• Skip to secondary menu
  • Skip to main content
  • Skip to primary sidebar

Statistics By Jim

Making statistics intuitive

Null Hypothesis: Definition, Rejecting & Examples

By Jim Frost 6 Comments

What is a Null Hypothesis?

The null hypothesis in statistics states that there is no difference between groups or no relationship between variables. It is one of two mutually exclusive hypotheses about a population in a hypothesis test.

Photograph of Rodin's statue, The Thinker who is pondering the null hypothesis.

  • Null Hypothesis H 0 : No effect exists in the population.
  • Alternative Hypothesis H A : The effect exists in the population.

In every study or experiment, researchers assess an effect or relationship. This effect can be the effectiveness of a new drug, building material, or other intervention that has benefits. There is a benefit or connection that the researchers hope to identify. Unfortunately, no effect may exist. In statistics, we call this lack of an effect the null hypothesis. Researchers assume that this notion of no effect is correct until they have enough evidence to suggest otherwise, similar to how a trial presumes innocence.

In this context, the analysts don’t necessarily believe the null hypothesis is correct. In fact, they typically want to reject it because that leads to more exciting finds about an effect or relationship. The new vaccine works!

You can think of it as the default theory that requires sufficiently strong evidence to reject. Like a prosecutor, researchers must collect sufficient evidence to overturn the presumption of no effect. Investigators must work hard to set up a study and a data collection system to obtain evidence that can reject the null hypothesis.

Related post : What is an Effect in Statistics?

Null Hypothesis Examples

Null hypotheses start as research questions that the investigator rephrases as a statement indicating there is no effect or relationship.

Does the vaccine prevent infections? The vaccine does not affect the infection rate.
Does the new additive increase product strength? The additive does not affect mean product strength.
Does the exercise intervention increase bone mineral density? The intervention does not affect bone mineral density.
As screen time increases, does test performance decrease? There is no relationship between screen time and test performance.

After reading these examples, you might think they’re a bit boring and pointless. However, the key is to remember that the null hypothesis defines the condition that the researchers need to discredit before suggesting an effect exists.

Let’s see how you reject the null hypothesis and get to those more exciting findings!

When to Reject the Null Hypothesis

So, you want to reject the null hypothesis, but how and when can you do that? To start, you’ll need to perform a statistical test on your data. The following is an overview of performing a study that uses a hypothesis test.

The first step is to devise a research question and the appropriate null hypothesis. After that, the investigators need to formulate an experimental design and data collection procedures that will allow them to gather data that can answer the research question. Then they collect the data. For more information about designing a scientific study that uses statistics, read my post 5 Steps for Conducting Studies with Statistics .

After data collection is complete, statistics and hypothesis testing enter the picture. Hypothesis testing takes your sample data and evaluates how consistent they are with the null hypothesis. The p-value is a crucial part of the statistical results because it quantifies how strongly the sample data contradict the null hypothesis.

When the sample data provide sufficient evidence, you can reject the null hypothesis. In a hypothesis test, this process involves comparing the p-value to your significance level .

Rejecting the Null Hypothesis

Reject the null hypothesis when the p-value is less than or equal to your significance level. Your sample data favor the alternative hypothesis, which suggests that the effect exists in the population. For a mnemonic device, remember—when the p-value is low, the null must go!

When you can reject the null hypothesis, your results are statistically significant. Learn more about Statistical Significance: Definition & Meaning .

Failing to Reject the Null Hypothesis

Conversely, when the p-value is greater than your significance level, you fail to reject the null hypothesis. The sample data provides insufficient data to conclude that the effect exists in the population. When the p-value is high, the null must fly!

Note that failing to reject the null is not the same as proving it. For more information about the difference, read my post about Failing to Reject the Null .

That’s a very general look at the process. But I hope you can see how the path to more exciting findings depends on being able to rule out the less exciting null hypothesis that states there’s nothing to see here!

Let’s move on to learning how to write the null hypothesis for different types of effects, relationships, and tests.

Related posts : How Hypothesis Tests Work and Interpreting P-values

How to Write a Null Hypothesis

The null hypothesis varies by the type of statistic and hypothesis test. Remember that inferential statistics use samples to draw conclusions about populations. Consequently, when you write a null hypothesis, it must make a claim about the relevant population parameter . Further, that claim usually indicates that the effect does not exist in the population. Below are typical examples of writing a null hypothesis for various parameters and hypothesis tests.

Related posts : Descriptive vs. Inferential Statistics and Populations, Parameters, and Samples in Inferential Statistics

Group Means

T-tests and ANOVA assess the differences between group means. For these tests, the null hypothesis states that there is no difference between group means in the population. In other words, the experimental conditions that define the groups do not affect the mean outcome. Mu (µ) is the population parameter for the mean, and you’ll need to include it in the statement for this type of study.

For example, an experiment compares the mean bone density changes for a new osteoporosis medication. The control group does not receive the medicine, while the treatment group does. The null states that the mean bone density changes for the control and treatment groups are equal.

  • Null Hypothesis H 0 : Group means are equal in the population: µ 1 = µ 2 , or µ 1 – µ 2 = 0
  • Alternative Hypothesis H A : Group means are not equal in the population: µ 1 ≠ µ 2 , or µ 1 – µ 2 ≠ 0.

Group Proportions

Proportions tests assess the differences between group proportions. For these tests, the null hypothesis states that there is no difference between group proportions. Again, the experimental conditions did not affect the proportion of events in the groups. P is the population proportion parameter that you’ll need to include.

For example, a vaccine experiment compares the infection rate in the treatment group to the control group. The treatment group receives the vaccine, while the control group does not. The null states that the infection rates for the control and treatment groups are equal.

  • Null Hypothesis H 0 : Group proportions are equal in the population: p 1 = p 2 .
  • Alternative Hypothesis H A : Group proportions are not equal in the population: p 1 ≠ p 2 .

Correlation and Regression Coefficients

Some studies assess the relationship between two continuous variables rather than differences between groups.

In these studies, analysts often use either correlation or regression analysis . For these tests, the null states that there is no relationship between the variables. Specifically, it says that the correlation or regression coefficient is zero. As one variable increases, there is no tendency for the other variable to increase or decrease. Rho (ρ) is the population correlation parameter and beta (β) is the regression coefficient parameter.

For example, a study assesses the relationship between screen time and test performance. The null states that there is no correlation between this pair of variables. As screen time increases, test performance does not tend to increase or decrease.

  • Null Hypothesis H 0 : The correlation in the population is zero: ρ = 0.
  • Alternative Hypothesis H A : The correlation in the population is not zero: ρ ≠ 0.

For all these cases, the analysts define the hypotheses before the study. After collecting the data, they perform a hypothesis test to determine whether they can reject the null hypothesis.

The preceding examples are all for two-tailed hypothesis tests. To learn about one-tailed tests and how to write a null hypothesis for them, read my post One-Tailed vs. Two-Tailed Tests .

Related post : Understanding Correlation

Neyman, J; Pearson, E. S. (January 1, 1933).  On the Problem of the most Efficient Tests of Statistical Hypotheses .  Philosophical Transactions of the Royal Society A .  231  (694–706): 289–337.

Share this:

state the null hypothesis for the experiments shown in figure 2

Reader Interactions

' src=

January 11, 2024 at 2:57 pm

Thanks for the reply.

January 10, 2024 at 1:23 pm

Hi Jim, In your comment you state that equivalence test null and alternate hypotheses are reversed. For hypothesis tests of data fits to a probability distribution, the null hypothesis is that the probability distribution fits the data. Is this correct?

' src=

January 10, 2024 at 2:15 pm

Those two separate things, equivalence testing and normality tests. But, yes, you’re correct for both.

Hypotheses are switched for equivalence testing. You need to “work” (i.e., collect a large sample of good quality data) to be able to reject the null that the groups are different to be able to conclude they’re the same.

With typical hypothesis tests, if you have low quality data and a low sample size, you’ll fail to reject the null that they’re the same, concluding they’re equivalent. But that’s more a statement about the low quality and small sample size than anything to do with the groups being equal.

So, equivalence testing make you work to obtain a finding that the groups are the same (at least within some amount you define as a trivial difference).

For normality testing, and other distribution tests, the null states that the data follow the distribution (normal or whatever). If you reject the null, you have sufficient evidence to conclude that your sample data don’t follow the probability distribution. That’s a rare case where you hope to fail to reject the null. And it suffers from the problem I describe above where you might fail to reject the null simply because you have a small sample size. In that case, you’d conclude the data follow the probability distribution but it’s more that you don’t have enough data for the test to register the deviation. In this scenario, if you had a larger sample size, you’d reject the null and conclude it doesn’t follow that distribution.

