The University of Manitoba campuses are located on original lands of Anishinaabeg, Ininew, Anisininew, Dakota and Dene peoples, and on the National Homeland of the Red River Métis. More

Faculty of Architecture

What are you looking for.

  • Digital viewbook
  • Undergraduate admissions
  • Graduate admissions
  • Extended Education
  • Indigenous students
  • Financial Aid and Awards
  • Apply to UM
  • Experiential Learning
  • Faculties, colleges and schools
  • Academic Calendar
  • Registrar's Office
  • Undergraduate programs
  • Graduate programs
  • Extended Education programs
  • Opportunities and support
  • Research Chairs
  • Centres and institutes
  • Partnerships and Innovation
  • Awards and recognition
  • International Centre
  • ResearchLIFE
  • Academic supports
  • Career Services
  • Get involved
  • Student health and wellness
  • Military Support Office
  • Respectful conduct
  • Student services at Bannatyne campus
  • Accessibility for students
  • Indigenous community
  • Arts and Culture
  • Sport and Recreation
  • Administration
  • Our campuses
  • The UM brand
  • Facts and figures

University of Manitoba

University of Manitoba Winnipeg, Manitoba Canada, R3T 2N2

About the design thesis

The Department of Architecture design thesis is an opportunity for students to challenge themselves by pursuing architectural interests in ambitious and self-critical ways, while working in the mutually supportive context of peers attempting the same.

The design thesis is an independently driven creative work developed within a focused subject of inquiry and directed by architectural questions. It is carried out through intensive research, study, and design explorations, and culminates in a thoroughly developed architectural proposition. It is to be fully recorded in a final document.

The design thesis is both an end in itself and a new beginning: it culminates a professional education, but also inaugurates new directions. It is a transformative event — a threshold, opening new ways to think, make and engage architecture, others and the world.

Carrying out self-directed design research and bringing this work to creative fruition are imperative skills for any architect. The design thesis entails considerable intellectual risk, but can also be serious fun! It should be the most exhilarating time of an architect’s education and a fulfilling experience that one reflects on fondly and meaningfully for the rest of one’s life.

Black and white photo of architectural model superimposed on abstract painting, which appears to expand the lines and momentum of photo with paint.

Beginning the design thesis

An important preliminary step of the design thesis is preparing a proposal that establishes the general topic and particular strategies to guide the work. A thesis topic should have at least two facets: subjects that fascinate you, and problems that concern you. Articulating a multi-faceted topic of interest, however, is not enough.

A design thesis proposal must further describe particular conditions, programs, sites and/or phenomena to be studied (“the what”); exploratory strategies and manners of working by which the topic will be investigated and the design developed (“the how”); and relevant research precedents—architectural, theoretical and cultural contexts—to which the work will meaningfully relate (“the why”). A proposal must be clear, specific, succinct, relevant, exciting, and achievable within the given time frame. 

A good proposal is detailed, yet open-ended. It does not predetermine results but rather inaugurates inquiry in particular ways, establishing the parameters that allow for creative work to unfold. The best design thesis work results from restless inquiry, rigorous commitment, and critical discourse with peers.

Term one: Finding topics and articulating questions

How does a thesis begin? With questions! While each student will develop their own, everyone should also grapple with the fundamentals: What is architecture? What are its various manifestations? What are the most pressing challenges facing the discipline today?

What are its most persistent, trans-historical topics? What are the different ways of performing architectural work, and which ways do I seek to develop? What kind of architect do I want to become? What architectural settings have I found to be most moving? Most fascinating? Most troubling? Most confounding? Most meaningful? What ignites architectural imagination?

The design thesis commences with a design research studio. This first term is about finding topics of fascination and concern, articulating questions and attempting responses. The first term culminates with significant attempts at architectural design and design strategies, together with presentations of ongoing creative research in the form of diverse models and drawings, and potentially full-scale installations, supplementary videos and digital projections.

Term two: Producing a design thesis book

During the winter design thesis term, students fully manifest a substantive architectural design project and produce a design thesis book. The book compiles a full year’s worth of search and research, including documentation of processes, iterations, and a final design, plus sufficient text to describe the thesis inquiry, providing contextual framing, interpretive annotations and critical reflections.

General studio and course information

  • General studio and course information (PDF)
  • Studio and technology portfolio guidelines (PDF)

Design thesis information

  • Design thesis s chedule (PDF)
  • Proposal approval form (PDF)
  • Proposal description (PDF)

How to write the perfect design dissertation

Tutors and students from top design colleges share their advice.

design thesis meaning

Studying design is about crafting a great design portfolio that will wow potential employers, right? Well, yes. But don't discount the importance of astute creative thinking, and expressing yourself eloquently through the written word. In short, your design dissertation matters.

"I don't believe that design students should be focused entirely on portfolio work," argues Myrna MacLeod , programme leader for Graphic Design at Edinburgh Napier University. "They should also be able to demonstrate an interest in the contexts that underpin their work, and the histories and connections that have informed our practice."

  • 5 top tips for graduate designers

"Think of a dissertation as an opportunity, not a burden," urges Craig Burston , Graphic and Media Design course leader at London College of Communication (LCC). "It gives us visually-minded people an opportunity to demonstrate that we too can construct arguments and distil complex notions." 

As Burston points out, this is not just an academic exercise: the power of persuasion is often key to success as a commercial designer. "Clients seek clarity, and project concepts or proposals need to be put into context," he says.

Read on to discover some top tips from leading tutors and their students for nailing your design dissertation…

01. Treat it like a design brief

"A great dissertation should be a designed artefact, and portfolio-worthy in its own right," says Burston. And like a design brief, it should be about solving a problem: "Make sure it has clearly stated aims, strong focus, and doesn't lack opinion or rhetoric," he adds.

  • Best laptops for graphic design

"The value of a designed dissertation as a portfolio piece is that it's a holistic view of the individual," agrees Sarah James , senior lecturer in Visual Communication at Arts University Bournemouth (AUB). 

"It shows, type, editorial, research and aesthetic skill, as well as the personal interests and convictions of the individual."

For her AUB dissertation on responsive type, Maarit Koobas conducted an extensive research process

James identifies AUB student Maarit Koobas , who investigated responsive type in both her dissertation and final project, as a particularly strong example of this. "Her design version was one of the most authentic, restrained and elegantly expressive I have ever received," she enthuses.

Koobas conducted a huge amount of initial research into both the contexts in which responsive type can be seen – such as advertising, product design, science and material cultures – and the theories behind its analysis, including semiotics, philosophy and politics. "Creating and analysing ideas, before they end up in your portfolio, is what design is all about," argues Koobas.

  • 5 must-read books for design students

02. Write about your passion

"To develop essay questions, AUB students are asked to consider what they love, hate or are puzzled by in their practice – essentially, what moves them," says James. 

"A poor dissertation is inauthentically chosen for ease as opposed to interest," she adds. "It rambles and blusters, using complex language to mask insufficient research." 

"You can tell a mile off when the writer isn't interested," agrees Burston. "How can you expect the reader to care about it if you don't? Write about something that reflects your interests, focus and direction. I've read fascinating dissertations on topics as diverse as patterns in nature, and Brutalist car parks. Make me interested in what interests you."

Research by Napier graduate Fiona Winchester on typography in graphic novels

For Edinburgh Napier graduate Fiona Winchester , this topic turned out to be typography in graphic novels. "I love reading them, but I think people still don't take them seriously as an art form, which is a shame," she says. For her dissertation, she conducted qualitative interviews using modified pages with and without imagery (shown above). 

Her advice is simple: "Narrow down your idea to be as precise as possible. The smaller your question, the easier it is to research and try to answer it."

If you're struggling to get the ball rolling on the actual writing process, Winchester advocates starting with whichever bit you have ideas for. "If you're stuck, it's so much easier to write in whatever order it comes to you, and then edit it into a dissertation, than to try write straight through from beginning to end," she insists.

03. Don't be afraid to talk to people

"I always think my students get the most out of the new streams of knowledge they find from talking to people," says McLeod. "It breaks down barriers and allows them to find answers to problems. Hopefully they will adopt that approach when designing for people also."

In some cases, this can involve interviewing your design heroes. "Students are very surprised when they send a question to Stefan Sagmeister , Milton Glaser or Michael Wolff and they reply with the most precious nugget of knowledge," smiles McLeod. 

But remember: it's your dissertation, so don't get lazy and expect your interview subject to do all the heavy lifting.

Kaori Toh's CSM dissertation on Mapping as a Creative Agency: Revelations and Speculations in the Age of Infrastructure

In other cases, it could be as simple as asking friends or family to help proofread. "It is quite daunting writing such a large body of text," admits Kaori Toh , a recent graduate from Central Saint Martins, whose dissertation explored the politics of design and technology.

"I often felt I'd get lost in all that text and research," she confesses. "Therefore, I would often send my drafts to a couple of friends to have them look through, and keep my writing cohesive."

04. Reflect on your design practice 

Most of all, dissertations are an opportunity to reflect on, and develop, your creative process as a designer. "Ultimately, it's your job to make your work relevant and credible, and the dissertation helps you learn how to do this," adds Burston. 

Of course, writing doesn't always come easily to visually minded people – and Burston highlights the fact that dyslexia is not uncommon amongst designers. 

"You're not on your own – in our profession, quite the opposite in fact – so do seek academic support, and just enjoy thinking and writing about 'stuff' that informs your practice," is his advice.

Entitled New Faces, Tom Baber's thesis at LCC discusses the craft of type design in the 21st century, inspired by his own experience creating a working typeface: Elephant Grotesk

One of Burston's stand-out students from this year, Tom Baber , welcomed support from the university to help with his dyslexia. Baber's dissertation focused on type design, and particularly the extent to which the longwinded design process is worth the effort, compared to using an existing typeface.

"I saw it as an opportunity to approach other type designers and see what they thought. Turns out I'm not the first to ask the question," he smiles. "Writing my dissertation helped me change from a 'maker' mentality to a 'designer' mentality, and be more critical of my ideas."

Related articles:

  • 15 things they didn't teach you at design school
  • The skills every design graduate needs
  • 5 alternative routes into design education

Thank you for reading 5 articles this month* Join now for unlimited access

Enjoy your first month for just £1 / $1 / €1

*Read 5 free articles per month without a subscription

Join now for unlimited access

Try first month for just £1 / $1 / €1

Get the Creative Bloq Newsletter

Daily design news, reviews, how-tos and more, as picked by the editors.

