brought about by having students complete assignments in soft copies.

One of these advantages is that feedback from teachers will be timely and it will be convenient for the teachers. Teachers can also use technology tools such as plagiarism software to check if students have copied the works of other scholars and thus establish the authenticity of the assignment. It can thus be argued that although e-learning systems have their disadvantages, they are very instrumental in teaching people whose schedules are tight and who may have limitations as far as accessing the classroom is concerned.

Therefore technology has been an influential and essential tool in the career of education, and several innovations have been made that have made teaching a much easier career. The paragraph below discusses other ways in which technology has been employed in the education career.

Teachers can also use the tools of ICT in other functions. One such function is keeping records of student performances and other kinds of records within the academic institution. This can be done by uploading the information to a Management Information System for the school or college, which should have a database for supporting the same. The information can also be stored in soft form in Compact Disks, Hard Drives, Flash Disks, or even Digital Video Disks (Obringer 1).

This ensures that information is properly stored and backed up and also ensures that records are not as bulky as they would have been in the absence of the tools of ICT. Such a system also ensures that information can easily be accessed and also ensures that proper privacy of the data is maintained.

Another way in which teachers can use the tools of ICT to ease their work is by employing tools like projectors for presentations of lessons, iPads for students, computers connected to the internet for communicating to students about continuous assessments, and the like (Higgins 1). This way, the teacher will be able to reduce the paperwork that he /she uses in his/her work, and this is bound to make his/her work easier.

For instance, if the teacher can access a projector, he/she can prepare a presentation of a lesson for his/her students, and this way, he will not have to carry textbooks, notebooks, and the like to the classroom for the lesson. The teacher can also post notes and relevant texts for a given course on the information system for the school or on an interactive website, and thus he/she will have more time for discussions during lessons.

Teachers can also, in consultation with IT specialists, develop real-time systems where students can answer questions related woo what they have learned in class and get automated results through the system (Masie 1).

This will help the students understand the concepts taught in class better, and this way, teachers will have less workload. Such websites will also help teachers to show the students how questions related to their specialty are framed early enough so that students can concentrate on knowledge acquisition during class hours.

This is as opposed to a case where the students remain clueless about the kind of questions they expect in exams and spend most of their time preparing for exams rather than reading extensively to acquire knowledge. ICT can also be sued by teachers to advertise the kind of services they offer in schools and also advertise the books and journals they have written. This can be achieved by using websites for the school or specific teachers or professors.

As evidenced in the discussion above, ICT is a very instrumental tool in education as a career. The specific tools of ICT used in education, as discussed above, include the use of ICT in distance learning, storage of student performance and other relevant information in databases and storage media, and the use of tools of ICT in classroom like projectors, iPads and the like. Since the invention of the internet and the subsequent popularity of computers, a lot of functions of education as a career have been made simpler.

These include the administration of continuous assessments, marking continuous assessments, giving feedback to students, and even checking the originality of the ideas expressed in the assignments and examinations. All in all, the impact that ICT has had in educational institutions is so much that school life without ICT is somehow impossible for people who are accustomed to using ICT.

Higgins, Steve. “Does ICT improve learning and teaching in schools”. 2007. Web.

Masie, Shank. “What is electronic learning?” 2007. Web.

Obringer, Ann. “ How E-Learning Works ”. 2008. Web.

Tinio, Victoria. “ICT in Education”. 2008. Web.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2019, February 20). Importance of ICT in Education. https://ivypanda.com/essays/ict-in-education/

"Importance of ICT in Education." IvyPanda , 20 Feb. 2019, ivypanda.com/essays/ict-in-education/.

IvyPanda . (2019) 'Importance of ICT in Education'. 20 February.

IvyPanda . 2019. "Importance of ICT in Education." February 20, 2019. https://ivypanda.com/essays/ict-in-education/.

1. IvyPanda . "Importance of ICT in Education." February 20, 2019. https://ivypanda.com/essays/ict-in-education/.

Bibliography

IvyPanda . "Importance of ICT in Education." February 20, 2019. https://ivypanda.com/essays/ict-in-education/.