I don’t know of any equivalence testing type approach for distribution fit tests where you’d need to work to show the data follow a distribution, although I haven’t looked for one either!

' src=

February 20, 2022 at 9:26 pm

Is a null hypothesis regularly (always) stated in the negative? “there is no” or “does not”

February 23, 2022 at 9:21 pm

Typically, the null hypothesis includes an equal sign. The null hypothesis states that the population parameter equals a particular value. That value is usually one that represents no effect. In the case of a one-sided hypothesis test, the null still contains an equal sign but it’s “greater than or equal to” or “less than or equal to.” If you wanted to translate the null hypothesis from its native mathematical expression, you could use the expression “there is no effect.” But the mathematical form more specifically states what it’s testing.

It’s the alternative hypothesis that typically contains does not equal.

There are some exceptions. For example, in an equivalence test where the researchers want to show that two things are equal, the null hypothesis states that they’re not equal.

In short, the null hypothesis states the condition that the researchers hope to reject. They need to work hard to set up an experiment and data collection that’ll gather enough evidence to be able to reject the null condition.

' src=

February 15, 2022 at 9:32 am

Dear sir I always read your notes on Research methods.. Kindly tell is there any available Book on all these..wonderfull Urgent

Comments and Questions Cancel reply

9.1 Null and Alternative Hypotheses

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 , the — null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

H a —, the alternative hypothesis: a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are reject H 0 if the sample information favors the alternative hypothesis or do not reject H 0 or decline to reject H 0 if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

equal (=) not equal (≠) greater than (>) less than (<)
greater than or equal to (≥) less than (<)
less than or equal to (≤) more than (>)

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30 percent of the registered voters in Santa Clara County voted in the primary election. p ≤ 30 H a : More than 30 percent of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25 percent. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are the following: H 0 : μ = 2.0 H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take fewer than five years to graduate from college, on the average. The null and alternative hypotheses are the following: H 0 : μ ≥ 5 H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

An article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third of the students pass. The same article stated that 6.6 percent of U.S. students take advanced placement exams and 4.4 percent pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6 percent. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H a : p > 0.066

On a state driver’s test, about 40 percent pass the test on the first try. We want to test if more than 40 percent pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some internet articles. In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Statistics
  • Publication date: Mar 27, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/statistics/pages/1-introduction
  • Section URL: https://openstax.org/books/statistics/pages/9-1-null-and-alternative-hypotheses

© Jan 23, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Null Hypothesis Definition and Examples, How to State

What is the null hypothesis, how to state the null hypothesis, null hypothesis overview.

state the null hypothesis for the experiments shown in figure 2

Why is it Called the “Null”?

The word “null” in this context means that it’s a commonly accepted fact that researchers work to nullify . It doesn’t mean that the statement is null (i.e. amounts to nothing) itself! (Perhaps the term should be called the “nullifiable hypothesis” as that might cause less confusion).

Why Do I need to Test it? Why not just prove an alternate one?

The short answer is, as a scientist, you are required to ; It’s part of the scientific process. Science uses a battery of processes to prove or disprove theories, making sure than any new hypothesis has no flaws. Including both a null and an alternate hypothesis is one safeguard to ensure your research isn’t flawed. Not including the null hypothesis in your research is considered very bad practice by the scientific community. If you set out to prove an alternate hypothesis without considering it, you are likely setting yourself up for failure. At a minimum, your experiment will likely not be taken seriously.

null hypothesis

  • Null hypothesis : H 0 : The world is flat.
  • Alternate hypothesis: The world is round.

Several scientists, including Copernicus , set out to disprove the null hypothesis. This eventually led to the rejection of the null and the acceptance of the alternate. Most people accepted it — the ones that didn’t created the Flat Earth Society !. What would have happened if Copernicus had not disproved the it and merely proved the alternate? No one would have listened to him. In order to change people’s thinking, he first had to prove that their thinking was wrong .

How to State the Null Hypothesis from a Word Problem

You’ll be asked to convert a word problem into a hypothesis statement in statistics that will include a null hypothesis and an alternate hypothesis . Breaking your problem into a few small steps makes these problems much easier to handle.

how to state the null hypothesis

Step 2: Convert the hypothesis to math . Remember that the average is sometimes written as μ.

H 1 : μ > 8.2

Broken down into (somewhat) English, that’s H 1 (The hypothesis): μ (the average) > (is greater than) 8.2

Step 3: State what will happen if the hypothesis doesn’t come true. If the recovery time isn’t greater than 8.2 weeks, there are only two possibilities, that the recovery time is equal to 8.2 weeks or less than 8.2 weeks.

H 0 : μ ≤ 8.2

Broken down again into English, that’s H 0 (The null hypothesis): μ (the average) ≤ (is less than or equal to) 8.2

How to State the Null Hypothesis: Part Two

But what if the researcher doesn’t have any idea what will happen.

Example Problem: A researcher is studying the effects of radical exercise program on knee surgery patients. There is a good chance the therapy will improve recovery time, but there’s also the possibility it will make it worse. Average recovery times for knee surgery patients is 8.2 weeks. 

Step 1: State what will happen if the experiment doesn’t make any difference. That’s the null hypothesis–that nothing will happen. In this experiment, if nothing happens, then the recovery time will stay at 8.2 weeks.

H 0 : μ = 8.2

Broken down into English, that’s H 0 (The null hypothesis): μ (the average) = (is equal to) 8.2

Step 2: Figure out the alternate hypothesis . The alternate hypothesis is the opposite of the null hypothesis. In other words, what happens if our experiment makes a difference?

H 1 : μ ≠ 8.2

In English again, that’s H 1 (The  alternate hypothesis): μ (the average) ≠ (is not equal to) 8.2

That’s How to State the Null Hypothesis!

Check out our Youtube channel for more stats tips!

Gonick, L. (1993). The Cartoon Guide to Statistics . HarperPerennial. Kotz, S.; et al., eds. (2006), Encyclopedia of Statistical Sciences , Wiley.

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

10.2 - steps used in a hypothesis test.

Regardless of the type of hypothesis being considered, the process of carrying out a significance test is the same and relies on four basic steps:

State the null and alternative hypotheses (see section 10.1 ) Also think about the type 1 error (rejecting a true null) and type 2 error (declaring the plausibility of a false null) possibilities at this time and how serious each mistake would be in terms of the problem.

Collect and summarize the data so that a test statistic can be calculated. A test statistic is a summary of the data that measures the difference between what is seen in the data and what would be expected if the null hypothesis were true. It is typically standardized so that a p -value can be obtained from a reference distribution like the normal curve.

Use the test statistic to find the p -value. The p -value represents the likelihood of getting our test statistic or any test statistic more extreme if, in fact, the null hypothesis is true.

  • For a one-sided "greater than" alternative hypothesis, the "more extreme" part of the interpretation refers to test statistic values larger than the test statistic given.
  • For a one-sided "less than" alternative hypothesis, the "more extreme" part of the interpretation refers to test statistic values smaller than the test statistic given.
  • For a two-sided "not equal to" alternative hypothesis, the "more extreme" part of the interpretation refers to test statistic values that are farther away from the null hypothesis that the test statistic given at either the upper end or lower end of the reference distribution (both "tails").

Interpret what the p -value is telling you and make a decision using the p -value. Does the null hypothesis provide a reasonable explanation of the data or not? If not it is statistically significant and we have evidence favoring the alternative. State a conclusion in terms of the problem.

Common Decision Rules seen in the literature

  • If the p -value ≤ .05 , we often see scientists declare their data to be "significant."
  • If the p -value ≤ .01 , we often see scientists declare their data to be "highly significant".
  • If the p -value > .05 , we often see scientists declare their data to be "not significant".

Example 10.9: Left Handed Artists: (continuation of example 10.2) Section  

About 10% of the human population is left-handed. A researcher at Penn State speculates that students in the College of Arts and Architecture are more likely to be left-handed that people in the general population. A random sample of 100 students in the College of Arts and Architecture is obtained and 18 of these students were found to be left-handed.

Research Question : Are artists more likely to be left-handed than people in the general population?

  • Null Hypothesis : Population proportion of left-handed students in the College of Art and Architecture = 0.10 ( p = 0.10).
  • Alternative Hypothesis : Population proportion of left-handed students in the College of Art and Architecture > 0.10 ( p > 0.10).