Nick is a content strategist and copywriter. He has worked with world-class agencies including Superunion, Wolff Olins and Vault49 on brand storytelling, tone of voice and verbal strategy for global brands such as Virgin, Pepsi and TikTok. Nick launched the Brand Impact Awards in 2013 while editor of Computer Arts, and remains chair of judges. He's written for Creative Bloq on design and branding matters since the site's launch.

Related articles

TIME’s Trump cover illustration is simple yet powerful

  • 2 The Euro 2024 logo is packed full of clever Easter eggs
  • 3 Users are already poking fun at the Discord rebrand
  • 4 This is why McDonald's wiped the smile from its Happy Meals
  • 5 Apparent Nothing Phone 3 design leak has fans intrigued
  • 2 Ingenious optical illusion billboard takes the terror out of the prostate check
  • 3 Best CGI character design
  • 4 Blackmagic Fusion Studio 19 review: VFX software goes from strength to strength
  • 5 The Euro 2024 logo is packed full of clever Easter eggs

design thesis meaning

Think of yourself as a member of a jury, listening to a lawyer who is presenting an opening argument. You'll want to know very soon whether the lawyer believes the accused to be guilty or not guilty, and how the lawyer plans to convince you. Readers of academic essays are like jury members: before they have read too far, they want to know what the essay argues as well as how the writer plans to make the argument. After reading your thesis statement, the reader should think, "This essay is going to try to convince me of something. I'm not convinced yet, but I'm interested to see how I might be."

An effective thesis cannot be answered with a simple "yes" or "no." A thesis is not a topic; nor is it a fact; nor is it an opinion. "Reasons for the fall of communism" is a topic. "Communism collapsed in Eastern Europe" is a fact known by educated people. "The fall of communism is the best thing that ever happened in Europe" is an opinion. (Superlatives like "the best" almost always lead to trouble. It's impossible to weigh every "thing" that ever happened in Europe. And what about the fall of Hitler? Couldn't that be "the best thing"?)

A good thesis has two parts. It should tell what you plan to argue, and it should "telegraph" how you plan to argue—that is, what particular support for your claim is going where in your essay.

Steps in Constructing a Thesis

First, analyze your primary sources.  Look for tension, interest, ambiguity, controversy, and/or complication. Does the author contradict himself or herself? Is a point made and later reversed? What are the deeper implications of the author's argument? Figuring out the why to one or more of these questions, or to related questions, will put you on the path to developing a working thesis. (Without the why, you probably have only come up with an observation—that there are, for instance, many different metaphors in such-and-such a poem—which is not a thesis.)

Once you have a working thesis, write it down.  There is nothing as frustrating as hitting on a great idea for a thesis, then forgetting it when you lose concentration. And by writing down your thesis you will be forced to think of it clearly, logically, and concisely. You probably will not be able to write out a final-draft version of your thesis the first time you try, but you'll get yourself on the right track by writing down what you have.

Keep your thesis prominent in your introduction.  A good, standard place for your thesis statement is at the end of an introductory paragraph, especially in shorter (5-15 page) essays. Readers are used to finding theses there, so they automatically pay more attention when they read the last sentence of your introduction. Although this is not required in all academic essays, it is a good rule of thumb.

Anticipate the counterarguments.  Once you have a working thesis, you should think about what might be said against it. This will help you to refine your thesis, and it will also make you think of the arguments that you'll need to refute later on in your essay. (Every argument has a counterargument. If yours doesn't, then it's not an argument—it may be a fact, or an opinion, but it is not an argument.)

This statement is on its way to being a thesis. However, it is too easy to imagine possible counterarguments. For example, a political observer might believe that Dukakis lost because he suffered from a "soft-on-crime" image. If you complicate your thesis by anticipating the counterargument, you'll strengthen your argument, as shown in the sentence below.

Some Caveats and Some Examples

A thesis is never a question.  Readers of academic essays expect to have questions discussed, explored, or even answered. A question ("Why did communism collapse in Eastern Europe?") is not an argument, and without an argument, a thesis is dead in the water.

A thesis is never a list.  "For political, economic, social and cultural reasons, communism collapsed in Eastern Europe" does a good job of "telegraphing" the reader what to expect in the essay—a section about political reasons, a section about economic reasons, a section about social reasons, and a section about cultural reasons. However, political, economic, social and cultural reasons are pretty much the only possible reasons why communism could collapse. This sentence lacks tension and doesn't advance an argument. Everyone knows that politics, economics, and culture are important.

A thesis should never be vague, combative or confrontational.  An ineffective thesis would be, "Communism collapsed in Eastern Europe because communism is evil." This is hard to argue (evil from whose perspective? what does evil mean?) and it is likely to mark you as moralistic and judgmental rather than rational and thorough. It also may spark a defensive reaction from readers sympathetic to communism. If readers strongly disagree with you right off the bat, they may stop reading.

An effective thesis has a definable, arguable claim.  "While cultural forces contributed to the collapse of communism in Eastern Europe, the disintegration of economies played the key role in driving its decline" is an effective thesis sentence that "telegraphs," so that the reader expects the essay to have a section about cultural forces and another about the disintegration of economies. This thesis makes a definite, arguable claim: that the disintegration of economies played a more important role than cultural forces in defeating communism in Eastern Europe. The reader would react to this statement by thinking, "Perhaps what the author says is true, but I am not convinced. I want to read further to see how the author argues this claim."

A thesis should be as clear and specific as possible.  Avoid overused, general terms and abstractions. For example, "Communism collapsed in Eastern Europe because of the ruling elite's inability to address the economic concerns of the people" is more powerful than "Communism collapsed due to societal discontent."

Copyright 1999, Maxine Rodburg and The Tutors of the Writing Center at Harvard University

Grad Coach

Dissertation Structure & Layout 101: How to structure your dissertation, thesis or research project.

By: Derek Jansen (MBA) Reviewed By: David Phair (PhD) | July 2019

So, you’ve got a decent understanding of what a dissertation is , you’ve chosen your topic and hopefully you’ve received approval for your research proposal . Awesome! Now its time to start the actual dissertation or thesis writing journey.

To craft a high-quality document, the very first thing you need to understand is dissertation structure . In this post, we’ll walk you through the generic dissertation structure and layout, step by step. We’ll start with the big picture, and then zoom into each chapter to briefly discuss the core contents. If you’re just starting out on your research journey, you should start with this post, which covers the big-picture process of how to write a dissertation or thesis .

Dissertation structure and layout - the basics

*The Caveat *

In this post, we’ll be discussing a traditional dissertation/thesis structure and layout, which is generally used for social science research across universities, whether in the US, UK, Europe or Australia. However, some universities may have small variations on this structure (extra chapters, merged chapters, slightly different ordering, etc).

So, always check with your university if they have a prescribed structure or layout that they expect you to work with. If not, it’s safe to assume the structure we’ll discuss here is suitable. And even if they do have a prescribed structure, you’ll still get value from this post as we’ll explain the core contents of each section.  

Overview: S tructuring a dissertation or thesis

  • Acknowledgements page
  • Abstract (or executive summary)
  • Table of contents , list of figures and tables
  • Chapter 1: Introduction
  • Chapter 2: Literature review
  • Chapter 3: Methodology
  • Chapter 4: Results
  • Chapter 5: Discussion
  • Chapter 6: Conclusion
  • Reference list

As I mentioned, some universities will have slight variations on this structure. For example, they want an additional “personal reflection chapter”, or they might prefer the results and discussion chapter to be merged into one. Regardless, the overarching flow will always be the same, as this flow reflects the research process , which we discussed here – i.e.:

  • The introduction chapter presents the core research question and aims .
  • The literature review chapter assesses what the current research says about this question.
  • The methodology, results and discussion chapters go about undertaking new research about this question.
  • The conclusion chapter (attempts to) answer the core research question .

In other words, the dissertation structure and layout reflect the research process of asking a well-defined question(s), investigating, and then answering the question – see below.

A dissertation's structure reflect the research process

To restate that – the structure and layout of a dissertation reflect the flow of the overall research process . This is essential to understand, as each chapter will make a lot more sense if you “get” this concept. If you’re not familiar with the research process, read this post before going further.

Right. Now that we’ve covered the big picture, let’s dive a little deeper into the details of each section and chapter. Oh and by the way, you can also grab our free dissertation/thesis template here to help speed things up.

The title page of your dissertation is the very first impression the marker will get of your work, so it pays to invest some time thinking about your title. But what makes for a good title? A strong title needs to be 3 things:

  • Succinct (not overly lengthy or verbose)
  • Specific (not vague or ambiguous)
  • Representative of the research you’re undertaking (clearly linked to your research questions)

Typically, a good title includes mention of the following:

  • The broader area of the research (i.e. the overarching topic)
  • The specific focus of your research (i.e. your specific context)
  • Indication of research design (e.g. quantitative , qualitative , or  mixed methods ).

For example:

A quantitative investigation [research design] into the antecedents of organisational trust [broader area] in the UK retail forex trading market [specific context/area of focus].

Again, some universities may have specific requirements regarding the format and structure of the title, so it’s worth double-checking expectations with your institution (if there’s no mention in the brief or study material).

Dissertations stacked up

Acknowledgements

This page provides you with an opportunity to say thank you to those who helped you along your research journey. Generally, it’s optional (and won’t count towards your marks), but it is academic best practice to include this.

So, who do you say thanks to? Well, there’s no prescribed requirements, but it’s common to mention the following people:

  • Your dissertation supervisor or committee.
  • Any professors, lecturers or academics that helped you understand the topic or methodologies.
  • Any tutors, mentors or advisors.
  • Your family and friends, especially spouse (for adult learners studying part-time).

There’s no need for lengthy rambling. Just state who you’re thankful to and for what (e.g. thank you to my supervisor, John Doe, for his endless patience and attentiveness) – be sincere. In terms of length, you should keep this to a page or less.

Abstract or executive summary

The dissertation abstract (or executive summary for some degrees) serves to provide the first-time reader (and marker or moderator) with a big-picture view of your research project. It should give them an understanding of the key insights and findings from the research, without them needing to read the rest of the report – in other words, it should be able to stand alone .

For it to stand alone, your abstract should cover the following key points (at a minimum):

  • Your research questions and aims – what key question(s) did your research aim to answer?
  • Your methodology – how did you go about investigating the topic and finding answers to your research question(s)?
  • Your findings – following your own research, what did do you discover?
  • Your conclusions – based on your findings, what conclusions did you draw? What answers did you find to your research question(s)?

So, in much the same way the dissertation structure mimics the research process, your abstract or executive summary should reflect the research process, from the initial stage of asking the original question to the final stage of answering that question.

