Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Longitudinal analysis of sentiment and emotion in news media headlines using automated labelling with Transformer language models

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliation Te Pūkenga–New Zealand Institute of Skills and Technology, Dunedin, Otago, New Zealand

ORCID logo

Roles Data curation, Project administration

Affiliation Department of Psychology, University of Otago, Dunedin, Otago, New Zealand

Roles Conceptualization, Methodology, Supervision, Writing – original draft, Writing – review & editing

  • David Rozado, 
  • Ruth Hughes, 
  • Jamin Halberstadt

PLOS

  • Published: October 18, 2022
  • https://doi.org/10.1371/journal.pone.0276367
  • Reader Comments

Fig 1

This work describes a chronological (2000–2019) analysis of sentiment and emotion in 23 million headlines from 47 news media outlets popular in the United States. We use Transformer language models fine-tuned for detection of sentiment (positive, negative) and Ekman’s six basic emotions (anger, disgust, fear, joy, sadness, surprise) plus neutral to automatically label the headlines. Results show an increase of sentiment negativity in headlines across written news media since the year 2000. Headlines from right-leaning news media have been, on average, consistently more negative than headlines from left-leaning outlets over the entire studied time period. The chronological analysis of headlines emotionality shows a growing proportion of headlines denoting anger , fear , disgust and sadness and a decrease in the prevalence of emotionally neutral headlines across the studied outlets over the 2000–2019 interval. The prevalence of headlines denoting anger appears to be higher, on average, in right-leaning news outlets than in left-leaning news media.

Citation: Rozado D, Hughes R, Halberstadt J (2022) Longitudinal analysis of sentiment and emotion in news media headlines using automated labelling with Transformer language models. PLoS ONE 17(10): e0276367. https://doi.org/10.1371/journal.pone.0276367

Editor: Sergio Consoli, European Commission, ITALY

Received: January 31, 2022; Accepted: October 5, 2022; Published: October 18, 2022

Copyright: © 2022 Rozado et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The URLs sources of articles’ headlines, the Transformer models used for sentiment/emotion predictions, the sentiment and emotion labels annotations generated by the Transformer language models for each headline, the human sentiment/emotion annotations for a small subset of headlines used as ground truth to evaluate models’ performance and the analysis scripts are available in the following repository: https://doi.org/10.5281/zenodo.5144113 .

Funding: The author(s) received no specific funding for this work.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Headlines from written news media constitute an important source of information about current affairs. News and opinion articles headlines often establish the first point of contact between an article and potential readers, with the reader often deciding whether to engage more in-depth with an article’s content after evaluating its headline [ 1 ]. In doing so, headlines also set the tone about the main text body of the article and affect readers’ processing of articles’ content to the point of constraining further information processing and biasing readers towards specific interpretations of the article [ 2 , 3 ].

The sentiment and emotionality of text has been shown to influence its virality [ 4 ]. Textual content that evokes high arousal, such as text conveying an emotion of anger , diffuses more profusely through online platforms [ 5 , 6 ]. Emotionally charged fake news also spread further and fastest through social media [ 7 ]. A study measuring the reach of tweets found that each moral or emotional word used in a tweet increased its virality by 20 percent, on average [ 8 ]. Thus, user engagement can be maximized by news articles posts that trigger negative sentiment/emotions [ 9 ]. This creates a financial incentive for news outlets to maximize incoming web traffic by modulating the emotional saliency of headlines.

News content has also been shown to be predictive of public mood [ 10 ], public opinion [ 11 ] and outlets’ biases [ 12 , 13 ]. Thus, studying the sentiment (positive/negative) and emotional payload (anger, disgust, fear, joy, sadness, surprise or neutral) of news articles headlines is of sociological interest. As far as we can tell however, a comprehensive longitudinal analysis of news media headlines sentiment and emotion remains lacking in the existing literature. Here, we attempt to remedy this knowledge gap by documenting chronologically the sentiment and emotion of headlines in a representative sample of news media outlets.

Examining written sources using human coders has been useful in the sociological analysis of text content [ 14 – 16 ]. Unfortunately, this approach is limited by its inability to scale to large corpora and by low intercoder reliability when examining subtle themes. Computational content analysis techniques circumvent some of the limitations of content analysis using human raters by permitting the quantification of textual attributes in vast text corpora [ 17 , 18 ].

Modern machine learning language models constitute an important tool for the automated analysis of text [ 13 , 19 – 21 ]. In particular, Transformer models [ 22 , 23 ] have achieved state-of-the-art performance in numerous Natural Language Processing (NLP) tasks. A Transformer model is a deep neural network that learns words’ context and thus meaning by using a mechanism known as self-attention–a form of differentially weighting the significance of each part of the input sentence when constructing word embeddings. Transformer architectures have reached prediction accuracies that match human annotations for text classification tasks such as the labelling of sentiment polarity [ 23 ]. Thus, computational content analysis of large chronological corpora using state-of-the-art machine learning models can provide insight about the temporal dynamics of semantic content in vast textual corpora [ 19 ].

This work uses modern Transformer language models, fine-tuned for text classification, to automatically label the sentiment polarity and emotional charge of a large data set of news articles headlines (N = 23 million). The set of news outlets analyzed was derived from the AllSides Media Bias Chart 2019 v1.1 [ 24 ] which lists 47 of the most popular news media outlets in the United States. Leveraging the diachronic nature of the corpus (2000–2019), we carry out a longitudinal analysis of sentiment polarity and emotional payload over time. Using external labels of news media outlets political leanings from the AllSides organization [ 24 ], we also examine the sentiment and emotional dynamics of headlines controlling for the ideological orientation of news outlets.

Ethics approval

Institutional ethics approval for gathering from human raters the sentiment and emotion annotations of a subset of news media headlines was obtained from the University of Otago Ethics Committee (reference number for proposal: D21/234). The human raters recruited for the annotation of the headlines provided written informed consent to participate in the study.

Analysis scripts and data availability

The URLs sources of articles’ headlines, the Transformer models used for sentiment/emotion predictions, the sentiment and emotion labels annotations generated by the Transformer language models for each headline, the human sentiment/emotion annotations for a small subset of headlines used as ground truth to evaluate models’ performance and the analysis scripts are available in the following repository: https://doi.org/10.5281/zenodo.5144113 .