Now that you know the null and alternative hypothesis, did you think about what the type 1 and type 2 errors are? It is important to note that Step 1 is before we even collect data. Identifying these errors helps to improve the design of your research study. Let's write them out:

  • Type 1 error : Claim artists are more likely to be left-handed than people in the general population when in truth they are not more likely.
  • Type 2 error : Fail to claim artists are more likely to be left-handed than people in the general population when they are in fact more likely.

In this case, the consequences of these two errors are fairly similar (e.g. installing more or fewer left-handed desks in classrooms that are needed).

In the sample of 100 students listed above, the sample proportion is 18 / 100 = 0.18. The hypothesis test will determine whether or not the null hypothesis that p = 0.1 provides a plausible explanation for the data. If not we will see this as evidence that the proportion of left-handed Art & Architecture students is greater than 0.10.

If the null hypothesis is true then the standard error of the sample proportion would be \(\sqrt{\frac{0.1(1-0.1)}{100}} = 0.03\) and the sample proportion would follow the normal curve. Thus, we can use the standard score z = (0.18-0.10) / 0.03 = 2.67 as our test statistic.

Using the normal curve table for the Z -value of 2.67 we find the p -value to be about 0.004. Notice that the one-sided alternative hypothesis says to watch out for large values so we look at the percentage of the normal curve above 2.67 to get the p -value.

Interpretation of the p -value. The likelihood of getting our test statistic of 2.67 or any higher value, if in fact, the null hypothesis is true, is 0.004.

Since the p -value of 0.004 is so small, the null hypothesis provides a very poor explanation of the data. We find good evidence that the population proportion of left-handed students in the College of Art and Architecture exceeds 0.10.

Now that we have made our decision, we are only at risk of making a type 1 error. It is not possible at this point to make a type 2 error because we rejected the null hypothesis.

Example 10.10: The Weight of McDonald's French Fries in Japan Section  

french fries

After receiving complaints from McDonald's customers in Japan about the amount of french fries being served, the online news magazine "Rocket News" decided to test the actual of the fries served at a particular Japanese McDonald's restaurant. According to the Rocket News article, the official weight standard set by McDonald's of Japan is for a medium-sized fries to weigh 135 grams. The publication weighed the fries from ten different medium fries they purchased and found the average weight of the fries in their sample to be 130 grams with a standard deviation of 9 grams.

Research Question : Does the data suggest that the medium fries from this McDonald's in Japan are underpacked?

  • Null Hypothesis : Population mean weight of medium fries = 135 grams
  • Alternative Hypothesis : Population mean weight of medium fries < 135 grams

The sample mean weight was 130 grams. Also, the sample standard deviation was 9 grams so the standard error of the mean is found to be \(\frac{9}{\sqrt{10}} = 2.85\) grams. The test statistic would be the standardized value (130-135) / 2.85 = -1.76.

Since the sample size is only 10, the sample standard deviation would be an unreliable estimate of the population standard deviation so the normal curve would not be appropriate to use as the reference distribution to find the p -value. In this case, the t curve would be used instead and it turns out that the percentage of a t -curve below -1.76 when you have a sample size of 10 is about 6%.

Interpretation of the p -value. The likelihood of getting our test statistic of -1.76 or any smaller value, if in fact, the null hypothesis is true, is about 6%.

Since the p -value is around 6% we are near the border of what people often use as a cutoff for declaring a significant result. Given the amount of variability from one package of fries to the next, there is a reasonable chance that we would see a sample average like this even if the restaurant met the official standard weight on average.

It is important to remember in carrying out the mechanics of a significance test that you are only doing a probability calculation assuming the null hypothesis is true . Because the calculation is done under that assumption, it cannot say anything about the chances that the null hypothesis or the alternative hypothesis are true.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Hypothesis Testing | A Step-by-Step Guide with Easy Examples

Published on November 8, 2019 by Rebecca Bevans . Revised on June 22, 2023.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics . It is most often used by scientists to test specific predictions, called hypotheses, that arise from theories.

There are 5 main steps in hypothesis testing:

  • State your research hypothesis as a null hypothesis and alternate hypothesis (H o ) and (H a  or H 1 ).
  • Collect data in a way designed to test the hypothesis.
  • Perform an appropriate statistical test .
  • Decide whether to reject or fail to reject your null hypothesis.
  • Present the findings in your results and discussion section.

Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps.

Table of contents

Step 1: state your null and alternate hypothesis, step 2: collect data, step 3: perform a statistical test, step 4: decide whether to reject or fail to reject your null hypothesis, step 5: present your findings, other interesting articles, frequently asked questions about hypothesis testing.

After developing your initial research hypothesis (the prediction that you want to investigate), it is important to restate it as a null (H o ) and alternate (H a ) hypothesis so that you can test it mathematically.

The alternate hypothesis is usually your initial hypothesis that predicts a relationship between variables. The null hypothesis is a prediction of no relationship between the variables you are interested in.

  • H 0 : Men are, on average, not taller than women. H a : Men are, on average, taller than women.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

state the null hypothesis for the experiments shown in figure 2

For a statistical test to be valid , it is important to perform sampling and collect data in a way that is designed to test your hypothesis. If your data are not representative, then you cannot make statistical inferences about the population you are interested in.

There are a variety of statistical tests available, but they are all based on the comparison of within-group variance (how spread out the data is within a category) versus between-group variance (how different the categories are from one another).

If the between-group variance is large enough that there is little or no overlap between groups, then your statistical test will reflect that by showing a low p -value . This means it is unlikely that the differences between these groups came about by chance.

Alternatively, if there is high within-group variance and low between-group variance, then your statistical test will reflect that with a high p -value. This means it is likely that any difference you measure between groups is due to chance.

Your choice of statistical test will be based on the type of variables and the level of measurement of your collected data .

  • an estimate of the difference in average height between the two groups.
  • a p -value showing how likely you are to see this difference if the null hypothesis of no difference is true.

Based on the outcome of your statistical test, you will have to decide whether to reject or fail to reject your null hypothesis.

In most cases you will use the p -value generated by your statistical test to guide your decision. And in most cases, your predetermined level of significance for rejecting the null hypothesis will be 0.05 – that is, when there is a less than 5% chance that you would see these results if the null hypothesis were true.

In some cases, researchers choose a more conservative level of significance, such as 0.01 (1%). This minimizes the risk of incorrectly rejecting the null hypothesis ( Type I error ).

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

The results of hypothesis testing will be presented in the results and discussion sections of your research paper , dissertation or thesis .

In the results section you should give a brief summary of the data and a summary of the results of your statistical test (for example, the estimated difference between group means and associated p -value). In the discussion , you can discuss whether your initial hypothesis was supported by your results or not.

In the formal language of hypothesis testing, we talk about rejecting or failing to reject the null hypothesis. You will probably be asked to do this in your statistics assignments.

However, when presenting research results in academic papers we rarely talk this way. Instead, we go back to our alternate hypothesis (in this case, the hypothesis that men are on average taller than women) and state whether the result of our test did or did not support the alternate hypothesis.

If your null hypothesis was rejected, this result is interpreted as “supported the alternate hypothesis.”

These are superficial differences; you can see that they mean the same thing.

You might notice that we don’t say that we reject or fail to reject the alternate hypothesis . This is because hypothesis testing is not designed to prove or disprove anything. It is only designed to test whether a pattern we measure could have arisen spuriously, or by chance.

If we reject the null hypothesis based on our research (i.e., we find that it is unlikely that the pattern arose by chance), then we can say our test lends support to our hypothesis . But if the pattern does not pass our decision rule, meaning that it could have arisen by chance, then we say the test is inconsistent with our hypothesis .

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Descriptive statistics
  • Measures of central tendency
  • Correlation coefficient

Methodology

  • Cluster sampling
  • Stratified sampling
  • Types of interviews
  • Cohort study
  • Thematic analysis

Research bias

  • Implicit bias
  • Cognitive bias
  • Survivorship bias
  • Availability heuristic
  • Nonresponse bias
  • Regression to the mean

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bevans, R. (2023, June 22). Hypothesis Testing | A Step-by-Step Guide with Easy Examples. Scribbr. Retrieved June 17, 2024, from https://www.scribbr.com/statistics/hypothesis-testing/

Is this article helpful?

Rebecca Bevans

Rebecca Bevans

Other students also liked, choosing the right statistical test | types & examples, understanding p values | definition and examples, what is your plagiarism score.