  • E-Learning: Video, Television and Videoconferencing
  • Ottawa Region ICT Centres Project
  • Nontakers Perceptiom Towards ICT
  • Technological Advances in Education
  • Computer Based Training Verses Instructor Lead Training
  • Smart Classroom and Its Effect on Student Learning
  • Use of Technology as a Learning Tool
  • Computers & Preschool Children: Why They Are Required in Early Childhood Centers

Stanford University

Along with Stanford news and stories, show me:

  • Student information
  • Faculty/Staff information

We want to provide announcements, events, leadership messages and resources that are relevant to you. Your selection is stored in a browser cookie which you can remove at any time using “Clear all personalization” below.

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of Stanford Graduate School of Education (GSE), who is also a professor of educational technology at the GSE and faculty director of the Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately worried that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or coach students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the AI + Education initiative at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of CRAFT (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the Digital Learning initiative at the Stanford Accelerator for Learning, which runs a program exploring the use of virtual field trips to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

ORIGINAL RESEARCH article

This article is part of the research topic.

Education for the Future: Learning and Teaching for Sustainable Development in Education

Blending Pedagogy: Equipping Student Teachers to Foster Transversal Competencies in Future-oriented Education Provisionally Accepted

  • 1 Department of Education, Faculty of Educational Sciences, University of Helsinki, Finland

The final, formatted version of the article will be published soon.

Blended teaching and learning, combining online and face-to-face instruction, and shared reflection are gaining in popularity worldwide and present evolving challenges in the field of teacher training and education. There is also a growing need to focus on transversal competencies such as critical thinking and collaboration. This study is positioned at the intersection of blended education and transversal competencies in the context of a blended ECEC teacher-training program (1000+) at the University of Helsinki. Blended education is a novel approach to training teachers, and there is a desire to explore how such an approach supports the acquisition of transversal competencies and whether the associated methods offer something essential for the development of teacher training. The aim is to explore what transversal competencies this teacher-training program supports for future teachers, and how students reflect on their learning experiences. The data consist of documents from teacher-education curricula and essays from the students on the 1000+ program. They were content-analyzed from a scoping perspective. Students' experiences of studying enhanced the achievement of generic goals in teacher education, such as to develop critical and reflective thinking, interaction competence, collaboration skills, and independent and collective expertise. We highlight the importance of teacher development in preparing for education in the future during the teacher training. Emphasizing professional development, we challenge the conventional teaching paradigm by introducing a holistic approach.

Keywords: blended teacher training, Transversal competencies, future of education, Teacher Education, early childhood education

Received: 19 Jan 2024; Accepted: 15 May 2024.

Copyright: © 2024 Niemi, Kangas and Köngäs. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Dr. Laura H. Niemi, Department of Education, Faculty of Educational Sciences, University of Helsinki, Helsinki, 00014, Uusimaa, Finland

People also looked at

Importance of Information and Communication Technology (ICT) in Higher Education Paper

  • Conference paper
  • First Online: 28 February 2022
  • Cite this conference paper

conclusion of importance of ict in education

  • Viney Dhiman 5 ,
  • Anupama Bharti 6 &
  • Vijai Sharma 7  

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

300 Accesses

The process of ICT becomes an integral part of the process of learning nowadays. The growth and the development of technology are playing an important role in higher education. It helps prepare different learning concepts to enhance the impact of teaching, learning, and research criteria. It highlights different impacts of information and communication technology for providing development to generate different methods. The use of the given technology has changed the procedures in terms of business and governance. The online learning methods provide an experience to adopt suitable factors of consideration used to access educational research to create a proper method of suitable learning based on different analyses. It represents the strategy of the curriculum to provide a demand to the educational practices. It is characterized by providing a descriptive study to link the use of ICT to educational practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Albar, A.M., Hoque, M.R.: Factors affecting the adoption of information and communication technology in small and medium enterprises: a perspective from rural Saudi Arabia. Inf. Technol. Dev. 25 (4), 715–738 (2019)