Headlines data

The set of news media outlets analysed was derived from the AllSides organization 2019 Media Bias Chart v1.1 [ 24 ]. The human ratings of outlets’ ideological leanings were also taken from this chart. The AllSides Media Bias Chart has been used previously in the literature as a representative sample of popular U.S. news media outlets and as a ground truth of news outlets ideological leanings [ 6 , 12 , 25 ].

In total, we analyzed 23+ Million headlines from 47 news media outlets over the period 2000–2019. Average headline length in number of characters was 58.3. Average headline length in number of tokens (i.e. unigrams) was 9.4. See S1 File for detailed histograms about these metrics.

News articles headlines from the set of outlets listed in Fig 1 are available in the outlets’ online domains and/or public cache repositories such as The Internet Wayback Machine, Google cache and Common Crawl. Articles headlines were located in articles’ HTML raw data using outlet-specific XPath expressions.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

The shaded area indicates the 95% confidence interval around the mean. A statistical test for the null hypothesis of zero slope is shown on the bottom left of the plot. The percentage change on average yearly sentiment across outlets between 2000 and 2019 is shown on the top left of the plot.

https://doi.org/10.1371/journal.pone.0276367.g001

To avoid unrepresentative samples, we established an inclusion criteria threshold of at least 100 outlet headlines in any given year in order for the year to be included in the outlet time series. The temporal coverage of headlines across news outlets is not uniform. For some media organizations, news articles availability in online domains or Internet cache repositories becomes sparse for earlier years. Furthermore, some news outlets popular in 2019, such as The Huffington Post or Breitbart, did not exist in the early 2000’s. Hence, our data set is sparser in headlines sample size and representativeness for earlier years in the 2000–2019 range. Nevertheless, 18 outlets in our data set have chronologically continuous availability of headlines fulfilling our inclusion criteria since the year 2000. This smaller subset with a total of 12.5 Million headlines was used to replicate our experiments and confirm the validity of the results when using a fixed set of outlets over time, see S1 File for a detailed report about the number of headlines per outlet/year in our analysis.

Using a Transformer language model to predict the sentiment of headlines

Automated sentiment polarity annotation refers to the usage of computational tools to predict the sentiment polarity (positive or negative) of a text instance. Although the sentiment polarity of individual instances of text can sometimes be ambiguous, and humans can occasionally disagree about the sentiment of a particular piece of text, aggregating sentiment polarity over a large set of text instances provides a robust measurement of overall sentiment in a corpus since automated individual annotations accuracy is well above chance guessing.

In recent years, Transformer models have reached state-of-the-art results for automated sentiment polarity detection in natural language text [ 23 ]. In this work we use SiEBERT, a public checkpoint of a RoBERTa-large Transformer architecture [ 26 ] previously fine-tuned and evaluated for sentiment analysis on 15 data sets from diverse text sources to enhance generalization of sentiment annotations across different types of text [ 27 ]. Due to the heterogeneity of sources used for fine-tuning, SiEBERT outperforms the accuracy of a DistilBERT-based model fine-tuned solely on the popular Stanford Sentiment Treebank 2 (SST-2) data set by more than 15 percentage points (93.2 vs. 78.1 percent) [ 28 ]. The fine-tuning hyperparameters of SiEBERT were: learning rate = 2×10 −5 , number of training epochs = 3.0, number of warmup steps = 500, weight decay = 0.01 [ 27 , 28 ].

To validate the usage of the Transformer model for estimating headline sentiment, we measured the performance of the fine-tuned SiEBERT model in a random sample of 1,120 headlines from our data set that we had manually annotated for positive/negative sentiment using raters recruited through Mechanical Turk. We used these labels as ground truth to measure the performance of the SiEBERT model when predicting the sentiment of news media headlines. Only individuals over 18 years old and residents of the United States of America were allowed to take part. In total, 71 individuals (measured as independent IP addresses) took part in the headlines sentiment annotation task. The SiEBERT model fine-tuned for sentiment annotation reached an accuracy of 75% on this task. Note that human sentiment annotations intercoder agreement on the same task was 80% (Cohen’s Kappa: 0.59). These results hint at the validity of the Transformer model to, on aggregate, measure the sentiment of news media headlines on par with human annotations.

We used the SiEBERT model fine-tuned for sentiment classification to automatically annotate the sentiment of every headline in our data set. We then averaged the sentiment scores of all headlines of each news outlet in any given year to obtain time series of yearly headlines sentiment polarity for each outlet. Headlines with more than 32 tokens were truncated prior to automated annotation for GPU memory computational efficiency. To further validate our results, we replicated our experiments using the popular DistilBERT-based model fine-tuned on the SST-2 data set [ 29 ].

Using a Transformer language model to predict the emotion of headlines

Machine learning language models can also be used to detect the emotionality of text by generating emotional categories annotations for instances of natural language text. We used a public Transformer DistilRoBERTa-base checkpoint previously fine-tuned on 6 different emotion data sets for recognizing Ekman’s 6 basic emotions ( anger , disgust , fear , joy , sadness , and surprise ) plus neutral [ 28 , 30 , 31 ]. The fine-tuning hyperparameters of this model were: learning rate = 5×10 −5 , number of training epochs = 3.0, number of warmup steps = 500, weight decay = 0.01 [ 31 ].

The datasets used for fine tuning represent a diverse collection of text types, such as Twitter, Reddit, student self-reports or TV dialogues. The heterogeneity of data sets used for fine tuning was intended by the original authors to enhance the generalization of emotion predictions across different types of text.

To validate the ability of the model to generate accurate emotional annotations of headlines in our data set, we used the DistilRoBERTa-base fine-tuned for emotion recognition on a random sample of 5,353 headlines from our data set that we had annotated through Mechanical Turk for Ekman’s 6 basic emotion types plus neutral and that we used as ground truth to estimate model’s performance. Only individuals over 18 years old and residents of the United States of America were allowed to take part. In total, 143 individuals (measured as independent IP addresses) took part in the headlines’ emotion annotation task.