Null Hypothesis Definition and Examples

PM Images / Getty Images

  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Scientific Method
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

In a scientific experiment, the null hypothesis is the proposition that there is no effect or no relationship between phenomena or populations. If the null hypothesis is true, any observed difference in phenomena or populations would be due to sampling error (random chance) or experimental error. The null hypothesis is useful because it can be tested and found to be false, which then implies that there is a relationship between the observed data. It may be easier to think of it as a nullifiable hypothesis or one that the researcher seeks to nullify. The null hypothesis is also known as the H 0, or no-difference hypothesis.

The alternate hypothesis, H A or H 1 , proposes that observations are influenced by a non-random factor. In an experiment, the alternate hypothesis suggests that the experimental or independent variable has an effect on the dependent variable .

How to State a Null Hypothesis

There are two ways to state a null hypothesis. One is to state it as a declarative sentence, and the other is to present it as a mathematical statement.

For example, say a researcher suspects that exercise is correlated to weight loss, assuming diet remains unchanged. The average length of time to achieve a certain amount of weight loss is six weeks when a person works out five times a week. The researcher wants to test whether weight loss takes longer to occur if the number of workouts is reduced to three times a week.

The first step to writing the null hypothesis is to find the (alternate) hypothesis. In a word problem like this, you're looking for what you expect to be the outcome of the experiment. In this case, the hypothesis is "I expect weight loss to take longer than six weeks."

This can be written mathematically as: H 1 : μ > 6

In this example, μ is the average.

Now, the null hypothesis is what you expect if this hypothesis does not happen. In this case, if weight loss isn't achieved in greater than six weeks, then it must occur at a time equal to or less than six weeks. This can be written mathematically as:

H 0 : μ ≤ 6

The other way to state the null hypothesis is to make no assumption about the outcome of the experiment. In this case, the null hypothesis is simply that the treatment or change will have no effect on the outcome of the experiment. For this example, it would be that reducing the number of workouts would not affect the time needed to achieve weight loss:

H 0 : μ = 6

  • Null Hypothesis Examples

"Hyperactivity is unrelated to eating sugar " is an example of a null hypothesis. If the hypothesis is tested and found to be false, using statistics, then a connection between hyperactivity and sugar ingestion may be indicated. A significance test is the most common statistical test used to establish confidence in a null hypothesis.

Another example of a null hypothesis is "Plant growth rate is unaffected by the presence of cadmium in the soil ." A researcher could test the hypothesis by measuring the growth rate of plants grown in a medium lacking cadmium, compared with the growth rate of plants grown in mediums containing different amounts of cadmium. Disproving the null hypothesis would set the groundwork for further research into the effects of different concentrations of the element in soil.

Why Test a Null Hypothesis?

You may be wondering why you would want to test a hypothesis just to find it false. Why not just test an alternate hypothesis and find it true? The short answer is that it is part of the scientific method. In science, propositions are not explicitly "proven." Rather, science uses math to determine the probability that a statement is true or false. It turns out it's much easier to disprove a hypothesis than to positively prove one. Also, while the null hypothesis may be simply stated, there's a good chance the alternate hypothesis is incorrect.

For example, if your null hypothesis is that plant growth is unaffected by duration of sunlight, you could state the alternate hypothesis in several different ways. Some of these statements might be incorrect. You could say plants are harmed by more than 12 hours of sunlight or that plants need at least three hours of sunlight, etc. There are clear exceptions to those alternate hypotheses, so if you test the wrong plants, you could reach the wrong conclusion. The null hypothesis is a general statement that can be used to develop an alternate hypothesis, which may or may not be correct.

  • Difference Between Independent and Dependent Variables
  • Examples of Independent and Dependent Variables
  • What Are Examples of a Hypothesis?
  • What Is a Hypothesis? (Science)
  • What 'Fail to Reject' Means in a Hypothesis Test
  • What Are the Elements of a Good Hypothesis?
  • Scientific Hypothesis Examples
  • Null Hypothesis and Alternative Hypothesis
  • What Is a Control Group?
  • Understanding Simple vs Controlled Experiments
  • Six Steps of the Scientific Method
  • Scientific Method Vocabulary Terms
  • Definition of a Hypothesis
  • How to Conduct a Hypothesis Test
  • Type I and Type II Errors in Statistics

This page has been archived and is no longer updated

Genetics and Statistical Analysis

state the null hypothesis for the experiments shown in figure 2

Once you have performed an experiment, how can you tell if your results are significant? For example, say that you are performing a genetic cross in which you know the genotypes of the parents. In this situation, you might hypothesize that the cross will result in a certain ratio of phenotypes in the offspring . But what if your observed results do not exactly match your expectations? How can you tell whether this deviation was due to chance? The key to answering these questions is the use of statistics , which allows you to determine whether your data are consistent with your hypothesis.

Forming and Testing a Hypothesis

The first thing any scientist does before performing an experiment is to form a hypothesis about the experiment's outcome. This often takes the form of a null hypothesis , which is a statistical hypothesis that states there will be no difference between observed and expected data. The null hypothesis is proposed by a scientist before completing an experiment, and it can be either supported by data or disproved in favor of an alternate hypothesis.

Let's consider some examples of the use of the null hypothesis in a genetics experiment. Remember that Mendelian inheritance deals with traits that show discontinuous variation, which means that the phenotypes fall into distinct categories. As a consequence, in a Mendelian genetic cross, the null hypothesis is usually an extrinsic hypothesis ; in other words, the expected proportions can be predicted and calculated before the experiment starts. Then an experiment can be designed to determine whether the data confirm or reject the hypothesis. On the other hand, in another experiment, you might hypothesize that two genes are linked. This is called an intrinsic hypothesis , which is a hypothesis in which the expected proportions are calculated after the experiment is done using some information from the experimental data (McDonald, 2008).

How Math Merged with Biology

But how did mathematics and genetics come to be linked through the use of hypotheses and statistical analysis? The key figure in this process was Karl Pearson, a turn-of-the-century mathematician who was fascinated with biology. When asked what his first memory was, Pearson responded by saying, "Well, I do not know how old I was, but I was sitting in a high chair and I was sucking my thumb. Someone told me to stop sucking it and said that if I did so, the thumb would wither away. I put my two thumbs together and looked at them a long time. ‘They look alike to me,' I said to myself, ‘I can't see that the thumb I suck is any smaller than the other. I wonder if she could be lying to me'" (Walker, 1958). As this anecdote illustrates, Pearson was perhaps born to be a scientist. He was a sharp observer and intent on interpreting his own data. During his career, Pearson developed statistical theories and applied them to the exploration of biological data. His innovations were not well received, however, and he faced an arduous struggle in convincing other scientists to accept the idea that mathematics should be applied to biology. For instance, during Pearson's time, the Royal Society, which is the United Kingdom's academy of science, would accept papers that concerned either mathematics or biology, but it refused to accept papers than concerned both subjects (Walker, 1958). In response, Pearson, along with Francis Galton and W. F. R. Weldon, founded a new journal called Biometrika in 1901 to promote the statistical analysis of data on heredity. Pearson's persistence paid off. Today, statistical tests are essential for examining biological data.

Pearson's Chi-Square Test for Goodness-of-Fit

One of Pearson's most significant achievements occurred in 1900, when he developed a statistical test called Pearson's chi-square (Χ 2 ) test, also known as the chi-square test for goodness-of-fit (Pearson, 1900). Pearson's chi-square test is used to examine the role of chance in producing deviations between observed and expected values. The test depends on an extrinsic hypothesis, because it requires theoretical expected values to be calculated. The test indicates the probability that chance alone produced the deviation between the expected and the observed values (Pierce, 2005). When the probability calculated from Pearson's chi-square test is high, it is assumed that chance alone produced the difference. Conversely, when the probability is low, it is assumed that a significant factor other than chance produced the deviation.

In 1912, J. Arthur Harris applied Pearson's chi-square test to examine Mendelian ratios (Harris, 1912). It is important to note that when Gregor Mendel studied inheritance, he did not use statistics, and neither did Bateson, Saunders, Punnett, and Morgan during their experiments that discovered genetic linkage . Thus, until Pearson's statistical tests were applied to biological data, scientists judged the goodness of fit between theoretical and observed experimental results simply by inspecting the data and drawing conclusions (Harris, 1912). Although this method can work perfectly if one's data exactly matches one's predictions, scientific experiments often have variability associated with them, and this makes statistical tests very useful.