Article   Google Scholar  

Okundaye, K., Fan, S.K., Dwyer, R.J.: Impact of information and communication technology in Nigerian small-to medium-sized enterprises. J. Econ. Fin. Admin. Sci. 24 (47), 29–46 (2019). https://doi.org/10.1108/JEFAS-08-2018-0086

Locke, S. and Cave, J.: Information Communication Technology in New Zealand SMEs. Available at SSRN 3284911 . (2018)

Google Scholar  

Lavrentieva, O.O., Rybalko, L.M., Tsys, O.O. and Uchitel, A.D.: Theoretical and methodical aspects of the organization of students’ independent study activities together with the use of ICT and tools. (2019)

Nikolopoulou, K.: Creativity and ICT: theoretical approaches and perspectives in school education. In: Research on e-Learning and ICT in Education , pp. 87–100. Springer, Cham (2018)

Chapter   Google Scholar  

Fernandez, M.J.: Identification of variables that predict teachers’ attitudes toward ICT in higher education for teaching and research: a study with regression. Sustainability. 12 (4), 1312 (2020)

Bala, M., 2018. Use of ICT in higher education. Multidisciplinary Higher Education, Research, Dynamics & Concepts: Opportunities & Challenges for Sustainable Development (ISBN 978-93-87662-12-4) , 1(1), 368-376.

Dave, D.: An analytical study of the role of ICT in higher education. J. Glob. Econ. 15 (1 Special), 56–61 (2019)

Bansal, J., Kumar, D.: ICT-enabled higher education: an overview. Asian J. Res. Busi. Econ Manag. 8 (3), 45–51 (2018)

Diaz, I., Caceres-Reche, M.P., Trujillo-Torres, J.M., Romero-Rodriguez, J.M.: A systematic review of good teaching practices with ICT in Spanish higher education. Trends and challenges for sustainability. Sustainability. 11 (24), 7150 (2019)

Hernandez, R.M.: Impact of ICT on education: challenges and perspectives. J. Edu. Psychol. Propos. Represent. 5 (1), 337–347 (2017)

Verma, D.K.: Impact of ICT on education: challenges and perspectives. EDUCATION PLUS , p. 25. By Granic, A. and Marangunic, N. Technology acceptance model in an educational context: a systematic literature review. Br. J. Educ. Technol. 50 (5), 2572–2593 (2019)

Maryuningsih, Y., Hidayat, T., Randi, R. and Rastaman, N.Y.: Profile of information and communication technologies (ICT) skills of prospective teachers. In Journal of Physics: Conference Series (Vol. 1521, No. 4, p. 042009). IOP Publishing (2020)

Tania, R. and Astuti, D.P.: The application of physics e-handout assisted by PBL model uses Edmodo to improve critical thinking skills and ICT literacy of high school students. In Journal of Physics: Conference Series (Vol. 1440, No. 1, p. 012037). IOP Publishing (2020)

Ngafif, A.: Turnitin: The Use of ICT to Optimize Students’ Testing Result. (2020)

Ismail, S.A.M.M., Jogezai, N.A., Baloch, F.A.: Hindering and enabling factors towards ICT integration in schools: a developing country perspective. Element. Edu. Online. 19 (3), 1537–1547 (2020)

Ergo, A.A., Desta, A., Mehta, H.: Determining the barriers contributing to ICT implementation by using the technology-organization-environment framework in Ethiopian higher educational institutions. Educ. Inf. Technol., 1–19 (2021)

Rinekso, A.B., Kurniawan, E.: Fostering language learner autonomy through the involvement of ICT: teachers’ perception. ELTR J. 4 (2), 103–116 (2020)

Europe, I.K., Adetunmbi, A.O. and Oyinloye, O.E.: Awakening for 21st century challenges and opportunities with the use of ICT based virtual assistive technology to teach early childhood education of children with learning challenges in pandemic challenged society (2020).