The DistilRoBERTa model achieved 39% classification accuracy on the task of classifying the headlines for which we had human-generated classification labels and which we used as ground truth (random guessing would be expected to reach 14%). Note that human interrater agreement on this task was also very low, 36%. See S1 File for detailed analysis. Also, since the emotion classes are not balanced in the data set of human annotated headlines’ emotionality, the accuracy metric is not particularly informative. Thus, we report the weighted precision, recall and F-1 scores of the model as 0.37, 0.39 and 0.36 respectively, see S1 File for detailed reporting for each emotional category and corresponding confusion matrices. Cohen’s kappa between model predictions and ground truth was 0.16. Matthew’s correlation coefficient between model predictions and ground truth was 0.16. Both metrics are relatively low but above the 0 level indicative of weighted random guessing. The performance of the model was above chance guessing for all emotional categories except surprise . Thus, in the Results section we drop this category for all subsequent analyses.

Interrater agreement between human raters for the emotion annotation task was 36% (Cohen’s Kappa = 0.16). Thus, interrater agreement was better than chance but relatively low. This is suggestive of the emotional annotation task being inherently ambiguous and/or subjective. For all emotional categories except surprise , interrater agreement between pairs of humans and between humans and the model was very similar. Thus, the performance of the model is mostly on par with human annotations. When using such a model to annotate a large number of headlines aggregated by year, yearly central tendency estimations should be more robust than noisy individual headline predictions.

To confirm that the automated model can detect overall trends in the emotional valence of headlines over time, we carried out a simulation using the true positive and false positive rates of the model for the different emotion categories to generate simulated annotations of illustrative hardcoded trends (see S1 File for details), and averaging those simulated predictions per year. When averaging a small set of simulated headlines emotion predictions per year (N = 100), the resulting average is unable to capture the underlying dynamics of headline emotionality. However, when aggregating a larger set of simulated headlines emotion predictions per year (N = 2,000), the resulting average is able to loosely capture the emotional dynamics of most emotion categories. When aggregating an even larger set of simulated headlines emotion predictions per year (N = 10,000 or N = 100,000), the resulting average is able to capture the emotional dynamics of all emotion categories except surprise with moderate to very high correlation. The underperformance in the simulation of the surprise category was expected since the prediction accuracy of the model on this particular category was on par with chance guessing. Note also that our data set contains a very large number of headlines per year: a minimum of more than 300,000 for the year 2000, and more than 1 million headlines per year since 2009 (see S1 File for detailed breakdown by outlet and year). Thus, allowing yearly central tendencies to reliably determine the emotional dynamics of headlines. A word cloud of the most prevailing words in each emotional category of headlines is included as S1 File to provide further support for the accuracy of the automated annotation method.

Chronological analysis of sentiment in news articles headlines

Fig 1 shows the average yearly sentiment of news articles headlines across the 47 popular news outlets analyzed. A pattern of increasing negative sentiment in headlines over time is apparent. A linear regression t-test to determine whether the slope of the regression line differs significantly from zero was conducted: t(18) = -9.63, p<10 −7 . The percentage change in the average sentiment of headlines from the year 2000 to the year 2019 is -314%. The slope of growing negativity appears to increase post-2010. A Chow Test [ 32 ] for structural break detection in 2010 is significant (F = 28.83, p<10–5).

A potential confound in Fig 1 is that more recent years aggregate a larger number of outlets. Thus, the pattern in Fig 1 could be due to a qualitatively different mix of outlets over time. However, redoing the analysis in Fig 1 using 12.5 million headlines from the 18 news media outlets in the data set with continuous availability of news articles headlines since the year 2000 also shows a pattern of declining sentiment in headlines; see S1 File for details.

We replicate the analysis in Fig 1 using a different Transformer model (DistilBert) fine-tuned on the SST-2 sentiment data set. This variation of the analysis produces very similar results to those reported in Fig 1 ; see S1 File for details.

Sentiment of news articles headlines by ideological leanings of news outlets

Aggregating the sentiment of headlines according to the ideological leanings of news outlets, using human ratings of outlet political leanings from the 2019 AllSides Media Bias Chart v1.1 [ 24 ], shows that the pattern of increasing negativity in news headlines is consistent across left-leaning and right-leaning outlets, see Fig 2 . Both right-leaning and left-leaning news outlets display increasing negative sentiment in their headlines since the year 2000. There is a high degree of correlation in the sentiment of headlines between right-leaning and left-leaning outlets (r = 0.82). On average, right-leaning news outlets have historically tended to use more negative headlines than left-leaning news outlets and continue to do so in 2019. Centrist news outlets appear to use less negative headlines than both right and left-leaning news outlets but the small set of outlets (N = 7) classified as centrists by the 2019 AllSides Media Bias Chart v1.1 warrants caution when interpreting the external validity of the centrist outlets trendline. Replicating this analysis using only the 18 media outlets with news articles headlines available since the year 2000 shows similar trends to those in Fig 2 , with the caveat that the declining sentiment trend for right-leaning outlets is milder (see S1 File ).

thumbnail

The figure displays the standard error bars of the average yearly sentiment for outlets within each color-coded political orientation category. For each ideological grouping, statistical tests for the null hypothesis of zero slope are shown on the bottom left of the plot.

https://doi.org/10.1371/journal.pone.0276367.g002

Chronological analysis of emotion in news articles headlines

Next, we analyze the emotional charge of headlines using the emotion predictions of the DistilRoBERTa-base Transformer model fine-tuned for emotion labelling. The aggregation of average yearly prevalence of emotional labels across the 47 popular news outlets analyzed is shown in Fig 3 . Linear regression t-tests to determine whether the slope of the regression line differs significantly from zero were conducted for each emotion (See Fig 3 for each test’s results). Reported p-values have been Bonferroni-corrected for multiple comparisons.

thumbnail

The shaded gray area indicates the 95% confidence interval around the mean. Note the different scale of the Y axes for the different emotion types. For each emotional category, statistical tests for the null hypothesis of zero slope are shown on the bottom left of each subplot. Reported p-values have been Bonferroni-corrected for multiple comparisons. The percentage changes between 2000 and 2019 are shown on the top left of each subplot.