The chi-square value is calculated using the following formula:

Using this formula, the difference between the observed and expected frequencies is calculated for each experimental outcome category. The difference is then squared and divided by the expected frequency . Finally, the chi-square values for each outcome are summed together, as represented by the summation sign (Σ).

Pearson's chi-square test works well with genetic data as long as there are enough expected values in each group. In the case of small samples (less than 10 in any category) that have 1 degree of freedom, the test is not reliable. (Degrees of freedom, or df, will be explained in full later in this article.) However, in such cases, the test can be corrected by using the Yates correction for continuity, which reduces the absolute value of each difference between observed and expected frequencies by 0.5 before squaring. Additionally, it is important to remember that the chi-square test can only be applied to numbers of progeny , not to proportions or percentages.

Now that you know the rules for using the test, it's time to consider an example of how to calculate Pearson's chi-square. Recall that when Mendel crossed his pea plants, he learned that tall (T) was dominant to short (t). You want to confirm that this is correct, so you start by formulating the following null hypothesis: In a cross between two heterozygote (Tt) plants, the offspring should occur in a 3:1 ratio of tall plants to short plants. Next, you cross the plants, and after the cross, you measure the characteristics of 400 offspring. You note that there are 305 tall pea plants and 95 short pea plants; these are your observed values. Meanwhile, you expect that there will be 300 tall plants and 100 short plants from the Mendelian ratio.

You are now ready to perform statistical analysis of your results, but first, you have to choose a critical value at which to reject your null hypothesis. You opt for a critical value probability of 0.01 (1%) that the deviation between the observed and expected values is due to chance. This means that if the probability is less than 0.01, then the deviation is significant and not due to chance, and you will reject your null hypothesis. However, if the deviation is greater than 0.01, then the deviation is not significant and you will not reject the null hypothesis.

So, should you reject your null hypothesis or not? Here's a summary of your observed and expected data:

  300 100 305 95

Now, let's calculate Pearson's chi-square:

  • For tall plants: Χ 2 = (305 - 300) 2 / 300 = 0.08
  • For short plants: Χ 2 = (95 - 100) 2 / 100 = 0.25
  • The sum of the two categories is 0.08 + 0.25 = 0.33
  • Therefore, the overall Pearson's chi-square for the experiment is Χ 2 = 0.33

Next, you determine the probability that is associated with your calculated chi-square value. To do this, you compare your calculated chi-square value with theoretical values in a chi-square table that has the same number of degrees of freedom. Degrees of freedom represent the number of ways in which the observed outcome categories are free to vary. For Pearson's chi-square test, the degrees of freedom are equal to n - 1, where n represents the number of different expected phenotypes (Pierce, 2005). In your experiment, there are two expected outcome phenotypes (tall and short), so n = 2 categories, and the degrees of freedom equal 2 - 1 = 1. Thus, with your calculated chi-square value (0.33) and the associated degrees of freedom (1), you can determine the probability by using a chi-square table (Table 1).

Table 1: Chi-Square Table

0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 1 --- --- 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879 2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597 3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838 4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860 5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750 6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548 7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278 8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955 9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589 10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188 11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757 12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300 13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819 14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319 15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801 16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267 17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718 18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156 19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582 20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997 21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401 22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796 23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181 24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559 25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928 26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290 27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645 28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993 29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336 30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672 40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766 50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490 60 35.534 37.485 40.482 43.188 46.459 74.397 79.082 83.298 88.379 91.952 70 43.275 45.442 48.758 51.739 55.329 85.527 90.531 95.023 100.425 104.215 80 51.172 53.540 57.153 60.391 64.278 96.578 101.879 106.629 112.329 116.321 90 59.196 61.754 65.647 69.126 73.291 107.565 113.145 118.136 124.116 128.299 100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.169  

&

(Table adapted from Jones, 2008)

Note that the chi-square table is organized with degrees of freedom (df) in the left column and probabilities (P) at the top. The chi-square values associated with the probabilities are in the center of the table. To determine the probability, first locate the row for the degrees of freedom for your experiment, then determine where the calculated chi-square value would be placed among the theoretical values in the corresponding row.

At the beginning of your experiment, you decided that if the probability was less than 0.01, you would reject your null hypothesis because the deviation would be significant and not due to chance. Now, looking at the row that corresponds to 1 degree of freedom, you see that your calculated chi-square value of 0.33 falls between 0.016, which is associated with a probability of 0.9, and 2.706, which is associated with a probability of 0.10. Therefore, there is between a 10% and 90% probability that the deviation you observed between your expected and the observed numbers of tall and short plants is due to chance. In other words, the probability associated with your chi-square value is much greater than the critical value of 0.01. This means that we will not reject our null hypothesis, and the deviation between the observed and expected results is not significant.

Level of Significance

Determining whether to accept or reject a hypothesis is decided by the experimenter, who is the person who chooses the "level of significance" or confidence. Scientists commonly use the 0.05, 0.01, or 0.001 probability levels as cut-off values. For instance, in the example experiment, you used the 0.01 probability. Thus, P ≥ 0.01 can be interpreted to mean that chance likely caused the deviation between the observed and the expected values (i.e. there is a greater than 1% probability that chance explains the data). If instead we had observed that P ≤ 0.01, this would mean that there is less than a 1% probability that our data can be explained by chance. There is a significant difference between our expected and observed results, so the deviation must be caused by something other than chance.

References and Recommended Reading

Harris, J. A. A simple test of the goodness of fit of Mendelian ratios. American Naturalist 46 , 741–745 (1912)

Jones, J. "Table: Chi-Square Probabilities." http://people.richland.edu/james/lecture/m170/tbl-chi.html (2008) (accessed July 7, 2008)

McDonald, J. H. Chi-square test for goodness-of-fit. From The Handbook of Biological Statistics . http://udel.edu/~mcdonald/statchigof.html (2008) (accessed June 9, 2008)

Pearson, K. On the criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine 50 , 157–175 (1900)

Pierce, B. Genetics: A Conceptual Approach (New York, Freeman, 2005)

Walker, H. M. The contributions of Karl Pearson. Journal of the American Statistical Association 53 , 11–22 (1958)

  • Add Content to Group

Article History

Flag inappropriate.

Google Plus+

StumbleUpon

Email your Friend

state the null hypothesis for the experiments shown in figure 2

  •  |  Lead Editor:  Terry McGuire

Topic Rooms

Within this Subject (29)

  • Gene Linkage (5)
  • Methods for Studying Inheritance Patterns (7)
  • The Foundation of Inheritance Studies (11)
  • Variation in Gene Expression (6)

Other Topic Rooms

  • Gene Inheritance and Transmission
  • Gene Expression and Regulation
  • Nucleic Acid Structure and Function
  • Chromosomes and Cytogenetics
  • Evolutionary Genetics
  • Population and Quantitative Genetics
  • Genes and Disease
  • Genetics and Society
  • Cell Origins and Metabolism
  • Proteins and Gene Expression
  • Subcellular Compartments
  • Cell Communication
  • Cell Cycle and Cell Division

ScholarCast

© 2014 Nature Education

  • Press Room |
  • Terms of Use |
  • Privacy Notice |

Send

Visual Browse

state the null hypothesis for the experiments shown in figure 2

Snapsolve any problem by taking a picture. Try it in the Numerade app?

AP bio FRQ cell energetics

Profile Picture

Students also viewed

Profile Picture

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

cancers-logo

Article Menu

state the null hypothesis for the experiments shown in figure 2

  • Subscribe SciFeed
  • Recommended Articles
  • Author Biographies
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Mixtures of three mortaparibs with enhanced anticancer, anti-migration, and antistress activities: molecular characterization in p53-null cancer cells.

state the null hypothesis for the experiments shown in figure 2

Simple Summary

1. introduction, 2. materials and methods, 2.1. cells and reagents, 2.2. cell viability assay, 2.3. colony formation assay, 2.4. cell-cycle analysis, 2.5. western blot analysis, 2.6. immunocytochemistry, 2.7. rna extraction and real-time quantitative polymerase chain reaction (rtqpcr), 2.8. trapping assay, 2.9. wound healing assay, 2.10. invasion assay, 2.11. reactive oxygen species (ros) assay, 2.12. mitochondrial membrane potential [δψm] assay, 2.13. statistical analysis, 3.1. mortaparib mild caused growth arrest of p53-null cancer cells, 3.2. mortaparib mild caused inhibition of metastatic properties of p53-null cancer cells, 3.3. combinations of three mortaparibs offered better anticancer, anti-metastasis, and antistress activities, 4. discussion, 5. conclusions, supplementary materials, author contributions, institutional review board statement, informed consent statement, data availability statement, acknowledgments, conflicts of interest.