Park, C., Heo, W.: Review of the changing electricity industry value chain in the ICT convergence era. J. Clean. Prod. 258 , 120743 (2020)

Alahakoon, M.U.I., Jehan, S.N.: The efficiency of public service delivery—a post-ICT deployment analysis. Economies. 8 (4), 97 (2020)

Fernández-Gutiérrez, M., Gimenez, G., Calero, J.: Is the use of ICT in education leading to higher student outcomes? Analysis from the Spanish autonomous communities. Comput. Educ. 157 , 103969 (2020)

Phan, Q.N.P.: Application of an ICT marketing approach on SMEs–Case: Hung Dao (2020).

God, D.I., Sharif, A., Agha, H., Jermsittiparsert, K.: The dynamic nonlinear influence of ICT, financial development, and institutional quality on CO2 emission in Pakistan: new insights from QARDL approach. Environ. Sci. Pollut. Res. 27 (19), 24190–24200 (2020)

Ningrum, H.U., Mulyono, M., Isnarto, I.: Mathematical connection ability based on self-efficacy in IDEAL problem solving model assisted by ICT. Unnes J. Math. Edu. Res. 9 (2), 139–146 (2020)

Simbolon, N., Simanjuntak, E.B., Simanjuntak, M.P., Purba, J.T.: The effectiveness of ICT-based learning in improving English skills of elementary school teacher college students. AJIS. 9 (5), 217–217 (2020)

Zia, N., Ilahi, M. and Khan, N.A., 2018. The role of ICT (Information & Communication Technology) in higher education. Multidisciplinary Higher Education, Research, Dynamics & Concepts: Opportunities & Challenges for Sustainable Development (ISBN 978-93-87662-12-4) , 1 (1), pp. 204–212.

Download references

Author information

Authors and affiliations.

Postgraduate Institute of Medical Education and Research, Chandigarh, India

Viney Dhiman

Department of Sociology and Social Work, Himachal Pradesh University, Shimla, India

Anupama Bharti

DIET, Gonda, Uttar Pradesh, India

Vijai Sharma

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Department of CSE, Presidency University, Bangalore, Bangalore, India

Arulmurugan Ramu

Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia

Chow Chee Onn

KPR Institute of Engineering and Technology, Arasur, India

M.G. Sumithra

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper.

Dhiman, V., Bharti, A., Sharma, V. (2022). Importance of Information and Communication Technology (ICT) in Higher Education Paper. In: Ramu, A., Chee Onn, C., Sumithra, M. (eds) International Conference on Computing, Communication, Electrical and Biomedical Systems. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-86165-0_46

Download citation

DOI : https://doi.org/10.1007/978-3-030-86165-0_46

Published : 28 February 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-86164-3

Online ISBN : 978-3-030-86165-0

eBook Packages : Engineering Engineering (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

IMAGES

  1. PPT

    conclusion of importance of ict in education

  2. Use of ICT in Education: Role and Importance of ICT

    conclusion of importance of ict in education

  3. ICT in Education

    conclusion of importance of ict in education

  4. Impact ict to education

    conclusion of importance of ict in education

  5. List 10 Importance and Role of ICT in School Education With Features of

    conclusion of importance of ict in education

  6. (PDF) The Significance of ICT in Education

    conclusion of importance of ict in education

VIDEO

  1. the Importance of ICT in our daily lives

  2. INVERSE FAIR VALUE GAP (IFVG) EXPLAINED

  3. THE IMPORTANCE OF ICT IN THE 21ST CENTURY (12- Fidelity)

  4. Importance of Multimedia and ICT

  5. "The Importance of ICT in Medical Field "

  6. WHAT ARE THE IMPORTANCE OF ICT IN THE FIELD OF MEDICAL INDUSTRY?

COMMENTS

  1. PDF ICT in Education: A Critical Literature Review and Its Implications

    Improve teaching and learning quality. As Lowther et al. (2008) have stated that there are three important characteristics are needed to develop good quality teaching and learning with ICT: autonomy, capability, and creativity. Autonomy means that students take control of their learning through their use of ICT.