https://doi.org/10.1371/journal.pone.0276367.g003

An increase of 104% in the prevalence of headlines denoting anger since the year 2000 is apparent in Fig 3 . There are also substantial increases in the prevalence of headlines denoting fear (+150%), disgust (29%) and sadness (+54%) in the 2000–2019 studied time range. In contrast, the prevalence of headlines with neutral emotion has experienced a continuous decrease (-30%) since the year 2000. The joy emotional category shows a curvilinear pattern with increasing proportion of headlines denoting joy from 2000 to 2010 and a decreasing trend from 2010 to 2019. Chow Tests [ 32 ] (Bonferroni corrected for multiple comparisons) for structural break detection in 2010 are significant for anger (F = 29.07, p<10 −4 ), disgust (F = 27.97, p<10 −4 ), joy (F = 23.69, p<10 −4 ), sadness (F = 6.48, p<0.05) and neutral (F = 7.64, p<0.05). Notice the different scale of the Y-axes for the different emotion types that might exaggerate the apparent temporal dynamics of emotion categories with low prevalence such as disgust . To confirm that the patterns shown in Fig 3 are not the result of a different qualitative composition of outlets between the year 2000 and the year 2019, we replicate the experiment using only the 18 outlets in the data set with continuous online availability of headlines since the year 2000 (N = 12.5 million). Results show very similar trends to those displayed in Fig 3 , see S1 File . Replicating the previous analysis with the 12 news outlets with more than 2,000 headlines per year since 2000 (N = 12 million), shows very similar trends. Another replication with the six news outlets with more than 10,000 headlines per year since 2000 (N = 8 million), shows very similar results to those reported in Fig 3 (see S1 File for details).

Emotionality of news articles headlines by ideological leanings of news outlets

Aggregating the emotionality of headlines according to the ideological leanings of the outlets, using political bias ratings from the 2019 AllSides Media Bias Chart v1.1 [ 24 ], shows that the increasing prevalence of headlines denoting anger is apparent in both right-leaning and left-leaning news outlets, see Fig 4 . Centrist news outlets follow a similar trend over the studied time frame. Anger denoting headlines appear more prevalent in right-leaning outlets than in left-leaning outlets over the entire studied time period. Fear and sadness denoting headlines are also increasing across the entire ideological spectrum. The decreasing prevalence of headlines with neutral emotional valence appears to be consistent in left, centrist and right-leaning outlets. The degree of correlation between the emotionality of headlines in left-leaning and right-leaning news outlets is substantial for most emotion types. Replicating this analysis using only the 18 news outlets with headlines available since the year 2000 shows similar trends; see S1 File for details.

thumbnail

Note the different scale of the Y axes for the different emotion types. Only statistical tests within each ideological grouping for which the null hypothesis of zero slope was rejected (after Bonferroni correction for multiple comparisons) are shown on the bottom left of each plot.

https://doi.org/10.1371/journal.pone.0276367.g004

The results of this work show an increase of sentiment negativity in headlines across news media outlets popular in the United States since at least the year 2000. The sentiment of headlines in right-leaning news outlets has been, on average, more negative than the sentiment of headlines in left-leaning news outlets for the entirety of the 2000–2019 studied time interval. Also, since at least the year 2008, there has been a substantial increase in the prevalence of headlines denoting anger across popular news media outlets. Here as well, right-leaning news media appear, on average, to have used a higher proportion of anger denoting headlines than left-leaning news outlets. The prevalence of headlines denoting fear and sadness has also increased overall during the 2000–2019 interval. Within the same temporal period, the proportion of headlines with neutral emotional valence has markedly decreased across the entire news media ideological spectrum.

The higher prevalence of negativity and anger in right-leaning news media is noteworthy. Perhaps this is due to right-leaning news media simply using more negative language than left-leaning news media to describe the same phenomena. Alternatively, the higher negativity and anger undertones in headlines from right-leaning news media could be driven by differences in topic coverage between both types of outlets. Clarifying the underlying reasons for the different sentiment and emotional undertones of headlines between left-leaning and right-leaning news media could be an avenue for relevant future research.

The structural break in the sentiment polarity and the emotional payload of headlines around 2010 is intriguing, although the short nature of the time series under investigation (just 20 years of observations) makes the reliability uncertain. Due to the methodological limitations of our observational study, we can only speculate about its potential causes.

In the year 2009, social media giants Facebook and Twitter added the like and retweet buttons respectively to their platforms [ 33 ]. These features allowed those social media companies to collect information about how to capture users’ attention and maximize engagement through algorithmically determined personalized feeds. Information about which news articles diffused more profusely through social media percolated to news outlets by user-tracking systems such as browser cookies and social media virality metrics. In the early 2010s, media companies also began testing news media headlines across dozens of variations to determine the version that generated the highest click-through ratio [ 34 ]. Thus, a perverse incentive might have emerged in which news outlets, judging by the larger reach/popularity of their articles with negative/emotional headlines, started to drift towards increasing usage of negative sentiment/emotions in their headlines.

A limitation of this work is the frequent semantic overloading of the sentiment/emotion annotation task. The negative sentiment category for instance often conflates into the same umbrella notion of negativity text that describes suffering and/or being at the receiving end of mistreatment, as in “the Prime Minister has been a victim of defamation”, with text that denotes negative behavior or character traits, as in “the Prime Minister is selfish”. Thus, it is uncertain whether the increasing prevalence of headlines with negative connotations emphasize victimization, negative behavior/judgment or a mixture of the two.

An additional limitation of this work is the frequent ambiguity of the sentiment/emotion annotation task. The sentiment polarity and particularly the emotional payload of a text instance can be highly subjective and intercoder agreement is generally low, especially for the latter, albeit above chance guessing. For this reason, automated annotations for single instances of text can be noisy and thus unreliable. Yet, as shown in the simulation experiments (see S1 File for details), when aggregating the emotional payload over a large number of headlines, the average signal raises above the noise to provide a robust proxy of overall emotion in large text corpora. Reliable annotations at the individual headline level however would require more overdetermined emotional categories.

The imbalanced nature of the emotion labels also represents a challenge for the classification analysis. For that reason, we used performance metrics that are recommended when handling imbalanced data such as confusion matrices, precision, recall and F-1 scores. Usage of different algorithms such as decision trees are often recommended when working with imbalanced data. However, since Transformer models represent the state-of-the-art for NLP text classification, we circumscribed our analysis to their usage. Other techniques for dealing with imbalanced data such as oversampling the minority class or under sampling the majority class could have also been used. However, our relatively small number of human annotated headlines (1124 for sentiment and 5353 for emotion), constrained our ability to trim the human-annotated data set.

Another limitation of this work is the potential biases of the human raters that annotated the sentiment and emotion of news media headlines. It is conceivable that our sample of human raters, recruited through Mechanical Turk, is not representative of the general US population. For instance, the distribution of socioeconomic status among raters active in Mechanical Turk might not match the distribution of the entire US population. The impact of such potential sample bias on headlines sentiment/emotion estimation is uncertain.