  • Shin, D.; Lee, J.; Roh, J.L. Pioneering the future of cancer therapy: Deciphering the p53-ferroptosis nexus for precision medicine. Cancer Lett. 2024 , 585 , 216645. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Song, B.; Yang, P.; Zhang, S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun. 2024 , 44 , 297–360. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Maphutha, J.; Twilley, D.; Lall, N. The Role of the PTEN Tumor Suppressor Gene and Its Anti-Angiogenic Activity in Melanoma and Other Cancers. Molecules 2024 , 29 , 721. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Papavassiliou, K.A.; Sofianidi, A.A.; Gogou, V.A.; Anagnostopoulos, N.; Papavassiliou, A.G. P53 and Rb Aberrations in Small Cell Lung Cancer (SCLC): From Molecular Mechanisms to Therapeutic Modulation. Int. J. Mol. Sci. 2024 , 25 , 2479. [ Google Scholar ] [ CrossRef ]
  • Khamidullina, A.I.; Abramenko, Y.E.; Bruter, A.V.; Tatarskiy, V.V. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int. J. Mol. Sci. 2024 , 25 , 1263. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun. Signal. 2024 , 22 , 7. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Fang, H.; Shi, X.; Wan, J.; Zhong, X. Role of sestrins in metabolic and aging-related diseases. Biogerontology 2024 , 25 , 9–22. [ Google Scholar ] [ CrossRef ]
  • Guan, X.; Ruan, Y.; Che, X.; Feng, W. Dual role of PRDX1 in redox-regulation and tumorigenesis: Past and future. Free Radic. Biol. Med. 2024 , 210 , 120–129. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Somu, P.; Mohanty, S.; Basavegowda, N.; Yadav, A.K.; Paul, S.; Baek, K.H. The Interplay between Heat Shock Proteins and Cancer Pathogenesis: A Novel Strategy for Cancer Therapeutics. Cancers 2024 , 16 , 638. [ Google Scholar ] [ CrossRef ]
  • Hu, B.; Liu, G.; Zhao, K.; Zhang, G. Diversity of extracellular HSP70 in cancer: Advancing from a molecular biomarker to a novel therapeutic target. Front. Oncol. 2024 , 14 , 1388999. [ Google Scholar ] [ CrossRef ]
  • Yoon, A.R.; Wadhwa, R.; Kaul, S.C.; Yun, C.O. Why is Mortalin a Potential Therapeutic Target for Cancer? Front. Cell Dev. Biol. 2022 , 10 , 914540. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Yi, X.; Luk, J.M.; Lee, N.P.; Peng, J.; Leng, X.; Guan, X.Y.; Lau, G.K.; Beretta, L.; Fan, S.T. Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Mol. Cell Proteom. 2008 , 7 , 315–325. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Dundas, S.R.; Lawrie, L.C.; Rooney, P.H.; Murray, G.I. Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J. Pathol. 2005 , 205 , 74–81. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Benbrook, D.M. SHetA2 Attack on Mortalin and Colleagues in Cancer Therapy and Prevention. Front. Cell Dev. Biol. 2022 , 10 , 848682. [ Google Scholar ] [ CrossRef ]
  • Esfahanian, N.; Knoblich, C.D.; Bowman, G.A.; Rezvani, K. Mortalin: Protein partners, biological impacts, pathological roles, and therapeutic opportunities. Front. Cell Dev. Biol. 2023 , 11 , 1028519. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Butler, C.; Dunmire, M.; Choi, J.; Szalai, G.; Johnson, A.; Lei, W.; Chen, X.; Liu, L.; Li, W.; Walter, M.J.; et al. HSPA9/mortalin inhibition disrupts erythroid maturation through a TP53-dependent mechanism in human CD34+ hematopoietic progenitor cells. Cell Stress Chaperones 2024 , 29 , 300–311. [ Google Scholar ] [ CrossRef ]
  • Ao, K.; Yin, M.; Lyu, X.; Xiao, Y.; Chen, X.; Zhong, S.; Wen, X.; Yuan, J.; Ye, M.; Zhang, J.; et al. METTL3-mediated HSPA9 m6A modification promotes malignant transformation and inhibits cellular senescence by regulating exosomal mortalin protein in cervical cancer. Cancer Lett. 2024 , 587 , 216658. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Sari, A.N.; Bhargava, P.; Dhanjal, J.K.; Putri, J.F.; Radhakrishnan, N.; Shefrin, S.; Ishida, Y.; Terao, K.; Sundar, D.; Kaul, S.C.; et al. Combination of Withaferin-A and CAPE Provides Superior Anticancer Potency: Bioinformatics and Experimental Evidence to Their Molecular Targets and Mechanism of Action. Cancers 2020 , 12 , 1160. [ Google Scholar ] [ CrossRef ]
  • Elwakeel, A. Abrogating the Interaction Between p53 and Mortalin (Grp75/HSPA9/mtHsp70) for Cancer Therapy: The Story so far. Front. Cell Dev. Biol. 2022 , 10 , 879632. [ Google Scholar ] [ CrossRef ]
  • Na, Y.; Kaul, S.C.; Ryu, J.; Lee, J.S.; Ahn, H.M.; Kaul, Z.; Kalra, R.S.; Li, L.; Widodo, N.; Yun, C.O.; et al. Stress chaperone mortalin contributes to epithelial-mesenchymal transition and cancer metastasis. Cancer Res. 2016 , 76 , 2754–2765. [ Google Scholar ] [ CrossRef ]
  • Wei, B.; Cao, J.; Tian, J.H.; Yu, C.Y.; Huang, Q.; Yu, J.J.; Ma, R.; Wang, J.; Xu, F.; Wang, L.B. Mortalin maintains breast cancer stem cells stemness via activation of Wnt/GSK3beta/beta-catenin signaling pathway. Am. J. Cancer Res. 2021 , 11 , 2696–2716. [ Google Scholar ] [ PubMed ]
  • Xu, M.; Jin, T.; Chen, L.; Zhang, X.; Zhu, G.; Wang, Q.; Lin, Z. Mortalin is a distinct bio-marker and prognostic factor in serous ovarian carcinoma. Gene 2019 , 696 , 63–71. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wu, P.K.; Hong, S.K.; Park, J.I. Steady-State Levels of Phosphorylated Mitogen-Activated Protein Kinase Kinase 1/2 Determined by Mortalin/HSPA9 and Protein Phosphatase 1 Alpha in KRAS and BRAF Tumor Cells. Mol. Cell Biol. 2017 , 37 , e00061-17. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Zhang, R.; Meng, Z.; Wu, X.; Zhang, M.; Zhang, S.; Jin, T. Mortalin promotes breast cancer malignancy. Exp. Mol. Pathol. 2021 , 118 , 104593. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Putri, J.F.; Bhargava, P.; Dhanjal, J.K.; Yaguchi, T.; Sundar, D.; Kaul, S.C.; Wadhwa, R. Mortaparib, a novel dual inhibitor of mortalin and PARP1, is a potential drug candidate for ovarian and cervical cancers. J. Exp. Clin. Cancer Res. 2019 , 38 , 499. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Sari, A.N.; Elwakeel, A.; Dhanjal, J.K.; Kumar, V.; Sundar, D.; Kaul, S.C.; Wadhwa, R. Identification and Characterization of Mortaparib(Plus)-A Novel Triazole Derivative That Targets Mortalin-p53 Interaction and Inhibits Cancer-Cell Proliferation by Wild-Type p53-Dependent and -Independent Mechanisms. Cancers 2021 , 13 , 835. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Elwakeel, A.; Sari, A.N.; Dhanjal, J.K.; Meidinna, H.N.; Sundar, D.; Kaul, S.C.; Wadhwa, R. Mutant p53(L194F) Harboring Luminal-A Breast Cancer Cells Are Refractory to Apoptosis and Cell Cycle Arrest in Response to Mortaparib(Plus), a Multimodal Small Molecule Inhibitor. Cancers 2021 , 13 , 3043. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Meidinna, H.N.; Shefrin, S.; Sari, A.N.; Zhang, H.; Dhanjal, J.K.; Kaul, S.C.; Sundar, D.; Wadhwa, R. Identification of a new member of Mortaparib class of inhibitors that target mortalin and PARP1. Front. Cell Dev. Biol. 2022 , 10 , 918970. [ Google Scholar ] [ CrossRef ]