  2. Information and communication technology (ICT) in education

    Information and Communications Technology (ICT) can impact student learning when teachers are digitally literate and understand how to integrate it into curriculum. Schools use a diverse set of ICT tools to communicate, create, disseminate, store, and manage information.(6) In some contexts, ICT has also become integral to the teaching-learning interaction, through such approaches as replacing ...

  3. Conclusion

    Conclusion. As has ever been true, edtech holds vast potential to improve learning and teaching for every student and teacher in the United States. In recent years, driven by the emergency of a pandemic, schools have found themselves with more connectivity, devices, and digital resources than at any other moment in history. This current context ...

  4. Understanding the role of digital technologies in education: A review

    The importance of Big Data and the application of analytics to learning was an essential but generally overlooked part of Education technologies [208], [209]. Schools and educational institutions realise the value of comprehensive student and instructor performance data as they extend their usage of virtual classrooms, e-learning platforms, and ...

  5. Information and Communication Technologies in Education: A ...

    ICT offers a broad range of applications and has the potential to play an important role in the education sector. Students in rural schools can easily understand the content if it is presented in their native language, and by using ICT technologies, their language of communication can be further developed, which is the biggest obstacle to rural ...

  6. Full article: The role of information and communication technologies in

    Within the society dimension, the paper by Stal and Paliwoda-Pękosz illustrates how ICT-enabled education may help people improve their soft skills, an important facet of human and social capital. The authors, in their paper, highlight the role of teaching methods in developing human and social capital, by building students' soft skills.

  7. PDF The impact of ICT on learning: A review of research

    longitudinal studies into the impact of ICT on learning in the future. ICT, qualitative analysis, quantitative analysis, meta-analysis, learning INTRODUCTION With the introduction of computers, the precursor of our modern-day ICT, and the promising potentials of computer-based instruction and learning, many researchers and funding agencies

  8. Critical reflections on the benefits of ICT in education

    In 2008/9, UK schools spent some £880 million (or 3.2% of overall spend) on ICT, nearly one third of this from the 'Harnessing Technology Grant' from the Government (Becta, Citation 2009a).Digital resources of one kind or another are used by almost half of all primary pupils at least weekly (43% in English, 46% in maths and 30% in science) though by less than one in ten secondary pupils ...

  9. The role of information and communication technologies in improving

    The conclusions of some of these studies is that ICT integration processes are complex and that internal and external factors play an important role (Davis et al. Citation 2009; Ertmer Citation 2005; Law et al. Citation 2005; Nachmias et al. Citation 2004; Tearle Citation 2003). Amongst the internal factors, characteristics of school ...

  10. Realizing the promise: How can education technology improve learning

    Instead, to realize the potential of education technology to accelerate student learning, decisionmakers should focus on four potential uses of technology that play to its comparative advantages ...

  11. Digital learning and transformation of education

    Digital innovation has demonstrated powers to complement, enrich and transform education, and has the potential to speed up progress towards Sustainable Development Goal 4 (SDG 4) for education and transform modes of provision of universal access to learning. It can enhance the quality and relevance of learning, strengthen inclusion, and ...

  12. PDF Teaching and Learning with Technology: Effectiveness of ICT ...

    Teaching and learning with technology: Effectiveness of ICT integration in schools. International Journal of Research in Education and Science (IJRES), 1(2), 175-191. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic ...

  13. Impact of ICT in Education: An Analysis

    1.1 Artificial Intelligence (AI) Artificial Intelligence or AI, as it is more often addressed, has played an important role in the societal development in employment, ethics, and education which has benefited various sections of the society. It is used in the following spheres in the field of education.

  14. Impacts of digital technologies on education and factors influencing

    Digital technologies have brought changes to the nature and scope of education and led education systems worldwide to adopt strategies and policies for ICT integration. The latter brought about issues regarding the quality of teaching and learning with ICTs, especially concerning the understanding, adaptation, and design of the education systems in accordance with current technological trends ...

  15. Conclusions and Discussion

    One important outcome of this work has been the establishment of a crossnational, empirical foundation for describing the competencies underpinning the CIL construct. ... We also discuss country-level outcomes concerned with aspects of ICT use in education as well as the findings from our bivariate and multivariate analyses designed to explore ...