A final limitation of our work is the small number of outlets falling into the centrist political orientation category according to the AllSides Media Bias Chart v1.1. Such small sample size limits the sample representativeness and constraints the external validity of the centrist outlets results reported here.

An important question raised by this work is whether the sentiment and emotionality embedded in news media headlines reflect a wider societal mood or if instead they just reflect the sentiment and emotionality prevalent or pushed by those creating news content. Financial incentives to maximize click-through ratios could be at play in increasing the sentiment polarity and emotional charge of headlines over time. Conceivably, the temptation of shaping the sentiment and emotional undertones of news headlines to advance political agendas could also be playing a role. Deciphering these unknowns is beyond the scope of this article and could be a worthy goal for future research.

To conclude, we hope this work paves the way for further exploration about the potential impact on public consciousness of growing emotionality and sentiment negativity of news media content and whether such trends are conductive to sustain public well-being. Thus, we hope that future research throws light on the potential psychological and social impact of public consumption of news media diets with increasingly negative sentiment and anger/fear/sadness undertones embedded within them.

Supporting information

https://doi.org/10.1371/journal.pone.0276367.s001

  • View Article
  • Google Scholar
  • PubMed/NCBI
  • 14. Krippendorff K., Content Analysis : An Introduction to Its Methodology , Third edition. Los Angeles; London: SAGE Publications, Inc, 2012.
  • 15. Neuendorf K. A., The Content Analysis Guidebook , 1st edition. Thousand Oaks, Calif: SAGE Publications, Inc, 2001.
  • 20. S. Raza and C. Ding, “News Recommender System Considering Temporal Dynamics and News Taxonomy,” in 2019 IEEE International Conference on Big Data (Big Data) , Dec. 2019, pp. 920–929. https://doi.org/10.1109/BigData47090.2019.9005459
  • 21. S. Raza and C. Ding, “Deep Neural Network to Tradeoff between Accuracy and Diversity in a News Recommender System,” in 2021 IEEE International Conference on Big Data (Big Data) , Dec. 2021, pp. 5246–5256. https://doi.org/10.1109/BigData52589.2021.9671467
  • 24. AllSides, “AllSides Media Bias Ratings,” AllSides , 2019. https://www.allsides.com/blog/updated-allsides-media-bias-chart-version-11 (accessed May 10, 2020).
  • 28. Heitmann M., Siebert C., Hartmann J., and Schamp C., “More than a Feeling: Benchmarks for Sentiment Analysis Accuracy,” Social Science Research Network, Rochester, NY, SSRN Scholarly Paper ID 3489963, Jul. 2020. https://doi.org/10.2139/ssrn.3489963

Subscribe to the PwC Newsletter

Join the community, add a new evaluation result row, sentiment analysis.

1325 papers with code • 39 benchmarks • 93 datasets

Sentiment Analysis is the task of classifying the polarity of a given text. For instance, a text-based tweet can be categorized into either "positive", "negative", or "neutral". Given the text and accompanying labels, a model can be trained to predict the correct sentiment.

Sentiment Analysis techniques can be categorized into machine learning approaches, lexicon-based approaches, and even hybrid methods. Some subcategories of research in sentiment analysis include: multimodal sentiment analysis, aspect-based sentiment analysis, fine-grained opinion analysis, language specific sentiment analysis.

More recently, deep learning techniques, such as RoBERTa and T5, are used to train high-performing sentiment classifiers that are evaluated using metrics like F1, recall, and precision. To evaluate sentiment analysis systems, benchmark datasets like SST, GLUE, and IMDB movie reviews are used.

Further readings:

  • Sentiment Analysis Based on Deep Learning: A Comparative Study

sentiment analysis research papers 2019

Benchmarks Add a Result

--> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> --> -->
Trend Dataset Best ModelPaper Code Compare
T5-11B
RoBERTa-large with LlamBERT
Heinsen Routing + RoBERTa Large
XLNet
VLAWE
XLNet
MA-BERT
AnglE-LLaMA-7B
BERT large
BERT large
InstructABSA
W2V2-L-LL60K (pipeline approach, uses LM)
BERTweet
UDALM: Unsupervised Domain Adaptation through Language Modeling
RoBERTa-large 355M + Entailment as Few-shot Learner
k-RoBERTa (parallel)
CalBERT
LSTMs+CNNs ensemble with multiple conv. ops
RobBERT v2
AEN-BERT
RuBERT-RuSentiment
xlmindic-base-uniscript
LSTMs+CNNs ensemble with multiple conv. ops
FiLM
Space-XLNet
fastText, h=10, bigram
CNN-LSTM
CNN-LSTM
Random
RoBERTa-wwm-ext-large
RoBERTa-wwm-ext-large
AraBERTv1
AraBERTv1
AraBERTv1
Naive Bayes
SVM
RCNN
lstm+bert
CalBERT

sentiment analysis research papers 2019

Most implemented papers

Bert: pre-training of deep bidirectional transformers for language understanding.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers.

Convolutional Neural Networks for Sentence Classification

sentiment analysis research papers 2019

We report on a series of experiments with convolutional neural networks (CNN) trained on top of pre-trained word vectors for sentence-level classification tasks.

Universal Language Model Fine-tuning for Text Classification

sentiment analysis research papers 2019

Inductive transfer learning has greatly impacted computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch.

Bag of Tricks for Efficient Text Classification

facebookresearch/fastText • EACL 2017

This paper explores a simple and efficient baseline for text classification.

RoBERTa: A Robustly Optimized BERT Pretraining Approach

Language model pretraining has led to significant performance gains but careful comparison between different approaches is challenging.

A Structured Self-attentive Sentence Embedding

This paper proposes a new model for extracting an interpretable sentence embedding by introducing self-attention.

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP).

Deep contextualized word representations

We introduce a new type of deep contextualized word representation that models both (1) complex characteristics of word use (e. g., syntax and semantics), and (2) how these uses vary across linguistic contexts (i. e., to model polysemy).

Well-Read Students Learn Better: On the Importance of Pre-training Compact Models

Recent developments in natural language representations have been accompanied by large and expensive models that leverage vast amounts of general-domain text through self-supervised pre-training.

Domain-Adversarial Training of Neural Networks

Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains.