In practical terms, it’s a good idea to write this section up last , once all your core chapters are complete. Otherwise, you’ll end up writing and rewriting this section multiple times (just wasting time). For a step by step guide on how to write a strong executive summary, check out this post .

Need a helping hand?

design thesis meaning

Table of contents

This section is straightforward. You’ll typically present your table of contents (TOC) first, followed by the two lists – figures and tables. I recommend that you use Microsoft Word’s automatic table of contents generator to generate your TOC. If you’re not familiar with this functionality, the video below explains it simply:

If you find that your table of contents is overly lengthy, consider removing one level of depth. Oftentimes, this can be done without detracting from the usefulness of the TOC.

Right, now that the “admin” sections are out of the way, its time to move on to your core chapters. These chapters are the heart of your dissertation and are where you’ll earn the marks. The first chapter is the introduction chapter – as you would expect, this is the time to introduce your research…

It’s important to understand that even though you’ve provided an overview of your research in your abstract, your introduction needs to be written as if the reader has not read that (remember, the abstract is essentially a standalone document). So, your introduction chapter needs to start from the very beginning, and should address the following questions:

  • What will you be investigating (in plain-language, big picture-level)?
  • Why is that worth investigating? How is it important to academia or business? How is it sufficiently original?
  • What are your research aims and research question(s)? Note that the research questions can sometimes be presented at the end of the literature review (next chapter).
  • What is the scope of your study? In other words, what will and won’t you cover ?
  • How will you approach your research? In other words, what methodology will you adopt?
  • How will you structure your dissertation? What are the core chapters and what will you do in each of them?

These are just the bare basic requirements for your intro chapter. Some universities will want additional bells and whistles in the intro chapter, so be sure to carefully read your brief or consult your research supervisor.

If done right, your introduction chapter will set a clear direction for the rest of your dissertation. Specifically, it will make it clear to the reader (and marker) exactly what you’ll be investigating, why that’s important, and how you’ll be going about the investigation. Conversely, if your introduction chapter leaves a first-time reader wondering what exactly you’ll be researching, you’ve still got some work to do.

Now that you’ve set a clear direction with your introduction chapter, the next step is the literature review . In this section, you will analyse the existing research (typically academic journal articles and high-quality industry publications), with a view to understanding the following questions:

  • What does the literature currently say about the topic you’re investigating?
  • Is the literature lacking or well established? Is it divided or in disagreement?
  • How does your research fit into the bigger picture?
  • How does your research contribute something original?
  • How does the methodology of previous studies help you develop your own?

Depending on the nature of your study, you may also present a conceptual framework towards the end of your literature review, which you will then test in your actual research.

Again, some universities will want you to focus on some of these areas more than others, some will have additional or fewer requirements, and so on. Therefore, as always, its important to review your brief and/or discuss with your supervisor, so that you know exactly what’s expected of your literature review chapter.

Dissertation writing

Now that you’ve investigated the current state of knowledge in your literature review chapter and are familiar with the existing key theories, models and frameworks, its time to design your own research. Enter the methodology chapter – the most “science-ey” of the chapters…

In this chapter, you need to address two critical questions:

  • Exactly HOW will you carry out your research (i.e. what is your intended research design)?
  • Exactly WHY have you chosen to do things this way (i.e. how do you justify your design)?

Remember, the dissertation part of your degree is first and foremost about developing and demonstrating research skills . Therefore, the markers want to see that you know which methods to use, can clearly articulate why you’ve chosen then, and know how to deploy them effectively.

Importantly, this chapter requires detail – don’t hold back on the specifics. State exactly what you’ll be doing, with who, when, for how long, etc. Moreover, for every design choice you make, make sure you justify it.

In practice, you will likely end up coming back to this chapter once you’ve undertaken all your data collection and analysis, and revise it based on changes you made during the analysis phase. This is perfectly fine. Its natural for you to add an additional analysis technique, scrap an old one, etc based on where your data lead you. Of course, I’m talking about small changes here – not a fundamental switch from qualitative to quantitative, which will likely send your supervisor in a spin!

You’ve now collected your data and undertaken your analysis, whether qualitative, quantitative or mixed methods. In this chapter, you’ll present the raw results of your analysis . For example, in the case of a quant study, you’ll present the demographic data, descriptive statistics, inferential statistics , etc.

Typically, Chapter 4 is simply a presentation and description of the data, not a discussion of the meaning of the data. In other words, it’s descriptive, rather than analytical – the meaning is discussed in Chapter 5. However, some universities will want you to combine chapters 4 and 5, so that you both present and interpret the meaning of the data at the same time. Check with your institution what their preference is.

Now that you’ve presented the data analysis results, its time to interpret and analyse them. In other words, its time to discuss what they mean, especially in relation to your research question(s).

What you discuss here will depend largely on your chosen methodology. For example, if you’ve gone the quantitative route, you might discuss the relationships between variables . If you’ve gone the qualitative route, you might discuss key themes and the meanings thereof. It all depends on what your research design choices were.

Most importantly, you need to discuss your results in relation to your research questions and aims, as well as the existing literature. What do the results tell you about your research questions? Are they aligned with the existing research or at odds? If so, why might this be? Dig deep into your findings and explain what the findings suggest, in plain English.

The final chapter – you’ve made it! Now that you’ve discussed your interpretation of the results, its time to bring it back to the beginning with the conclusion chapter . In other words, its time to (attempt to) answer your original research question s (from way back in chapter 1). Clearly state what your conclusions are in terms of your research questions. This might feel a bit repetitive, as you would have touched on this in the previous chapter, but its important to bring the discussion full circle and explicitly state your answer(s) to the research question(s).

Dissertation and thesis prep

Next, you’ll typically discuss the implications of your findings . In other words, you’ve answered your research questions – but what does this mean for the real world (or even for academia)? What should now be done differently, given the new insight you’ve generated?

Lastly, you should discuss the limitations of your research, as well as what this means for future research in the area. No study is perfect, especially not a Masters-level. Discuss the shortcomings of your research. Perhaps your methodology was limited, perhaps your sample size was small or not representative, etc, etc. Don’t be afraid to critique your work – the markers want to see that you can identify the limitations of your work. This is a strength, not a weakness. Be brutal!

This marks the end of your core chapters – woohoo! From here on out, it’s pretty smooth sailing.

The reference list is straightforward. It should contain a list of all resources cited in your dissertation, in the required format, e.g. APA , Harvard, etc.

It’s essential that you use reference management software for your dissertation. Do NOT try handle your referencing manually – its far too error prone. On a reference list of multiple pages, you’re going to make mistake. To this end, I suggest considering either Mendeley or Zotero. Both are free and provide a very straightforward interface to ensure that your referencing is 100% on point. I’ve included a simple how-to video for the Mendeley software (my personal favourite) below:

Some universities may ask you to include a bibliography, as opposed to a reference list. These two things are not the same . A bibliography is similar to a reference list, except that it also includes resources which informed your thinking but were not directly cited in your dissertation. So, double-check your brief and make sure you use the right one.

The very last piece of the puzzle is the appendix or set of appendices. This is where you’ll include any supporting data and evidence. Importantly, supporting is the keyword here.

Your appendices should provide additional “nice to know”, depth-adding information, which is not critical to the core analysis. Appendices should not be used as a way to cut down word count (see this post which covers how to reduce word count ). In other words, don’t place content that is critical to the core analysis here, just to save word count. You will not earn marks on any content in the appendices, so don’t try to play the system!

Time to recap…

And there you have it – the traditional dissertation structure and layout, from A-Z. To recap, the core structure for a dissertation or thesis is (typically) as follows:

  • Acknowledgments page

Most importantly, the core chapters should reflect the research process (asking, investigating and answering your research question). Moreover, the research question(s) should form the golden thread throughout your dissertation structure. Everything should revolve around the research questions, and as you’ve seen, they should form both the start point (i.e. introduction chapter) and the endpoint (i.e. conclusion chapter).

I hope this post has provided you with clarity about the traditional dissertation/thesis structure and layout. If you have any questions or comments, please leave a comment below, or feel free to get in touch with us. Also, be sure to check out the rest of the  Grad Coach Blog .

design thesis meaning

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

The acknowledgements section of a thesis/dissertation

36 Comments

ARUN kumar SHARMA

many thanks i found it very useful

Derek Jansen

Glad to hear that, Arun. Good luck writing your dissertation.

Sue

Such clear practical logical advice. I very much needed to read this to keep me focused in stead of fretting.. Perfect now ready to start my research!

hayder

what about scientific fields like computer or engineering thesis what is the difference in the structure? thank you very much

Tim

Thanks so much this helped me a lot!

Ade Adeniyi

Very helpful and accessible. What I like most is how practical the advice is along with helpful tools/ links.

Thanks Ade!

Aswathi

Thank you so much sir.. It was really helpful..

You’re welcome!

Jp Raimundo

Hi! How many words maximum should contain the abstract?

Karmelia Renatee

Thank you so much 😊 Find this at the right moment

You’re most welcome. Good luck with your dissertation.

moha

best ever benefit i got on right time thank you

Krishnan iyer

Many times Clarity and vision of destination of dissertation is what makes the difference between good ,average and great researchers the same way a great automobile driver is fast with clarity of address and Clear weather conditions .

I guess Great researcher = great ideas + knowledge + great and fast data collection and modeling + great writing + high clarity on all these

You have given immense clarity from start to end.

Alwyn Malan

Morning. Where will I write the definitions of what I’m referring to in my report?

Rose

Thank you so much Derek, I was almost lost! Thanks a tonnnn! Have a great day!

yemi Amos

Thanks ! so concise and valuable

Kgomotso Siwelane

This was very helpful. Clear and concise. I know exactly what to do now.

dauda sesay

Thank you for allowing me to go through briefly. I hope to find time to continue.

Patrick Mwathi

Really useful to me. Thanks a thousand times

Adao Bundi

Very interesting! It will definitely set me and many more for success. highly recommended.

SAIKUMAR NALUMASU

Thank you soo much sir, for the opportunity to express my skills

mwepu Ilunga

Usefull, thanks a lot. Really clear

Rami

Very nice and easy to understand. Thank you .

Chrisogonas Odhiambo

That was incredibly useful. Thanks Grad Coach Crew!

Luke

My stress level just dropped at least 15 points after watching this. Just starting my thesis for my grad program and I feel a lot more capable now! Thanks for such a clear and helpful video, Emma and the GradCoach team!

Judy

Do we need to mention the number of words the dissertation contains in the main document?