  • Zhang, H.; Wang, J.; Prakash, J.; Zhang, Z.; Kaul, S.C.; Wadhwa, R. Three-Way Cell-Based Screening of Antistress Compounds: Identification, Validation, and Relevance to Old-Age-Related Pathologies. J. Gerontol. A Biol. Sci. Med. Sci. 2023 , 78 , 1569–1577. [ Google Scholar ] [ CrossRef ]
  • Meng, Z.; Zhang, R.; Wu, X.; Zhang, M.; Zhang, S.; Jin, T. Prognostic value of Mortalin correlates with roles in epithelial-mesenchymal transition and angiogenesis in lung adenocarcinoma. Carcinogenesis 2022 , 43 , 40–51. [ Google Scholar ] [ CrossRef ]
  • Xu, M.; Zhang, Y.; Cui, M.; Wang, X.; Lin, Z. Mortalin contributes to colorectal cancer by promoting proliferation and epithelial-mesenchymal transition. IUBMB Life 2020 , 72 , 771–781. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kang, Q.; Cai, J.B.; Dong, R.Z.; Liu, L.X.; Zhang, C.; Zhang, P.F.; Zou, H.; Xie, N.; Zhang, L.; Zhang, X.Y.; et al. Mortalin promotes cell proliferation and epithelial mesenchymal transition of intrahepatic cholangiocarcinoma cells in vitro. J. Clin Pathol. 2017 , 70 , 677–683. [ Google Scholar ] [ CrossRef ]
  • Wu, P.K.; Hong, S.K.; Starenki, D.; Oshima, K.; Shao, H.; Gestwicki, J.E.; Tsai, S.; Park, J.I. Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene 2020 , 39 , 4257–4270. [ Google Scholar ] [ CrossRef ]
  • Chen, J.; Liu, W.B.; Jia, W.D.; Xu, G.L.; Ma, J.L.; Huang, M.; Deng, Y.R.; Li, J.S. Overexpression of Mortalin in hepatocellular carcinoma and its relationship with angiogenesis and epithelial to mesenchymal transition. Int. J. Oncol. 2014 , 44 , 247–255. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Rajtak, A.; Czerwonka, A.; Pitter, M.; Kotarski, J.; Okla, K. Clinical Relevance of Mortalin in Ovarian Cancer Patients. Cells 2023 , 12 , 701. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Shankaranarayana, A.H.; Meduri, B.; Pujar, G.V.; Hariharapura, R.C.; Sethu, A.K.; Singh, M.; Bidye, D. Restoration of p53 functions by suppression of mortalin-p53 sequestration: An emerging target in cancer therapy. Future Med. Chem. 2023 , 15 , 2087–2112. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Srivastava, S.; Vishwanathan, V.; Birje, A.; Sinha, D.; D’Silva, P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit. Rev. Biochem. Mol. Biol. 2019 , 54 , 517–536. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Benbrook, D.M.; Nammalwar, B.; Long, A.; Matsumoto, H.; Singh, A.; Bunce, R.A.; Berlin, K.D. SHetA2 interference with mortalin binding to p66shc and p53 identified using drug-conjugated magnetic microspheres. Investig. New Drugs 2014 , 32 , 412–423. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Yfantis, A.; Mylonis, I.; Simos, G. Direct interaction between mortalin and HIF-1alpha at the mitochondria inhibits apoptosis by blocking recruitment of Bax. FEBS J. 2023 , 290 , 3764–3780. [ Google Scholar ] [ CrossRef ]
  • Walker, C.; Bottger, S.; Low, B. Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model. Am. J. Pathol. 2006 , 168 , 1526–1530. [ Google Scholar ] [ CrossRef ]
  • Li, X.; Srinivasan, S.R.; Connarn, J.; Ahmad, A.; Young, Z.T.; Kabza, A.M.; Zuiderweg, E.R.; Sun, D.; Gestwicki, J.E. Analogues of the Allosteric Heat Shock Protein 70 (Hsp70) Inhibitor, MKT-077, as Anti-Cancer Agents. ACS Med. Chem. Lett. 2013 , 4 , 1042–1047. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Pagliarone, A.C.; Castaneda, E.D.; Santana, J.P.P.; de Oliveira, C.A.B.; Robeldo, T.A.; Teixeira, F.R.; Borra, R.C. Mitochondrial heat shock protein mortalin as potential target for therapies based on oxidative stress. Photodiagnosis Photodyn. Ther. 2021 , 34 , 102256. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Hong, S.K.; Starenki, D.; Johnson, O.T.; Gestwicki, J.E.; Park, J.I. Analogs of the Heat Shock Protein 70 Inhibitor MKT-077 Suppress Medullary Thyroid Carcinoma Cells. Int. J. Mol. Sci. 2022 , 23 , 1063. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Pham, M.Q.; Tran, T.H.V.; Pham, Q.L.; Gairin, J.E. In silico analysis of the binding properties of solasonine to mortalin and p53, and in vitro pharmacological studies of its apoptotic and cytotoxic effects on human HepG2 and Hep3b hepatocellular carcinoma cells. Fundam Clin. Pharmacol. 2019 , 33 , 385–396. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Qu, Y.; Qin, S.; Yang, Z.; Li, Z.; Liang, Q.; Long, T.; Wang, W.; Zeng, D.; Zhao, Q.; Dai, Z.; et al. Targeting the DNA repair pathway for breast cancer therapy: Beyond the molecular subtypes. Biomed. Pharmacother. 2023 , 169 , 115877. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wang, R.; Sun, Y.; Li, C.; Xue, Y.; Ba, X. Targeting the DNA Damage Response for Cancer Therapy. Int. J. Mol. Sci. 2023 , 24 , 15907. [ Google Scholar ] [ CrossRef ]
  • Kanev, P.B.; Atemin, A.; Stoynov, S.; Aleksandrov, R. PARP1 roles in DNA repair and DNA replication: The basi(c)s of PARP inhibitor efficacy and resistance. Semin Oncol. 2024 , 51 , 2–18. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Morganti, S.; Marra, A.; De Angelis, C.; Toss, A.; Licata, L.; Giugliano, F.; Taurelli Salimbeni, B.; Berton Giachetti, P.P.M.; Esposito, A.; Giordano, A.; et al. PARP Inhibitors for Breast Cancer Treatment: A Review. JAMA Oncol. 2024 , 10 , 658–670. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Wu, P.K.; Hong, S.K.; Park, J.I. Mortalin depletion induces MEK/ERK-dependent and ANT/CypD-mediated death in vemurafenib-resistant B-Raf(V600E) melanoma cells. Cancer Lett. 2021 , 502 , 25–33. [ Google Scholar ] [ CrossRef ]
  • Sane, S.; Hafner, A.; Srinivasan, R.; Masood, D.; Slunecka, J.L.; Noldner, C.J.; Hanson, A.D.; Kruisselbrink, T.; Wang, X.; Wang, Y.; et al. UBXN2A enhances CHIP-mediated proteasomal degradation of oncoprotein mortalin-2 in cancer cells. Mol. Oncol. 2018 , 12 , 1753–1777. [ Google Scholar ] [ CrossRef ]
  • Kalra, R.S.; Chaudhary, A.; Omar, A.; Cheung, C.T.; Garg, S.; Kaul, S.C.; Wadhwa, R. Stress-induced changes in CARF expression determine cell fate to death, survival, or malignant transformation. Cell Stress Chaperones 2020 , 25 , 481–494. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Kalra, R.S.; Chaudhary, A.; Omar, A.; Li, X.; Khurana, M.; Kaul, S.C.; Wadhwa, R. Stress-induced changes in CARF expression serve as a quantitative predictive measure of cell proliferation fate. Exp. Cell Res. 2023 , 429 , 113669. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Shiota, M.; Ikeda, Y.; Kaul, Z.; Itadani, J.; Kaul, S.C.; Wadhwa, R. Internalizing antibody-based targeted gene delivery for human cancer cells. Hum. Gene Ther. 2007 , 18 , 1153–1160. [ Google Scholar ] [ CrossRef ] [ PubMed ]