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

electronics-logo

Article Menu

  • Subscribe SciFeed
  • Recommended Articles
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Sentiment analysis based on deep learning: a comparative study.

sentiment analysis research papers 2019

1. Introduction

2. background, 2.1. deep learning, 2.1.1. deep neural networks (dnn), 2.1.2. convolutional neural networks (cnn), 2.1.3. recurrent neural networks (rnn), 2.1.4. other neural networks, 2.2. sentiment analysis, 2.3. application of sentiment analysis, 3. related work, 4. comparative study, 4.1. datasets.

  • Sentiment140 was obtained from Stanford University [ 68 ]. It contains 1.6 million tweets about products or brands. The tweets were already labeled with the polarity of the sentiment conveyed by the person writing them (0 = negative, 4 = positive).
  • Tweets Airline [ 69 ] is a tweet dataset containing user opinions about U.S. airlines. It was crawled in February 2015. It has 14,640 samples, and it was divided into negative, neutral, and positive classes.
  • Tweets SemEval [ 70 ] is a tweet dataset that includes a range of named geopolitical entities. This dataset has 17,750 samples, and it was divided into positive, neutral, and negative classes.
  • IMDB Movie Reviews [ 71 ] is a dataset of comments from audiences about the stories in films. It has 25,000 samples divided into positive and negative.
  • IMDB Movie Reviews was obtained from Stanford University [ 72 ]. This dataset contains comments from audiences about the story of films. It has 50,000 samples, which are divided into positive and negative.
  • Cornell Movie Reviews [ 73 ] contains comments from audiences about the stories in films. This dataset includes 10,662 samples for training and testing, which are labeled negative or positive.
  • Book Reviews and Music Reviews is a dataset obtained from the Multidomain Sentiment of the Department of Computer Science of Johns Hopkins University. Biographies, Bollywood, Boom Boxes, and Blenders: Domain Adaptation for Sentiment Classification [ 74 ] contains user comments about books and music. Each has 2,000 samples with two classes—negative and positive.
  • “target” is the polarity of the tweet;
  • “id” is the unique ID of each tweet;
  • “date” is the date of the tweet;
  • “query_string” indicates whether the tweet has been collected with any particular query keyword (for this column, 100% of the entries labeled are with the value “NO_QUERY”);
  • “user” is the Twitter handle name of the user who tweeted;
  • “text” is the verbatim text of the tweet.

4.2. Methodological Approach

4.3. sentiment classification.

  • Cleaning the Twitter RTs, @, #, and the links from the sentences;
  • Stemming or lemmatization;
  • Converting the text to lower case;
  • Cleaning all the non-letter characters, including numbers;
  • Removing English stop words and punctuation;
  • Eliminating extra white spaces;
  • Decoding HTML to general text.

4.4. Sentiment Model

5. experimental results.

  • The DNN model is simple to implement and provides results within a short period of time—around 1 min for the majority of datasets, except dataset Sentiment140, for which the model took 12 min to obtain the results. Although the model is quick to train, the overall accuracy of the model is average (around 75% to 80%) in all of the tested datasets, including tweets and reviews.
  • The CNN model is also fast to train and test, although possibly a bit slower than DNN. The model offers higher accuracy (over 80%) on both tweet and review datasets.
  • The RNN model has the highest reliability when word embedding is applied, however its computational time is also the highest. When using RNN with TF-IDF, it takes a longer time than other models and results in lower accuracy (around 50%) in the sentiment analysis of tweet and review datasets.
  • Three deep learning models (DNN, CNN, and RNN) were used to perform sentiment analysis experiments. The CNN model was found to offer the best tradeoff between the processing time and the accuracy of results. Although the RNN model had the highest degree of accuracy when used with word embedding, its processing time was 10 times longer than that of the CNN model. The RNN model is not effective when used with the TF-IDF technique, and its far higher processing time leads to results that are not significantly better. DNN is a simple deep learning model that has average processing times and yields average results. Future research on deep learning models can focus on ways of improving the tradeoff between the accuracy of results and the processing times.
  • Related techniques (TF-IDF and word embedding) are used to transfer text data (tweets, reviews) into a numeric vector before feeding them into a deep learning model. The results when TF-IDF is used are poorer than when word embedding is used. Moreover, the TF-IDF technique used with the RNN model takes has a longer processing time and yields less reliable results. However, when RNN is used with word embedding, the results are much better. Future work can explore how to improve these and other techniques to achieve even better results.
  • The results from the datasets containing tweets and IMDB movie review datasets are better than the results from the other datasets containing reviews. Regarding tweets data, the models induced from the Tweets Airline dataset, focused on a specific topic, show better performance than those built from datasets about generic topics.

6. Conclusions

Author contributions, conflicts of interest.