It depends on your university’s requirements, so it would be best to check with them 🙂

Christine

Such a helpful post to help me get started with structuring my masters dissertation, thank you!

Simon Le

Great video; I appreciate that helpful information

Brhane Kidane

It is so necessary or avital course

johnson

This blog is very informative for my research. Thank you

avc

Doctoral students are required to fill out the National Research Council’s Survey of Earned Doctorates

Emmanuel Manjolo

wow this is an amazing gain in my life

Paul I Thoronka

This is so good

Tesfay haftu

How can i arrange my specific objectives in my dissertation?

Trackbacks/Pingbacks

  • What Is A Literature Review (In A Dissertation Or Thesis) - Grad Coach - […] is to write the actual literature review chapter (this is usually the second chapter in a typical dissertation or…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

design thesis meaning

Home Market Research Research Tools and Apps

Research Design: What it is, Elements & Types

Research Design

Can you imagine doing research without a plan? Probably not. When we discuss a strategy to collect, study, and evaluate data, we talk about research design. This design addresses problems and creates a consistent and logical model for data analysis. Let’s learn more about it.

What is Research Design?

Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success.

Creating a research topic explains the type of research (experimental,  survey research ,  correlational , semi-experimental, review) and its sub-type (experimental design, research problem , descriptive case-study). 

There are three main types of designs for research:

  • Data collection
  • Measurement
  • Data Analysis

The research problem an organization faces will determine the design, not vice-versa. The design phase of a study determines which tools to use and how they are used.

The Process of Research Design

The research design process is a systematic and structured approach to conducting research. The process is essential to ensure that the study is valid, reliable, and produces meaningful results.

  • Consider your aims and approaches: Determine the research questions and objectives, and identify the theoretical framework and methodology for the study.
  • Choose a type of Research Design: Select the appropriate research design, such as experimental, correlational, survey, case study, or ethnographic, based on the research questions and objectives.
  • Identify your population and sampling method: Determine the target population and sample size, and choose the sampling method, such as random , stratified random sampling , or convenience sampling.
  • Choose your data collection methods: Decide on the data collection methods , such as surveys, interviews, observations, or experiments, and select the appropriate instruments or tools for collecting data.
  • Plan your data collection procedures: Develop a plan for data collection, including the timeframe, location, and personnel involved, and ensure ethical considerations.
  • Decide on your data analysis strategies: Select the appropriate data analysis techniques, such as statistical analysis , content analysis, or discourse analysis, and plan how to interpret the results.

The process of research design is a critical step in conducting research. By following the steps of research design, researchers can ensure that their study is well-planned, ethical, and rigorous.

Research Design Elements

Impactful research usually creates a minimum bias in data and increases trust in the accuracy of collected data. A design that produces the slightest margin of error in experimental research is generally considered the desired outcome. The essential elements are:

  • Accurate purpose statement
  • Techniques to be implemented for collecting and analyzing research
  • The method applied for analyzing collected details
  • Type of research methodology
  • Probable objections to research
  • Settings for the research study
  • Measurement of analysis

Characteristics of Research Design

A proper design sets your study up for success. Successful research studies provide insights that are accurate and unbiased. You’ll need to create a survey that meets all of the main characteristics of a design. There are four key characteristics:

Characteristics of Research Design

  • Neutrality: When you set up your study, you may have to make assumptions about the data you expect to collect. The results projected in the research should be free from research bias and neutral. Understand opinions about the final evaluated scores and conclusions from multiple individuals and consider those who agree with the results.
  • Reliability: With regularly conducted research, the researcher expects similar results every time. You’ll only be able to reach the desired results if your design is reliable. Your plan should indicate how to form research questions to ensure the standard of results.
  • Validity: There are multiple measuring tools available. However, the only correct measuring tools are those which help a researcher in gauging results according to the objective of the research. The  questionnaire  developed from this design will then be valid.
  • Generalization:  The outcome of your design should apply to a population and not just a restricted sample . A generalized method implies that your survey can be conducted on any part of a population with similar accuracy.

The above factors affect how respondents answer the research questions, so they should balance all the above characteristics in a good design. If you want, you can also learn about Selection Bias through our blog.

Research Design Types

A researcher must clearly understand the various types to select which model to implement for a study. Like the research itself, the design of your analysis can be broadly classified into quantitative and qualitative.

Qualitative research

Qualitative research determines relationships between collected data and observations based on mathematical calculations. Statistical methods can prove or disprove theories related to a naturally existing phenomenon. Researchers rely on qualitative observation research methods that conclude “why” a particular theory exists and “what” respondents have to say about it.

Quantitative research

Quantitative research is for cases where statistical conclusions to collect actionable insights are essential. Numbers provide a better perspective for making critical business decisions. Quantitative research methods are necessary for the growth of any organization. Insights drawn from complex numerical data and analysis prove to be highly effective when making decisions about the business’s future.

Qualitative Research vs Quantitative Research

Here is a chart that highlights the major differences between qualitative and quantitative research:

In summary or analysis , the step of qualitative research is more exploratory and focuses on understanding the subjective experiences of individuals, while quantitative research is more focused on objective data and statistical analysis.

You can further break down the types of research design into five categories:

types of research design

1. Descriptive: In a descriptive composition, a researcher is solely interested in describing the situation or case under their research study. It is a theory-based design method created by gathering, analyzing, and presenting collected data. This allows a researcher to provide insights into the why and how of research. Descriptive design helps others better understand the need for the research. If the problem statement is not clear, you can conduct exploratory research. 

2. Experimental: Experimental research establishes a relationship between the cause and effect of a situation. It is a causal research design where one observes the impact caused by the independent variable on the dependent variable. For example, one monitors the influence of an independent variable such as a price on a dependent variable such as customer satisfaction or brand loyalty. It is an efficient research method as it contributes to solving a problem.

The independent variables are manipulated to monitor the change it has on the dependent variable. Social sciences often use it to observe human behavior by analyzing two groups. Researchers can have participants change their actions and study how the people around them react to understand social psychology better.

3. Correlational research: Correlational research  is a non-experimental research technique. It helps researchers establish a relationship between two closely connected variables. There is no assumption while evaluating a relationship between two other variables, and statistical analysis techniques calculate the relationship between them. This type of research requires two different groups.

A correlation coefficient determines the correlation between two variables whose values range between -1 and +1. If the correlation coefficient is towards +1, it indicates a positive relationship between the variables, and -1 means a negative relationship between the two variables. 

4. Diagnostic research: In diagnostic design, the researcher is looking to evaluate the underlying cause of a specific topic or phenomenon. This method helps one learn more about the factors that create troublesome situations. 

This design has three parts of the research:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue

5. Explanatory research : Explanatory design uses a researcher’s ideas and thoughts on a subject to further explore their theories. The study explains unexplored aspects of a subject and details the research questions’ what, how, and why.

Benefits of Research Design

There are several benefits of having a well-designed research plan. Including:

  • Clarity of research objectives: Research design provides a clear understanding of the research objectives and the desired outcomes.
  • Increased validity and reliability: To ensure the validity and reliability of results, research design help to minimize the risk of bias and helps to control extraneous variables.
  • Improved data collection: Research design helps to ensure that the proper data is collected and data is collected systematically and consistently.
  • Better data analysis: Research design helps ensure that the collected data can be analyzed effectively, providing meaningful insights and conclusions.
  • Improved communication: A well-designed research helps ensure the results are clean and influential within the research team and external stakeholders.
  • Efficient use of resources: reducing the risk of waste and maximizing the impact of the research, research design helps to ensure that resources are used efficiently.

A well-designed research plan is essential for successful research, providing clear and meaningful insights and ensuring that resources are practical.

QuestionPro offers a comprehensive solution for researchers looking to conduct research. With its user-friendly interface, robust data collection and analysis tools, and the ability to integrate results from multiple sources, QuestionPro provides a versatile platform for designing and executing research projects.

Our robust suite of research tools provides you with all you need to derive research results. Our online survey platform includes custom point-and-click logic and advanced question types. Uncover the insights that matter the most.

FREE TRIAL         LEARN MORE

MORE LIKE THIS

design thesis meaning

Why Multilingual 360 Feedback Surveys Provide Better Insights

Jun 3, 2024

Raked Weighting

Raked Weighting: A Key Tool for Accurate Survey Results

May 31, 2024

Data trends

Top 8 Data Trends to Understand the Future of Data

May 30, 2024

interactive presentation software

Top 12 Interactive Presentation Software to Engage Your User

May 29, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Smart. Open. Grounded. Inventive. Read our Ideas Made to Matter.

Which program is right for you?

MIT Sloan Campus life

Through intellectual rigor and experiential learning, this full-time, two-year MBA program develops leaders who make a difference in the world.

A rigorous, hands-on program that prepares adaptive problem solvers for premier finance careers.

A 12-month program focused on applying the tools of modern data science, optimization and machine learning to solve real-world business problems.

Earn your MBA and SM in engineering with this transformative two-year program.

Combine an international MBA with a deep dive into management science. A special opportunity for partner and affiliate schools only.

A doctoral program that produces outstanding scholars who are leading in their fields of research.

Bring a business perspective to your technical and quantitative expertise with a bachelor’s degree in management, business analytics, or finance.

A joint program for mid-career professionals that integrates engineering and systems thinking. Earn your master’s degree in engineering and management.

An interdisciplinary program that combines engineering, management, and design, leading to a master’s degree in engineering and management.

Executive Programs

A full-time MBA program for mid-career leaders eager to dedicate one year of discovery for a lifetime of impact.

This 20-month MBA program equips experienced executives to enhance their impact on their organizations and the world.

Non-degree programs for senior executives and high-potential managers.

A non-degree, customizable program for mid-career professionals.

Sharper teeth, stronger bite needed for US minimum wage laws

Boston Fed CEO sees interest rates staying put for now

Why this tech consultant and executive coach embraces being a B student

Credit: Mimi Phan

Ideas Made to Matter

Design thinking, explained

Rebecca Linke

Sep 14, 2017

What is design thinking?

Design thinking is an innovative problem-solving process rooted in a set of skills.The approach has been around for decades, but it only started gaining traction outside of the design community after the 2008 Harvard Business Review article [subscription required] titled “Design Thinking” by Tim Brown, CEO and president of design company IDEO.

Since then, the design thinking process has been applied to developing new products and services, and to a whole range of problems, from creating a business model for selling solar panels in Africa to the operation of Airbnb .

At a high level, the steps involved in the design thinking process are simple: first, fully understand the problem; second, explore a wide range of possible solutions; third, iterate extensively through prototyping and testing; and finally, implement through the customary deployment mechanisms. 