  16. (PDF) The Significance of ICT in Education

    Conclusion. The use of ICT has rendered a significant contribution in bringing about . ... Importance of ICT in Education. IOSR Journal of Research and Method . in Education, 1(4), 03-08.

  17. (PDF) Impact of ICT in education

    education system ICT is use d as a tool for stud ents to discover learning topics, solve problems, and provide solutions to the problems in t he learning process. ICT. makes knowledge acquisition ...

  18. 10 Powerful Uses of ICT in Education: Transforming Learning ...

    Optimizing ICT Use in Education: Strategies for Success While the benefits of ICT in education are undeniable, maximizing its impact requires a strategic approach. Here are some key considerations ...

  19. Conclusions: Toward an ICT Impact Chain

    Concludes that under certain conditions, information and communication technologies (ICTs) can significantly enhance poor people's human and social capabilities and have a positive impact on their well-being. ICTs can enhance poor people's individual and collective agency; strengthen their existing individual or community assets; and enhance their informational capabilities. ICTs receive ...

  20. Importance of ICT in Education

    Importance of ICT to Students. This will help the students understand the concepts taught in class better, and this way, teachers will have less workload. Such websites will also help teachers to show the students how questions related to their specialty are framed early enough so that students can concentrate on knowledge acquisition during ...

  21. Why Do We Need Technology in Education?

    Using the Universal Design for Learning (UDL) (CAST, Inc., 2012) principles as a guide, technology can increase access to, and representation of, content, provide students with a variety of ways to communicate and express their knowledge, and motivate student learning through interest and engagement.

  22. Importance of ICT in Education and Teaching-Learning process

    1. ICT can bring the existing educational system in alignment with the knowledge-based, information-rich society by providing services of sophisticated tools, techniques and methods at its disposal. 2. Use of ICT can bring about a paradigm shift in traditional views and methods of teaching — learning process.

  23. PDF The Potential of ICTs in Education Worldwide: A Review of Several

    to improve the quality of education. According to the conclusions, the role of the teacher as a predictor for the better quality of education is more significant than the use of ICTs. Despite these conclusions, during the past 25 years schools and families around the world have spent a substantial amount of money on computers, Internet

  24. Role of ICT in Education

    Use & Benefits of ICT in Education. The use of ICT in education is multifaceted. It provides students access to various online resources, including textbooks, research materials, and educational videos. This accessibility breaks down geographical barriers, making quality education available to learners worldwide, regardless of their location or ...

  25. How technology is reinventing K-12 education

    In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data. Technology is "requiring people to check their assumptions ...

  26. PDF 6. Conclusions and Recommendations

    Microsoft Word - ICT vol 1_08_09_2011.docx. 6. Conclusions and Recommendations. 6.1 Over the past decade, access to ICT in developing countries has grown rapidly, a development enabled by changes in technologies, policies, and markets. Increased access has unleashed the transformative potential of ICT, affecting the ways in which people ...

  27. Frontiers

    Blended teaching and learning, combining online and face-to-face instruction, and shared reflection are gaining in popularity worldwide and present evolving challenges in the field of teacher training and education. There is also a growing need to focus on transversal competencies such as critical thinking and collaboration. This study is positioned at the intersection of blended education and ...

  28. Conclusion of Ict

    Conclusion of ict - Free download as Word Doc (.doc / .docx), PDF File (.pdf), Text File (.txt) or read online for free.

  29. Importance of Information and Communication Technology (ICT) in Higher

    The information and communication technology (ICT) plays an important role in higher education paper. According to [], ICT helps in the improvements in the social and economical sector and increase the standards of the person.The students can benefit from the ICT as it creates various opportunities for the colleges and universities to achieve diverse knowledge of contents effectively.

  30. Full article: Research trends on ICT integration in Education: A

    This research paper conducts a comprehensive bibliometric analysis of ICT integration in education, investigating trends, author prominence, institutional contributions, and thematic focus within this domain. Through the Dimensions academic research database, 1790 pertinent publications from 2014 to 2023 were identified.