  • Pouli, V.; Kafetzoglou, S.; Tsiropoulou, E.E.; Dimitriou, A.; Papavassiliou, S. Personalized multimedia content retrieval through relevance feedback techniques for enhanced user experience. In Proceedings of the 2015 13th International Conference on Telecommunications (ConTEL), Graz, Austria, 13–15 July 2015; pp. 1–8. [ Google Scholar ]
  • Thai, M.T.; Wu, W.; Xiong, H. Big Data in Complex and Social Networks ; CRC Press: Boca Raton, FL, USA, 2016. [ Google Scholar ]
  • Cambria, E.; Das, D.; Bandyopadhyay, S.; Feraco, A. A Practical Guide to Sentiment Analysis ; Springer: Berlin, Germany, 2017. [ Google Scholar ]
  • Hussein, D.M.E.-D.M. A survey on sentiment analysis challenges. J. King Saud Univ. Eng. Sci. 2018 , 30 , 330–338. [ Google Scholar ] [ CrossRef ]
  • Sohangir, S.; Wang, D.; Pomeranets, A.; Khoshgoftaar, T.M. Big Data: Deep Learning for financial sentiment analysis. J. Big Data 2018 , 5 , 3. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Jangid, H.; Singhal, S.; Shah, R.R.; Zimmermann, R. Aspect-Based Financial Sentiment Analysis using Deep Learning. In Proceedings of the Companion of the The Web Conference 2018 on The Web Conference, Lyon, France, 23–27 April 2018; pp. 1961–1966. [ Google Scholar ]
  • Keenan, M.J.S. Advanced Positioning, Flow, and Sentiment Analysis in Commodity Markets ; Wiley: Hoboken, NJ, USA, 2018. [ Google Scholar ]
  • Satapathy, R.; Cambria, E.; Hussain, A. Sentiment Analysis in the Bio-Medical Domain ; Springer: Berlin, Germany, 2017. [ Google Scholar ]
  • Rajput, A. Natural Language Processing, Sentiment Analysis, and Clinical Analytics. In Innovation in Health Informatics ; Elsevier: Amsterdam, The Netherlands, 2020; pp. 79–97. [ Google Scholar ]
  • Qian, J.; Niu, Z.; Shi, C. Sentiment Analysis Model on Weather Related Tweets with Deep Neural Network. In Proceedings of the 2018 10th International Conference on Machine Learning and Computing, Macau, China, 26–28 February 2018; pp. 31–35. [ Google Scholar ]
  • Pham, D.-H.; Le, A.-C. Learning multiple layers of knowledge representation for aspect based sentiment analysis. Data Knowl. Eng. 2018 , 114 , 26–39. [ Google Scholar ] [ CrossRef ]
  • Preethi, G.; Krishna, P.V.; Obaidat, M.S.; Saritha, V.; Yenduri, S. Application of deep learning to sentiment analysis for recommender system on cloud. In Proceedings of the 2017 International Conference on Computer, Information and Telecommunication Systems (CITS), Dalian, China, 21–23 July 2017; pp. 93–97. [ Google Scholar ]
  • Ain, Q.T.; Ali, M.; Riaz, A.; Noureen, A.; Kamran, M.; Hayat, B.; Rehman, A. Sentiment analysis using deep learning techniques: A review. Int. J. Adv. Comput. Sci. Appl. 2017 , 8 , 424. [ Google Scholar ]
  • Gao, Y.; Rong, W.; Shen, Y.; Xiong, Z. Convolutional neural network based sentiment analysis using Adaboost combination. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1333–1338. [ Google Scholar ]
  • Hassan, A.; Mahmood, A. Deep learning approach for sentiment analysis of short texts. In Proceedings of the Third International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 24–26 April 2017; pp. 705–710. [ Google Scholar ]
  • Kraus, M.; Feuerriegel, S. Sentiment analysis based on rhetorical structure theory: Learning deep neural networks from discourse trees. Expert Syst. Appl. 2019 , 118 , 65–79. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Li, L.; Goh, T.-T.; Jin, D. How textual quality of online reviews affect classification performance: A case of deep learning sentiment analysis. Neural Comput. Appl. 2018 , 1–29. [ Google Scholar ] [ CrossRef ]
  • Singhal, P.; Bhattacharyya, P. Sentiment Analysis and Deep Learning: A Survey ; Center for Indian Language Technology, Indian Institute of Technology: Bombay, Indian, 2016. [ Google Scholar ]
  • Alharbi, A.S.M.; de Doncker, E. Twitter sentiment analysis with a deep neural network: An enhanced approach using user behavioral information. Cogn. Syst. Res. 2019 , 54 , 50–61. [ Google Scholar ] [ CrossRef ]
  • Abid, F.; Alam, M.; Yasir, M.; Li, C.J. Sentiment analysis through recurrent variants latterly on convolutional neural network of Twitter. Future Gener. Comput. Syst. 2019 , 95 , 292–308. [ Google Scholar ] [ CrossRef ]
  • Aggarwal, C.C. Neural Networks and Deep Learning ; Springer: Berlin, Germany, 2018. [ Google Scholar ]
  • Zhang, L.; Wang, S.; Liu, B. Deep learning for sentiment analysis: A survey. WIREs Data Min. Knowl. Discov. 2018 , 8 , e1253. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Britz, D. Recurrent Neural Networks Tutorial, Part 1–Introduction to Rnns. Available online: http://www.wildml.com/2015/09/recurrent-neural-networkstutorial-part-1-introduction-to-rnns/ (accessed on 12 March 2020).
  • Hochreiter, S.; Schmidhuber, J. LSTM can solve hard long time lag problems. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 2–5 December 1996; pp. 473–479. [ Google Scholar ]
  • Ruangkanokmas, P.; Achalakul, T.; Akkarajitsakul, K. Deep Belief Networks with Feature Selection for Sentiment Classification. In Proceedings of the 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS), Bangkok, Thailand, 25–27 January 2016; pp. 9–14. [ Google Scholar ]
  • Socher, R.; Lin, C.C.; Manning, C.; Ng, A.Y. Parsing natural scenes and natural language with recursive neural networks. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 129–136. [ Google Scholar ]
  • Long, H.; Liao, B.; Xu, X.; Yang, J. A hybrid deep learning model for predicting protein hydroxylation sites. Int. J. Mol. Sci. 2018 , 19 , 2817. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Vateekul, P.; Koomsubha, T. A study of sentiment analysis using deep learning techniques on Thai Twitter data. In Proceedings of the 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, 13–15 July 2016; pp. 1–6. [ Google Scholar ]
  • Ghosh, R.; Ravi, K.; Ravi, V. A novel deep learning architecture for sentiment classification. In Proceedings of the 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 3–5 March 2016; pp. 511–516. [ Google Scholar ]
  • Bhavitha, B.; Rodrigues, A.P.; Chiplunkar, N.N. Comparative study of machine learning techniques in sentimental analysis. In Proceedings of the 2017 International Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 10–11 March 2017; pp. 216–221. [ Google Scholar ]