The skills associated with these steps help people apply creativity to effectively solve real-world problems better than they otherwise would. They can be readily learned, but take effort. For instance, when trying to understand a problem, setting aside your own preconceptions is vital, but it’s hard.

Creative brainstorming is necessary for developing possible solutions, but many people don’t do it particularly well. And throughout the process it is critical to engage in modeling, analysis, prototyping, and testing, and to really learn from these many iterations.

Once you master the skills central to the design thinking approach, they can be applied to solve problems in daily life and any industry.

Here’s what you need to know to get started.

Infographic of the design thinking process

Understand the problem 

The first step in design thinking is to understand the problem you are trying to solve before searching for solutions. Sometimes, the problem you need to address is not the one you originally set out to tackle.

“Most people don’t make much of an effort to explore the problem space before exploring the solution space,” said MIT Sloan professor Steve Eppinger. The mistake they make is to try and empathize, connecting the stated problem only to their own experiences. This falsely leads to the belief that you completely understand the situation. But the actual problem is always broader, more nuanced, or different than people originally assume.

Take the example of a meal delivery service in Holstebro, Denmark. When a team first began looking at the problem of poor nutrition and malnourishment among the elderly in the city, many of whom received meals from the service, it thought that simply updating the menu options would be a sufficient solution. But after closer observation, the team realized the scope of the problem was much larger , and that they would need to redesign the entire experience, not only for those receiving the meals, but for those preparing the meals as well. While the company changed almost everything about itself, including rebranding as The Good Kitchen, the most important change the company made when rethinking its business model was shifting how employees viewed themselves and their work. That, in turn, helped them create better meals (which were also drastically changed), yielding happier, better nourished customers.

Involve users

Imagine you are designing a new walker for rehabilitation patients and the elderly, but you have never used one. Could you fully understand what customers need? Certainly not, if you haven’t extensively observed and spoken with real customers. There is a reason that design thinking is often referred to as human-centered design.

“You have to immerse yourself in the problem,” Eppinger said.

How do you start to understand how to build a better walker? When a team from MIT’s Integrated Design and Management program together with the design firm Altitude took on that task, they met with walker users to interview them, observe them, and understand their experiences.  

“We center the design process on human beings by understanding their needs at the beginning, and then include them throughout the development and testing process,” Eppinger said.

Central to the design thinking process is prototyping and testing (more on that later) which allows designers to try, to fail, and to learn what works. Testing also involves customers, and that continued involvement provides essential user feedback on potential designs and use cases. If the MIT-Altitude team studying walkers had ended user involvement after its initial interviews, it would likely have ended up with a walker that didn’t work very well for customers. 

It is also important to interview and understand other stakeholders, like people selling the product, or those who are supporting the users throughout the product life cycle.

The second phase of design thinking is developing solutions to the problem (which you now fully understand). This begins with what most people know as brainstorming.

Hold nothing back during brainstorming sessions — except criticism. Infeasible ideas can generate useful solutions, but you’d never get there if you shoot down every impractical idea from the start.

“One of the key principles of brainstorming is to suspend judgment,” Eppinger said. “When we're exploring the solution space, we first broaden the search and generate lots of possibilities, including the wild and crazy ideas. Of course, the only way we're going to build on the wild and crazy ideas is if we consider them in the first place.”

That doesn’t mean you never judge the ideas, Eppinger said. That part comes later, in downselection. “But if we want 100 ideas to choose from, we can’t be very critical.”

In the case of The Good Kitchen, the kitchen employees were given new uniforms. Why? Uniforms don’t directly affect the competence of the cooks or the taste of the food.

But during interviews conducted with kitchen employees, designers realized that morale was low, in part because employees were bored preparing the same dishes over and over again, in part because they felt that others had a poor perception of them. The new, chef-style uniforms gave the cooks a greater sense of pride. It was only part of the solution, but if the idea had been rejected outright, or perhaps not even suggested, the company would have missed an important aspect of the solution.

Prototype and test. Repeat.

You’ve defined the problem. You’ve spoken to customers. You’ve brainstormed, come up with all sorts of ideas, and worked with your team to boil those ideas down to the ones you think may actually solve the problem you’ve defined.

“We don’t develop a good solution just by thinking about a list of ideas, bullet points and rough sketches,” Eppinger said. “We explore potential solutions through modeling and prototyping. We design, we build, we test, and repeat — this design iteration process is absolutely critical to effective design thinking.”

Repeating this loop of prototyping, testing, and gathering user feedback is crucial for making sure the design is right — that is, it works for customers, you can build it, and you can support it.

“After several iterations, we might get something that works, we validate it with real customers, and we often find that what we thought was a great solution is actually only just OK. But then we can make it a lot better through even just a few more iterations,” Eppinger said.

Implementation

The goal of all the steps that come before this is to have the best possible solution before you move into implementing the design. Your team will spend most of its time, its money, and its energy on this stage.

“Implementation involves detailed design, training, tooling, and ramping up. It is a huge amount of effort, so get it right before you expend that effort,” said Eppinger.

Design thinking isn’t just for “things.” If you are only applying the approach to physical products, you aren’t getting the most out of it. Design thinking can be applied to any problem that needs a creative solution. When Eppinger ran into a primary school educator who told him design thinking was big in his school, Eppinger thought he meant that they were teaching students the tenets of design thinking.

“It turns out they meant they were using design thinking in running their operations and improving the school programs. It’s being applied everywhere these days,” Eppinger said.

In another example from the education field, Peruvian entrepreneur Carlos Rodriguez-Pastor hired design consulting firm IDEO to redesign every aspect of the learning experience in a network of schools in Peru. The ultimate goal? To elevate Peru’s middle class.

As you’d expect, many large corporations have also adopted design thinking. IBM has adopted it at a company-wide level, training many of its nearly 400,000 employees in design thinking principles .

What can design thinking do for your business?

The impact of all the buzz around design thinking today is that people are realizing that “anybody who has a challenge that needs creative problem solving could benefit from this approach,” Eppinger said. That means that managers can use it, not only to design a new product or service, “but anytime they’ve got a challenge, a problem to solve.”

Applying design thinking techniques to business problems can help executives across industries rethink their product offerings, grow their markets, offer greater value to customers, or innovate and stay relevant. “I don’t know industries that can’t use design thinking,” said Eppinger.

Ready to go deeper?

Read “ The Designful Company ” by Marty Neumeier, a book that focuses on how businesses can benefit from design thinking, and “ Product Design and Development ,” co-authored by Eppinger, to better understand the detailed methods.

Register for an MIT Sloan Executive Education course:

Systematic Innovation of Products, Processes, and Services , a five-day course taught by Eppinger and other MIT professors.

  • Leadership by Design: Innovation Process and Culture , a two-day course taught by MIT Integrated Design and Management director Matthew Kressy.
  • Managing Complex Technical Projects , a two-day course taught by Eppinger.
  • Apply for M astering Design Thinking , a 3-month online certificate course taught by Eppinger and MIT Sloan senior lecturers Renée Richardson Gosline and David Robertson.

Steve Eppinger is a professor of management science and innovation at MIT Sloan. He holds the General Motors Leaders for Global Operations Chair and has a PhD from MIT in engineering. He is the faculty co-director of MIT's System Design and Management program and Integrated Design and Management program, both master’s degrees joint between the MIT Sloan and Engineering schools. His research focuses on product development and technical project management, and has been applied to improving complex engineering processes in many industries.

Read next: 10 agile ideas worth sharing

Related Articles

A robot hand holds a brush on top of a collage of illustrated motor vehicles

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Perspect Clin Res
  • v.9(4); Oct-Dec 2018

Study designs: Part 1 – An overview and classification

Priya ranganathan.

Department of Anaesthesiology, Tata Memorial Centre, Mumbai, Maharashtra, India

Rakesh Aggarwal

1 Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

There are several types of research study designs, each with its inherent strengths and flaws. The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on “study designs,” we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

INTRODUCTION

Research study design is a framework, or the set of methods and procedures used to collect and analyze data on variables specified in a particular research problem.

Research study designs are of many types, each with its advantages and limitations. The type of study design used to answer a particular research question is determined by the nature of question, the goal of research, and the availability of resources. Since the design of a study can affect the validity of its results, it is important to understand the different types of study designs and their strengths and limitations.

There are some terms that are used frequently while classifying study designs which are described in the following sections.

A variable represents a measurable attribute that varies across study units, for example, individual participants in a study, or at times even when measured in an individual person over time. Some examples of variables include age, sex, weight, height, health status, alive/dead, diseased/healthy, annual income, smoking yes/no, and treated/untreated.

Exposure (or intervention) and outcome variables

A large proportion of research studies assess the relationship between two variables. Here, the question is whether one variable is associated with or responsible for change in the value of the other variable. Exposure (or intervention) refers to the risk factor whose effect is being studied. It is also referred to as the independent or the predictor variable. The outcome (or predicted or dependent) variable develops as a consequence of the exposure (or intervention). Typically, the term “exposure” is used when the “causative” variable is naturally determined (as in observational studies – examples include age, sex, smoking, and educational status), and the term “intervention” is preferred where the researcher assigns some or all participants to receive a particular treatment for the purpose of the study (experimental studies – e.g., administration of a drug). If a drug had been started in some individuals but not in the others, before the study started, this counts as exposure, and not as intervention – since the drug was not started specifically for the study.

Observational versus interventional (or experimental) studies

Observational studies are those where the researcher is documenting a naturally occurring relationship between the exposure and the outcome that he/she is studying. The researcher does not do any active intervention in any individual, and the exposure has already been decided naturally or by some other factor. For example, looking at the incidence of lung cancer in smokers versus nonsmokers, or comparing the antenatal dietary habits of mothers with normal and low-birth babies. In these studies, the investigator did not play any role in determining the smoking or dietary habit in individuals.

For an exposure to determine the outcome, it must precede the latter. Any variable that occurs simultaneously with or following the outcome cannot be causative, and hence is not considered as an “exposure.”

Observational studies can be either descriptive (nonanalytical) or analytical (inferential) – this is discussed later in this article.

Interventional studies are experiments where the researcher actively performs an intervention in some or all members of a group of participants. This intervention could take many forms – for example, administration of a drug or vaccine, performance of a diagnostic or therapeutic procedure, and introduction of an educational tool. For example, a study could randomly assign persons to receive aspirin or placebo for a specific duration and assess the effect on the risk of developing cerebrovascular events.