Click here to enlarge figure

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Wadhwa, R.; Yang, S.; Meidinna, H.N.; Sari, A.N.; Bhargava, P.; Kaul, S.C. Mixtures of Three Mortaparibs with Enhanced Anticancer, Anti-Migration, and Antistress Activities: Molecular Characterization in p53-Null Cancer Cells. Cancers 2024 , 16 , 2239. https://doi.org/10.3390/cancers16122239

Wadhwa R, Yang S, Meidinna HN, Sari AN, Bhargava P, Kaul SC. Mixtures of Three Mortaparibs with Enhanced Anticancer, Anti-Migration, and Antistress Activities: Molecular Characterization in p53-Null Cancer Cells. Cancers . 2024; 16(12):2239. https://doi.org/10.3390/cancers16122239

Wadhwa, Renu, Shi Yang, Hazna Noor Meidinna, Anissa Nofita Sari, Priyanshu Bhargava, and Sunil C. Kaul. 2024. "Mixtures of Three Mortaparibs with Enhanced Anticancer, Anti-Migration, and Antistress Activities: Molecular Characterization in p53-Null Cancer Cells" Cancers 16, no. 12: 2239. https://doi.org/10.3390/cancers16122239

Article Metrics

Article access statistics, supplementary material.

ZIP-Document (ZIP, 3702 KiB)

Further Information

Mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

COMMENTS

  1. ap bio 2-3 frq Flashcards

    2c). State the null hypothesis for the experiments shown in Figure 2. Based on the maximum and 50% of maximum reaction rates in the data shown in figure 3, the scientists claim that PFK of red king crabs is more sensitive to the presence of citric acid at 5 C than it is at higher temperatures. Support the scientists' claim based on the data ...

  2. AP Bio Ch 8 Test Flashcards

    State the null hypothesis for the experiment whose data are graphed in Figure 2. Provide evidence to support or refute the scientists' claim that more colonies grew in strains C3 and C6 than in the other strains because the genes for proteins that are normally targeted by the toxic chemical contain nucleotides with incorrect bases in the C3 and ...

  3. Solved The red king crab, Paralithodes camtschaticus,

    State the null hypothesis for the experiments shown in Figure 2. Based on the maximum and 50%-of-maximum reaction rates in the data shown in Figure 3, the scientists claim that PFK of red king crabs is more sensitive to the presence of citric acid at 5°C than it is at higher temperatures. Support the scientists' claim based on the data provided.

  4. ap bio unit 6 frq Flashcards

    Based on the data in Figure 1, for each strain describe the relationship between the number of colonies observed and the likely mutation rate of the strain. ... State the null hypothesis for the experiment whose data are graphed in Figure 2. Provide evidence to support or refute the scientists' claim that more colonies grew in strains C3 and C6 ...

  5. Null Hypothesis: Definition, Rejecting & Examples

    The null hypothesis in statistics states that there is no difference between groups or no relationship between variables. It is one of two mutually exclusive hypotheses about a population in a hypothesis test. When your sample contains sufficient evidence, you can reject the null and conclude that the effect is statistically significant.

  6. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0, the —null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

  7. Null Hypothesis Definition and Examples, How to State

    Step 1: Figure out the hypothesis from the problem. The hypothesis is usually hidden in a word problem, and is sometimes a statement of what you expect to happen in the experiment. The hypothesis in the above question is "I expect the average recovery period to be greater than 8.2 weeks.". Step 2: Convert the hypothesis to math.

  8. 10.2

    Step 1: State Null and Alternative Hypotheses. Null Hypothesis: Population mean weight of medium fries = 135 grams. Alternative Hypothesis: Population mean weight of medium fries < 135 grams. Step 2: Collect and summarize the data so that a test statistic can be calculated. The sample mean weight was 130 grams.

  9. How to Formulate a Null Hypothesis (With Examples)

    To distinguish it from other hypotheses, the null hypothesis is written as H 0 (which is read as "H-nought," "H-null," or "H-zero"). A significance test is used to determine the likelihood that the results supporting the null hypothesis are not due to chance. A confidence level of 95% or 99% is common. Keep in mind, even if the confidence level is high, there is still a small chance the ...

  10. Hypothesis Testing

    Present the findings in your results and discussion section. Though the specific details might vary, the procedure you will use when testing a hypothesis will always follow some version of these steps. Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test.

  11. Null Hypothesis Definition and Examples

    Null Hypothesis Examples. "Hyperactivity is unrelated to eating sugar " is an example of a null hypothesis. If the hypothesis is tested and found to be false, using statistics, then a connection between hyperactivity and sugar ingestion may be indicated. A significance test is the most common statistical test used to establish confidence in a ...

  12. Genetics and Statistical Analysis

    In your experiment, there are two expected outcome phenotypes (tall and short), so n = 2 categories, and the degrees of freedom equal 2 - 1 = 1. Thus, with your calculated chi-square value (0.33 ...

  13. AP Biology 2021-2022 Semester 1 Final Exam (FRQ)

    Based on Figure 3, calculate the fold change in the reaction rate (how many times higher or lower the reaction rate is) at 25C when the concentration of citric acid is increased from 0 mM to 4 mM., State a null hypothesis for the experiments shown in Figure 3.

  14. The red king crab, Paralithodes camtschaticus,

    Based on the data shown in Figure 2, justify the use of the substrate F6P at a concentration of 1 mM when the scientists performed the experiments shown in Figure 3. ... State a null hypothesis for the experiments shown in Figure 3. The scientists claim that the concentration of citric acid in cells regulates the rate of glycolysis by the cells ...

  15. (d) State the null hypothesis for the experiment whose data are graphed

    The null hypothesis here is "the insertion of the wild type MSH2 gene does NOT reduce the number of C. neoformans C3 and C6 cells".This hypothesis is not supported by Figure 2, thereby the alternative hypothesis is accepted.. In the scientific method, a null hypothesis is a plausible explanation that states that there is no statistically significant difference between a certain feature and/or ...

  16. Solved The red king crab, Paralithodes cantschaticus,

    (f) State the alternative hypothesis for the experiments shown in Figure 3. (2) The scientists claim that, in the absence of AMP, PFK of red king crabs functions efficiently at the crabs' typical low environmental temperatures because the active site of the enzyme can bind substrate more tightly at the low temperatures than it does at higher ...

  17. SOLVED: (d) State the null hypothesis for the experiment ...

    (d) State the null hypothesis for the experiment whose data are graphed in Figure 2. Provide evidence to support or refute the scientists' claim that more colonies grew in strains C3 and C6 than in the other strains because the genes for proteins that are normally targeted by the toxic chemical contain nucleotides with incorrect bases in the C3 and C6 cells.

  18. (d) State the null hypothesis for the experiment whose data are

    Question. (d) State the null hypothesis for the experiment whose data are graphed in Figure 2. Provide evidence to support or refute the scientists' claim that more colonies grew in strains C3 and C6 than in the other strains because the genes for proteins that are normally targeted by the toxic chemical contain nucleotides with incorrect bases ...

  19. SOLVED: (c) State a null hypothesis for the experiments shown in Figure

    (c) State a null hypothesis for the experiments shown in Figure 3. The scientists claim that the concentration of citric acid in cells regulates the rate of glycolysis by the cells Support the scientists' claim using biological principles and the data provided.

  20. State the null hypothesis for the experiment whose data are

    Question. State the null hypothesis for the experiment whose data are graphed in Figure 2. Provide evidence to support or refute the scientists' claim that more colonies grew in strains C3 and C6 than in the other strains because the genes for proteins that are normally targeted by the toxic chemical contain nucleotides with incorrect bases in ...

  21. AP Bio Final Possible FRQs Flashcards

    State the null hypothesis of the experiment. no relationship between sand and fur color. The scientists claim that the changes in the frequency of fur color were the result of natural selection. Justify the researchers claim. ... Based on figure 1, explain how p53 regulates the cell cycle in the presence of damaged DNA.

  22. Cellular Energetics FRQ: Question 1: c) State a null hypothesis

    c) State a null hypothesis for the experiments shown in Figure 3.The scientists claim that the concentration of citric acid in cells regulates the rate of glycolysis by the cells. Support the scientists' claim using biological principles and the data provided. Predict the effect on the active site of PFK if PFK is maintained at 75°C for 20 minutes prior to starting the reaction.

  23. AP bio FRQ cell energetics Flashcards

    Based on Figure 3, calculate the fold change in the reaction rate (how many times higher or lower the reaction rate is at 25°C when the concentration of citric acid is increased from 0 mM to 4 mM., State a null hypothesis for the experiments shown in Figure 3.

  24. Cancers

    Mortalin, a member of the Hsp70 family of proteins, is commonly enriched in many types of cancers. It promotes carcinogenesis and metastasis in multiple ways of which the inactivation of the tumor suppressor activity of p53 has been firmly established. The downregulation of mortalin and/or disruption of mortalin-p53 interactions by small molecules has earlier been shown to activate p53 ...