Descriptive versus analytical studies

Descriptive (or nonanalytical) studies, as the name suggests, merely try to describe the data on one or more characteristics of a group of individuals. These do not try to answer questions or establish relationships between variables. Examples of descriptive studies include case reports, case series, and cross-sectional surveys (please note that cross-sectional surveys may be analytical studies as well – this will be discussed in the next article in this series). Examples of descriptive studies include a survey of dietary habits among pregnant women or a case series of patients with an unusual reaction to a drug.

Analytical studies attempt to test a hypothesis and establish causal relationships between variables. In these studies, the researcher assesses the effect of an exposure (or intervention) on an outcome. As described earlier, analytical studies can be observational (if the exposure is naturally determined) or interventional (if the researcher actively administers the intervention).

Directionality of study designs

Based on the direction of inquiry, study designs may be classified as forward-direction or backward-direction. In forward-direction studies, the researcher starts with determining the exposure to a risk factor and then assesses whether the outcome occurs at a future time point. This design is known as a cohort study. For example, a researcher can follow a group of smokers and a group of nonsmokers to determine the incidence of lung cancer in each. In backward-direction studies, the researcher begins by determining whether the outcome is present (cases vs. noncases [also called controls]) and then traces the presence of prior exposure to a risk factor. These are known as case–control studies. For example, a researcher identifies a group of normal-weight babies and a group of low-birth weight babies and then asks the mothers about their dietary habits during the index pregnancy.

Prospective versus retrospective study designs

The terms “prospective” and “retrospective” refer to the timing of the research in relation to the development of the outcome. In retrospective studies, the outcome of interest has already occurred (or not occurred – e.g., in controls) in each individual by the time s/he is enrolled, and the data are collected either from records or by asking participants to recall exposures. There is no follow-up of participants. By contrast, in prospective studies, the outcome (and sometimes even the exposure or intervention) has not occurred when the study starts and participants are followed up over a period of time to determine the occurrence of outcomes. Typically, most cohort studies are prospective studies (though there may be retrospective cohorts), whereas case–control studies are retrospective studies. An interventional study has to be, by definition, a prospective study since the investigator determines the exposure for each study participant and then follows them to observe outcomes.

The terms “prospective” versus “retrospective” studies can be confusing. Let us think of an investigator who starts a case–control study. To him/her, the process of enrolling cases and controls over a period of several months appears prospective. Hence, the use of these terms is best avoided. Or, at the very least, one must be clear that the terms relate to work flow for each individual study participant, and not to the study as a whole.

Classification of study designs

Figure 1 depicts a simple classification of research study designs. The Centre for Evidence-based Medicine has put forward a useful three-point algorithm which can help determine the design of a research study from its methods section:[ 1 ]

An external file that holds a picture, illustration, etc.
Object name is PCR-9-184-g001.jpg

Classification of research study designs

  • Does the study describe the characteristics of a sample or does it attempt to analyze (or draw inferences about) the relationship between two variables? – If no, then it is a descriptive study, and if yes, it is an analytical (inferential) study
  • If analytical, did the investigator determine the exposure? – If no, it is an observational study, and if yes, it is an experimental study
  • If observational, when was the outcome determined? – at the start of the study (case–control study), at the end of a period of follow-up (cohort study), or simultaneously (cross sectional).

In the next few pieces in the series, we will discuss various study designs in greater detail.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Logo

How to write a PhD thesis: a step-by-step guide

A draft isn’t a perfect, finished product; it is your opportunity to start getting words down on paper, writes Kelly Louise Preece

Kelly Louise Preece's avatar

Kelly Louise Preece

  • More on this topic

Man working on his PhD thesis

Created in partnership with

University of Exeter

You may also like

University tutor marking assessments

Popular resources

.css-1txxx8u{overflow:hidden;max-height:81px;text-indent:0px;} How to develop a researcher mindset as a PhD student

Formative, summative or diagnostic assessment a guide, emotions and learning: what role do emotions play in how and why students learn, how to assess and enhance students’ ai literacy, how hard can it be testing ai detection tools.

Congratulations; you’ve finished your research! Time to write your PhD thesis. This resource will take you through an eight-step plan for drafting your chapters and your thesis as a whole. 

Infographic with steps on how to draft your PhD thesis

Organise your material

Before you start, it’s important to get organised. Take a step back and look at the data you have, then reorganise your research. Which parts of it are central to your thesis and which bits need putting to one side? Label and organise everything using logical folders – make it easy for yourself! Academic and blogger Pat Thomson calls this  “Clean up to get clearer” . Thomson suggests these questions to ask yourself before you start writing:

  • What data do you have? You might find it useful to write out a list of types of data (your supervisor will find this list useful too.) This list is also an audit document that can go in your thesis. Do you have any for the “cutting room floor”? Take a deep breath and put it in a separate non-thesis file. You can easily retrieve it if it turns out you need it.
  • What do you have already written? What chunks of material have you written so far that could form the basis of pieces of the thesis text? They will most likely need to be revised but they are useful starting points. Do you have any holding text? That is material you already know has to be rewritten but contains information that will be the basis of a new piece of text.
  • What have you read and what do you still need to read? Are there new texts that you need to consult now after your analysis? What readings can you now put to one side, knowing that they aren’t useful for this thesis – although they might be useful at another time?
  • What goes with what? Can you create chunks or themes of materials that are going to form the basis of some chunks of your text, perhaps even chapters?

Once you have assessed and sorted what you have collected and generated you will be in much better shape to approach the big task of composing the dissertation. 

Decide on a key message

A key message is a summary of new information communicated in your thesis. You should have started to map this out already in the section on argument and contribution – an overarching argument with building blocks that you will flesh out in individual chapters.

You have already mapped your argument visually, now you need to begin writing it in prose. Following another of Pat Thomson’s exercises, write a “tiny text” thesis abstract. This doesn’t have to be elegant, or indeed the finished product, but it will help you articulate the argument you want your thesis to make. You create a tiny text using a five-paragraph structure:

  • The first sentence addresses the broad context. This locates the study in a policy, practice or research field.
  • The second sentence establishes a problem related to the broad context you have set out. It often starts with “But”, “Yet” or “However”.
  • The third sentence says what specific research has been done. This often starts with “This research” or “I report…”
  • The fourth sentence reports the results. Don’t try to be too tricky here, just start with something like: “This study shows,” or “Analysis of the data suggests that…”
  • The fifth and final sentence addresses the “So What?” question and makes clear the claim to contribution.

Here’s an example that Thomson provides:

Secondary school arts are in trouble, as the fall in enrolments in arts subjects dramatically attests. However, there is patchy evidence about the benefits of studying arts subjects at school and this makes it hard to argue why the drop in arts enrolments matters. This thesis reports on research which attempts to provide some answers to this problem – a longitudinal study which followed two groups of senior secondary students, one group enrolled in arts subjects and the other not, for three years. The results of the study demonstrate the benefits of young people’s engagement in arts activities, both in and out of school, as well as the connections between the two. The study not only adds to what is known about the benefits of both formal and informal arts education but also provides robust evidence for policymakers and practitioners arguing for the benefits of the arts. You can  find out more about tiny texts and thesis abstracts on Thomson’s blog.

  • Writing tips for higher education professionals
  • Resource collection on academic writing
  • What is your academic writing temperament?

Write a plan

You might not be a planner when it comes to writing. You might prefer to sit, type and think through ideas as you go. That’s OK. Everybody works differently. But one of the benefits of planning your writing is that your plan can help you when you get stuck. It can help with writer’s block (more on this shortly!) but also maintain clarity of intention and purpose in your writing.

You can do this by creating a  thesis skeleton or storyboard , planning the order of your chapters, thinking of potential titles (which may change at a later stage), noting down what each chapter/section will cover and considering how many words you will dedicate to each chapter (make sure the total doesn’t exceed the maximum word limit allowed).

Use your plan to help prompt your writing when you get stuck and to develop clarity in your writing.

Some starting points include:

  • This chapter will argue that…
  • This section illustrates that…
  • This paragraph provides evidence that…

Of course, we wish it werethat easy. But you need to approach your first draft as exactly that: a draft. It isn’t a perfect, finished product; it is your opportunity to start getting words down on paper. Start with whichever chapter you feel you want to write first; you don’t necessarily have to write the introduction first. Depending on your research, you may find it easier to begin with your empirical/data chapters.

Vitae advocates for the “three draft approach” to help with this and to stop you from focusing on finding exactly the right word or transition as part of your first draft.

Infographic of the three draft approach

This resource originally appeared on Researcher Development .

Kelly Louse Preece is head of educator development at the University of Exeter.

If you would like advice and insight from academics and university staff delivered direct to your inbox each week, sign up for the Campus newsletter .

How to develop a researcher mindset as a PhD student

A diy guide to starting your own journal, contextual learning: linking learning to the real world, what does a university faculty senate do, hybrid learning through podcasts: a practical approach, how exactly does research get funded.

Register for free

and unlock a host of features on the THE site

  • Privacy Policy

Research Method

Home » Descriptive Research Design – Types, Methods and Examples

Descriptive Research Design – Types, Methods and Examples

Table of Contents

Descriptive Research Design

Descriptive Research Design

Definition:

Descriptive research design is a type of research methodology that aims to describe or document the characteristics, behaviors, attitudes, opinions, or perceptions of a group or population being studied.

Descriptive research design does not attempt to establish cause-and-effect relationships between variables or make predictions about future outcomes. Instead, it focuses on providing a detailed and accurate representation of the data collected, which can be useful for generating hypotheses, exploring trends, and identifying patterns in the data.

Types of Descriptive Research Design

Types of Descriptive Research Design are as follows:

Cross-sectional Study

This involves collecting data at a single point in time from a sample or population to describe their characteristics or behaviors. For example, a researcher may conduct a cross-sectional study to investigate the prevalence of certain health conditions among a population, or to describe the attitudes and beliefs of a particular group.

Longitudinal Study

This involves collecting data over an extended period of time, often through repeated observations or surveys of the same group or population. Longitudinal studies can be used to track changes in attitudes, behaviors, or outcomes over time, or to investigate the effects of interventions or treatments.

This involves an in-depth examination of a single individual, group, or situation to gain a detailed understanding of its characteristics or dynamics. Case studies are often used in psychology, sociology, and business to explore complex phenomena or to generate hypotheses for further research.

Survey Research

This involves collecting data from a sample or population through standardized questionnaires or interviews. Surveys can be used to describe attitudes, opinions, behaviors, or demographic characteristics of a group, and can be conducted in person, by phone, or online.

Observational Research

This involves observing and documenting the behavior or interactions of individuals or groups in a natural or controlled setting. Observational studies can be used to describe social, cultural, or environmental phenomena, or to investigate the effects of interventions or treatments.

Correlational Research

This involves examining the relationships between two or more variables to describe their patterns or associations. Correlational studies can be used to identify potential causal relationships or to explore the strength and direction of relationships between variables.

Data Analysis Methods

Descriptive research design data analysis methods depend on the type of data collected and the research question being addressed. Here are some common methods of data analysis for descriptive research:

Descriptive Statistics

This method involves analyzing data to summarize and describe the key features of a sample or population. Descriptive statistics can include measures of central tendency (e.g., mean, median, mode) and measures of variability (e.g., range, standard deviation).

Cross-tabulation

This method involves analyzing data by creating a table that shows the frequency of two or more variables together. Cross-tabulation can help identify patterns or relationships between variables.

Content Analysis

This method involves analyzing qualitative data (e.g., text, images, audio) to identify themes, patterns, or trends. Content analysis can be used to describe the characteristics of a sample or population, or to identify factors that influence attitudes or behaviors.

Qualitative Coding

This method involves analyzing qualitative data by assigning codes to segments of data based on their meaning or content. Qualitative coding can be used to identify common themes, patterns, or categories within the data.

Visualization

This method involves creating graphs or charts to represent data visually. Visualization can help identify patterns or relationships between variables and make it easier to communicate findings to others.

Comparative Analysis

This method involves comparing data across different groups or time periods to identify similarities and differences. Comparative analysis can help describe changes in attitudes or behaviors over time or differences between subgroups within a population.

Applications of Descriptive Research Design

Descriptive research design has numerous applications in various fields. Some of the common applications of descriptive research design are:

  • Market research: Descriptive research design is widely used in market research to understand consumer preferences, behavior, and attitudes. This helps companies to develop new products and services, improve marketing strategies, and increase customer satisfaction.
  • Health research: Descriptive research design is used in health research to describe the prevalence and distribution of a disease or health condition in a population. This helps healthcare providers to develop prevention and treatment strategies.
  • Educational research: Descriptive research design is used in educational research to describe the performance of students, schools, or educational programs. This helps educators to improve teaching methods and develop effective educational programs.
  • Social science research: Descriptive research design is used in social science research to describe social phenomena such as cultural norms, values, and beliefs. This helps researchers to understand social behavior and develop effective policies.
  • Public opinion research: Descriptive research design is used in public opinion research to understand the opinions and attitudes of the general public on various issues. This helps policymakers to develop effective policies that are aligned with public opinion.
  • Environmental research: Descriptive research design is used in environmental research to describe the environmental conditions of a particular region or ecosystem. This helps policymakers and environmentalists to develop effective conservation and preservation strategies.

Descriptive Research Design Examples

Here are some real-time examples of descriptive research designs:

  • A restaurant chain wants to understand the demographics and attitudes of its customers. They conduct a survey asking customers about their age, gender, income, frequency of visits, favorite menu items, and overall satisfaction. The survey data is analyzed using descriptive statistics and cross-tabulation to describe the characteristics of their customer base.
  • A medical researcher wants to describe the prevalence and risk factors of a particular disease in a population. They conduct a cross-sectional study in which they collect data from a sample of individuals using a standardized questionnaire. The data is analyzed using descriptive statistics and cross-tabulation to identify patterns in the prevalence and risk factors of the disease.
  • An education researcher wants to describe the learning outcomes of students in a particular school district. They collect test scores from a representative sample of students in the district and use descriptive statistics to calculate the mean, median, and standard deviation of the scores. They also create visualizations such as histograms and box plots to show the distribution of scores.
  • A marketing team wants to understand the attitudes and behaviors of consumers towards a new product. They conduct a series of focus groups and use qualitative coding to identify common themes and patterns in the data. They also create visualizations such as word clouds to show the most frequently mentioned topics.
  • An environmental scientist wants to describe the biodiversity of a particular ecosystem. They conduct an observational study in which they collect data on the species and abundance of plants and animals in the ecosystem. The data is analyzed using descriptive statistics to describe the diversity and richness of the ecosystem.

How to Conduct Descriptive Research Design

To conduct a descriptive research design, you can follow these general steps:

  • Define your research question: Clearly define the research question or problem that you want to address. Your research question should be specific and focused to guide your data collection and analysis.
  • Choose your research method: Select the most appropriate research method for your research question. As discussed earlier, common research methods for descriptive research include surveys, case studies, observational studies, cross-sectional studies, and longitudinal studies.
  • Design your study: Plan the details of your study, including the sampling strategy, data collection methods, and data analysis plan. Determine the sample size and sampling method, decide on the data collection tools (such as questionnaires, interviews, or observations), and outline your data analysis plan.
  • Collect data: Collect data from your sample or population using the data collection tools you have chosen. Ensure that you follow ethical guidelines for research and obtain informed consent from participants.
  • Analyze data: Use appropriate statistical or qualitative analysis methods to analyze your data. As discussed earlier, common data analysis methods for descriptive research include descriptive statistics, cross-tabulation, content analysis, qualitative coding, visualization, and comparative analysis.
  • I nterpret results: Interpret your findings in light of your research question and objectives. Identify patterns, trends, and relationships in the data, and describe the characteristics of your sample or population.
  • Draw conclusions and report results: Draw conclusions based on your analysis and interpretation of the data. Report your results in a clear and concise manner, using appropriate tables, graphs, or figures to present your findings. Ensure that your report follows accepted research standards and guidelines.

When to Use Descriptive Research Design

Descriptive research design is used in situations where the researcher wants to describe a population or phenomenon in detail. It is used to gather information about the current status or condition of a group or phenomenon without making any causal inferences. Descriptive research design is useful in the following situations:

  • Exploratory research: Descriptive research design is often used in exploratory research to gain an initial understanding of a phenomenon or population.
  • Identifying trends: Descriptive research design can be used to identify trends or patterns in a population, such as changes in consumer behavior or attitudes over time.
  • Market research: Descriptive research design is commonly used in market research to understand consumer preferences, behavior, and attitudes.
  • Health research: Descriptive research design is useful in health research to describe the prevalence and distribution of a disease or health condition in a population.
  • Social science research: Descriptive research design is used in social science research to describe social phenomena such as cultural norms, values, and beliefs.
  • Educational research: Descriptive research design is used in educational research to describe the performance of students, schools, or educational programs.

Purpose of Descriptive Research Design

The main purpose of descriptive research design is to describe and measure the characteristics of a population or phenomenon in a systematic and objective manner. It involves collecting data that describe the current status or condition of the population or phenomenon of interest, without manipulating or altering any variables.

The purpose of descriptive research design can be summarized as follows:

  • To provide an accurate description of a population or phenomenon: Descriptive research design aims to provide a comprehensive and accurate description of a population or phenomenon of interest. This can help researchers to develop a better understanding of the characteristics of the population or phenomenon.
  • To identify trends and patterns: Descriptive research design can help researchers to identify trends and patterns in the data, such as changes in behavior or attitudes over time. This can be useful for making predictions and developing strategies.
  • To generate hypotheses: Descriptive research design can be used to generate hypotheses or research questions that can be tested in future studies. For example, if a descriptive study finds a correlation between two variables, this could lead to the development of a hypothesis about the causal relationship between the variables.
  • To establish a baseline: Descriptive research design can establish a baseline or starting point for future research. This can be useful for comparing data from different time periods or populations.

Characteristics of Descriptive Research Design

Descriptive research design has several key characteristics that distinguish it from other research designs. Some of the main characteristics of descriptive research design are:

  • Objective : Descriptive research design is objective in nature, which means that it focuses on collecting factual and accurate data without any personal bias. The researcher aims to report the data objectively without any personal interpretation.
  • Non-experimental: Descriptive research design is non-experimental, which means that the researcher does not manipulate any variables. The researcher simply observes and records the behavior or characteristics of the population or phenomenon of interest.
  • Quantitative : Descriptive research design is quantitative in nature, which means that it involves collecting numerical data that can be analyzed using statistical techniques. This helps to provide a more precise and accurate description of the population or phenomenon.
  • Cross-sectional: Descriptive research design is often cross-sectional, which means that the data is collected at a single point in time. This can be useful for understanding the current state of the population or phenomenon, but it may not provide information about changes over time.
  • Large sample size: Descriptive research design typically involves a large sample size, which helps to ensure that the data is representative of the population of interest. A large sample size also helps to increase the reliability and validity of the data.
  • Systematic and structured: Descriptive research design involves a systematic and structured approach to data collection, which helps to ensure that the data is accurate and reliable. This involves using standardized procedures for data collection, such as surveys, questionnaires, or observation checklists.

Advantages of Descriptive Research Design

Descriptive research design has several advantages that make it a popular choice for researchers. Some of the main advantages of descriptive research design are:

  • Provides an accurate description: Descriptive research design is focused on accurately describing the characteristics of a population or phenomenon. This can help researchers to develop a better understanding of the subject of interest.
  • Easy to conduct: Descriptive research design is relatively easy to conduct and requires minimal resources compared to other research designs. It can be conducted quickly and efficiently, and data can be collected through surveys, questionnaires, or observations.
  • Useful for generating hypotheses: Descriptive research design can be used to generate hypotheses or research questions that can be tested in future studies. For example, if a descriptive study finds a correlation between two variables, this could lead to the development of a hypothesis about the causal relationship between the variables.
  • Large sample size : Descriptive research design typically involves a large sample size, which helps to ensure that the data is representative of the population of interest. A large sample size also helps to increase the reliability and validity of the data.
  • Can be used to monitor changes : Descriptive research design can be used to monitor changes over time in a population or phenomenon. This can be useful for identifying trends and patterns, and for making predictions about future behavior or attitudes.
  • Can be used in a variety of fields : Descriptive research design can be used in a variety of fields, including social sciences, healthcare, business, and education.

Limitation of Descriptive Research Design

Descriptive research design also has some limitations that researchers should consider before using this design. Some of the main limitations of descriptive research design are:

  • Cannot establish cause and effect: Descriptive research design cannot establish cause and effect relationships between variables. It only provides a description of the characteristics of the population or phenomenon of interest.
  • Limited generalizability: The results of a descriptive study may not be generalizable to other populations or situations. This is because descriptive research design often involves a specific sample or situation, which may not be representative of the broader population.
  • Potential for bias: Descriptive research design can be subject to bias, particularly if the researcher is not objective in their data collection or interpretation. This can lead to inaccurate or incomplete descriptions of the population or phenomenon of interest.
  • Limited depth: Descriptive research design may provide a superficial description of the population or phenomenon of interest. It does not delve into the underlying causes or mechanisms behind the observed behavior or characteristics.
  • Limited utility for theory development: Descriptive research design may not be useful for developing theories about the relationship between variables. It only provides a description of the variables themselves.
  • Relies on self-report data: Descriptive research design often relies on self-report data, such as surveys or questionnaires. This type of data may be subject to biases, such as social desirability bias or recall bias.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Methods

Research Methods – Types, Examples and Guide

Quasi-Experimental Design

Quasi-Experimental Research Design – Types...

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

Textual Analysis

Textual Analysis – Types, Examples and Guide

Case Study Research

Case Study – Methods, Examples and Guide

Experimental Research Design

Experimental Design – Types, Methods, Guide

Purdue University Graduate School

Multidisciplinary Design Under Uncertainty Framework of a Spacecraft and Trajectory for an Interplanetary Mission

Design under uncertainty (DUU) for spacecraft is crucial in ensuring mission success, especially given the criticality of their failure. To obtain a more realistic understanding of space systems, it is beneficial to holistically couple the modeling of the spacecraft and its trajectory as a multidisciplinary analysis (MDA). In this work, a MDA model is developed for an Earth-Mars mission by employing the general mission analysis tool (GMAT) to model the mission trajectory and rocket propulsion analysis (RPA) to design the engines. By utilizing this direct MDA model, the deterministic optimization (DO) of the system is performed first and yields a design that completed the mission in 307 days while requiring 475 kg of fuel. The direct MDA model is also integrated into a Monte Carlo simulation (MCS) to investigate the uncertainty quantification (UQ) of the spacecraft and trajectory system. When considering the combined uncertainty in the launch date for a 20-day window and the specific impulses, the time of flight ranges from 275 to 330 days and the total fuel consumption ranges from 475 to 950 kg. The spacecraft velocity exhibits deviations ranging from 2 to 4 km/s at any given instance in the Earth inertial frame. The amount of fuel consumed during the TCM ranges from 1 to 250 kg, while during the MOI, the amount of fuel consumed ranges from 350 to 810 kg. The usage of the direct MDA model for optimization and uncertainty quantification of the system can be computationally prohibitive for DUU. To address this challenge, the effectiveness of utilizing surrogate-based approaches for performing UQ is demonstrated, resulting in significantly lower computational costs. Gaussian processes (GP) models trained on data from the MDA model were implemented into the UQ framework and their results were compared to those of the direct MDA method. When considering the combined uncertainty from both sources, the surrogate-based method had a mean error of 1.67% and required only 29% of the computational time. When compared to the direct MDA, the time of flight range matched well. While the TCM and MOI fuel consumption ranges were smaller by 5 kg. These GP models were integrated into the DUU framework to perform reliability-based design optimization (RBDO) feasibly for the spacecraft and trajectory system. For the combined uncertainty, the DO design yielded a poor reliability of 54%, underscoring the necessity for performing RBDO. The DUU framework obtained a design with a significantly improved reliability of 99%, which required an additional 39.19 kg of fuel and also resulted in a reduced time of flight by 0.55 days.

Degree Type

  • Master of Science
  • Aeronautics and Astronautics

Campus location

  • West Lafayette

Advisor/Supervisor/Committee Chair

Additional committee member 2, additional committee member 3, usage metrics.

  • Aerospace engineering not elsewhere classified

CC BY 4.0

IMAGES

  1. 25 Thesis Statement Examples (2024)

    design thesis meaning

  2. Thesis: Design and Fashion

    design thesis meaning

  3. Thesis Design Ideas

    design thesis meaning

  4. What Is a Thesis?

    design thesis meaning

  5. Thesis Statement: Definition and Useful Examples of Thesis Statement

    design thesis meaning

  6. How To Write A Thesis Statement (with Useful Steps and Tips) • 7ESL

    design thesis meaning

VIDEO

  1. fashion design thesis display #foryou #artwork #for #beginners #supportmychannel #like #bollywood

  2. Crafting the Perfect Thesis Statement for Film Analysis

  3. fashion design thesis display #foryou #artwork #beginners #supportmychannel #art #like#hindi #art

  4. AGRITOURISM FARM RESORT

  5. Fashion Design Thesis Display

  6. Architecture Thesis Topics: Sustainability #architecture #thesis #thesisproject #design #school

COMMENTS

  1. About the design thesis

    The design thesis is an independently driven creative work developed within a focused subject of inquiry and directed by architectural questions. It is carried out through intensive research, study, and design explorations, and culminates in a thoroughly developed architectural proposition. It is to be fully recorded in a final document.

  2. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  3. What Is a Thesis?

    Revised on April 16, 2024. A thesis is a type of research paper based on your original research. It is usually submitted as the final step of a master's program or a capstone to a bachelor's degree. Writing a thesis can be a daunting experience. Other than a dissertation, it is one of the longest pieces of writing students typically complete.

  4. What is a thesis

    A thesis is an in-depth research study that identifies a particular topic of inquiry and presents a clear argument or perspective about that topic using evidence and logic. Writing a thesis showcases your ability of critical thinking, gathering evidence, and making a compelling argument. Integral to these competencies is thorough research ...

  5. PDF Chapter 8. Design Thesis

    categorized as 'philosophical', meaning holistic, complex, integrated, value-laden, inventive, user-responsive, etc. It is clear, that a reductionism approach as associ ated with 'scientific research', might result in the narrowing of research topics from 'design' to very specific subtopics making the notion of a Design Thesis ...

  6. How to write the perfect design dissertation

    01. Treat it like a design brief. "A great dissertation should be a designed artefact, and portfolio-worthy in its own right," says Burston. And like a design brief, it should be about solving a problem: "Make sure it has clearly stated aims, strong focus, and doesn't lack opinion or rhetoric," he adds. Best laptops for graphic design.

  7. What Is Research Design? 8 Types + Examples

    Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data. Research designs for quantitative studies include descriptive, correlational, experimental and quasi-experimenta l designs. Research designs for qualitative studies include phenomenological ...

  8. PDF Architectural Thesis

    The final Architectural Design Thesis should be packaged as a book. At a minimum, it should contain the following: Table of Contents Abstract Thesis Statement: a concise statement of the topic/subject you propose to address in your project, describing the theory/concept in terms of hypothesis and the approach/method to carry out the study/prove ...

  9. What is a Research Design? Definition, Types, Methods and Examples

    A research design is defined as the overall plan or structure that guides the process of conducting research. It is a critical component of the research process and serves as a blueprint for how a study will be carried out, including the methods and techniques that will be used to collect and analyze data.

  10. Developing A Thesis

    A good thesis has two parts. It should tell what you plan to argue, and it should "telegraph" how you plan to argue—that is, what particular support for your claim is going where in your essay. Steps in Constructing a Thesis. First, analyze your primary sources. Look for tension, interest, ambiguity, controversy, and/or complication.

  11. How to Write a Thesis Statement

    Placement of the thesis statement. Step 1: Start with a question. Step 2: Write your initial answer. Step 3: Develop your answer. Step 4: Refine your thesis statement. Types of thesis statements. Other interesting articles. Frequently asked questions about thesis statements.

  12. Dissertation Structure & Layout 101 (+ Examples)

    Time to recap…. And there you have it - the traditional dissertation structure and layout, from A-Z. To recap, the core structure for a dissertation or thesis is (typically) as follows: Title page. Acknowledgments page. Abstract (or executive summary) Table of contents, list of figures and tables.

  13. Research Design

    This will guide your research design and help you select appropriate methods. Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.

  14. Research Design: What it is, Elements & Types

    Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success. Creating a research topic explains the type of research (experimental,survey research,correlational ...

  15. Design thinking, explained

    Since then, the design thinking process has been applied to developing new products and services, and to a whole range of problems, from creating a business model for selling solar panels in Africa to the operation of Airbnb.. At a high level, the steps involved in the design thinking process are simple: first, fully understand the problem; second, explore a wide range of possible solutions ...

  16. (PDF) Chapter 3 Research Design and Methodology

    Research Design and Methodology. Chapter 3 consists of three parts: (1) Purpose of the. study and research design, (2) Methods, and (3) Statistical. Data analysis procedure. Part one, Purpose of ...

  17. Project design and methodology

    The overall design and methodology remained similar, but some minor changes were made. In particular, the research fellow appointed was an anthropologist who argued the need for more informal visits at the beginning of the study and observation of case study processes. ... Comparing and contrasting meanings across and within transcripts through ...

  18. Dissertation & Thesis Outline

    A thesis or dissertation outline is one of the most critical early steps in your writing ... is an inanimate object, so it is not capable of taking an action itself (e.g., presenting or discussing). However, the meaning of the sentence is still easily understandable, so the IS-AV construction can be a good way to add variety to your text. ...

  19. Thesis

    Thesis. Definition: Thesis is a scholarly document that presents a student's original research and findings on a particular topic or question. It is usually written as a requirement for a graduate degree program and is intended to demonstrate the student's mastery of the subject matter and their ability to conduct independent research.

  20. Study designs: Part 1

    The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on "study designs," we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

  21. (PDF) Descriptive Research Designs

    Descriptive design involves observing and scientifically describing individual behavior in relation to situational variables (Sharma, 2019). Correlational research, on the other hand, is a non ...

  22. How to write a PhD thesis: a step-by-step guide

    It often starts with "But", "Yet" or "However". The third sentence says what specific research has been done. This often starts with "This research" or "I report…". The fourth sentence reports the results. Don't try to be too tricky here, just start with something like: "This study shows," or "Analysis of the data ...

  23. Descriptive Research Design

    As discussed earlier, common research methods for descriptive research include surveys, case studies, observational studies, cross-sectional studies, and longitudinal studies. Design your study: Plan the details of your study, including the sampling strategy, data collection methods, and data analysis plan.

  24. Multidisciplinary Design Under Uncertainty Framework of a Spacecraft

    Design under uncertainty (DUU) for spacecraft is crucial in ensuring mission success, especially given the criticality of their failure. To obtain a more realistic understanding of space systems, it is beneficial to holistically couple the modeling of the spacecraft and its trajectory as a multidisciplinary analysis (MDA). In this work, a MDA model is developed for an Earth-Mars mission by ...

  25. Descriptive Research

    Descriptive research aims to accurately and systematically describe a population, situation or phenomenon. It can answer what, where, when and how questions, but not why questions. A descriptive research design can use a wide variety of research methods to investigate one or more variables. Unlike in experimental research, the researcher does ...