  • Salas-Zárate, M.P.; Medina-Moreira, J.; Lagos-Ortiz, K.; Luna-Aveiga, H.; Rodriguez-Garcia, M.A.; Valencia-García, R.J.C. Sentiment analysis on tweets about diabetes: An aspect-level approach. Comput. Math. Methods Med. 2017 , 2017 . [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Huq, M.R.; Ali, A.; Rahman, A. Sentiment analysis on Twitter data using KNN and SVM. IJACSA Int. J. Adv. Comput. Sci. Appl. 2017 , 8 , 19–25. [ Google Scholar ]
  • Pinto, D.; McCallum, A.; Wei, X.; Croft, W.B. Table extraction using conditional random fields. In Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, Toronto, ON, Canada, 28 July–1 August 2003; pp. 235–242. [ Google Scholar ]
  • Soni, S.; Sharaff, A. Sentiment analysis of customer reviews based on hidden markov model. In Proceedings of the 2015 International Conference on Advanced Research in Computer Science Engineering & Technology (ICARCSET 2015), Unnao, India, 6 March 2015; pp. 1–5. [ Google Scholar ]
  • Zhang, X.; Zheng, X. Comparison of Text Sentiment Analysis Based on Machine Learning. In Proceedings of the 2016 15th International Symposium on Parallel and Distributed Computing (ISPDC), Fuzhou, China, 8–10 July 2016; pp. 230–233. [ Google Scholar ]
  • Malik, V.; Kumar, A. Communication. Sentiment Analysis of Twitter Data Using Naive Bayes Algorithm. Int. J. Recent Innov. Trends Comput. Commun. 2018 , 6 , 120–125. [ Google Scholar ]
  • Mehra, N.; Khandelwal, S.; Patel, P. Sentiment Identification Using Maximum Entropy Analysis of Movie Reviews ; Stanford University: Stanford, CA, USA, 2002. [ Google Scholar ]
  • Wu, H.; Li, J.; Xie, J. Maximum entropy-based sentiment analysis of online product reviews in Chinese. In Automotive, Mechanical and Electrical Engineering ; CRC Press: Boca Raton, FL, USA, 2017; pp. 559–562. [ Google Scholar ]
  • Firmino Alves, A.L.; Baptista, C.d.S.; Firmino, A.A.; Oliveira, M.G.d.; Paiva, A.C.D. A Comparison of SVM versus naive-bayes techniques for sentiment analysis in tweets: A case study with the 2013 FIFA confederations cup. In Proceedings of the 20th Brazilian Symposium on Multimedia and the Web, João Pessoa, Brazil, 18–21 November 2014; pp. 123–130. [ Google Scholar ]
  • Pandey, A.C.; Rajpoot, D.S.; Saraswat, M. Twitter sentiment analysis using hybrid cuckoo search method. Inf. Process. Manag. 2017 , 53 , 764–779. [ Google Scholar ] [ CrossRef ]
  • Medhat, W.; Hassan, A.; Korashy, H. Sentiment analysis algorithms and applications: A survey. Ain Shams Eng. J. 2014 , 5 , 1093–1113. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their compositionality. In Proceedings of the Advances in neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 3111–3119. [ Google Scholar ]
  • Jain, A.P.; Dandannavar, P. Application of machine learning techniques to sentiment analysis. In Proceedings of the 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), Karnataka, India, 21–23 July 2016; pp. 628–632. [ Google Scholar ]
  • Tang, D.; Qin, B.; Liu, T. Deep learning for sentiment analysis: Successful approaches and future challenges. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2015 , 5 , 292–303. [ Google Scholar ] [ CrossRef ]
  • Sharef, N.M.; Zin, H.M.; Nadali, S. Overview and Future Opportunities of Sentiment Analysis Approaches for Big Data. JCS 2016 , 12 , 153–168. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Rojas-Barahona, L.M. Deep learning for sentiment analysis. Lang. Linguist. Compass 2016 , 10 , 701–719. [ Google Scholar ] [ CrossRef ]
  • Roshanfekr, B.; Khadivi, S.; Rahmati, M. Sentiment analysis using deep learning on Persian texts. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1503–1508. [ Google Scholar ]
  • Jeong, B.; Yoon, J.; Lee, J.-M. Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis. Int. J. Inf. Manag. 2019 , 48 , 280–290. [ Google Scholar ] [ CrossRef ]
  • Gupta, U.; Chatterjee, A.; Srikanth, R.; Agrawal, P. A sentiment-and-semantics-based approach for emotion detection in textual conversations. arXiv 2017 , arXiv:1707.06996. [ Google Scholar ]
  • Ramadhani, A.M.; Goo, H.S. Twitter sentiment analysis using deep learning methods. In Proceedings of the 2017 7th International Annual Engineering Seminar (InAES), Yogyakarta, Indonesia, 1–2 August 2017; pp. 1–4. [ Google Scholar ]
  • Paredes-Valverde, M.A.; Colomo-Palacios, R.; Salas-Zárate, M.D.P.; Valencia-García, R. Sentiment analysis in Spanish for improvement of products and services: A deep learning approach. Sci. Program. 2017 , 2017 . [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Yang, C.; Zhang, H.; Jiang, B.; Li, K.J. Aspect-based sentiment analysis with alternating coattention networks. Inf. Process. Manag. 2019 , 56 , 463–478. [ Google Scholar ] [ CrossRef ]
  • Do, H.H.; Prasad, P.; Maag, A.; Alsadoon, A.J. Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review. Expert Syst. Appl. 2019 , 118 , 272–299. [ Google Scholar ] [ CrossRef ]
  • Schmitt, M.; Steinheber, S.; Schreiber, K.; Roth, B. Joint Aspect and Polarity Classification for Aspect-based Sentiment Analysis with End-to-End Neural Networks. arXiv 2018 , arXiv:1808.09238. [ Google Scholar ]
  • Balabanovic, M.; Shoham, Y. Combining content-based and collaborative recommendation. Commun. ACM 1997 , 40 , 66–72. [ Google Scholar ] [ CrossRef ]
  • Wang, Y.; Wang, M.; Xu, W. A sentiment-enhanced hybrid recommender system for movie recommendation: A big data analytics framework. Wirel. Commun. Mob. Comput. 2018 , 2018 . [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Singh, V.K.; Mukherjee, M.; Mehta, G.K. Combining collaborative filtering and sentiment classification for improved movie recommendations. In Proceedings of the International Workshop on Multi-disciplinary Trends in Artificial Intelligence, Hyderabad, India, 7–9 December 2011; pp. 38–50. [ Google Scholar ]
  • Chen, Z.; Liu, B. Lifelong machine learning. Synth. Lect. Artif. Intell. Mach. Learn. 2018 , 12 , 1–207. [ Google Scholar ] [ CrossRef ]
  • Stai, E.; Kafetzoglou, S.; Tsiropoulou, E.E.; Papavassiliou, S.J. A holistic approach for personalization, relevance feedback & recommendation in enriched multimedia content. Multimed. Tools Appl. 2018 , 77 , 283–326. [ Google Scholar ]
  • Wu, C.; Wu, F.; Wu, S.; Yuan, Z.; Liu, J.; Huang, Y. Semi-supervised dimensional sentiment analysis with variational autoencoder. Knowl. Based Syst. 2019 , 165 , 30–39. [ Google Scholar ] [ CrossRef ]
  • Zhang, Z.; Zou, Y.; Gan, C. Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression. Neurocomputing 2018 , 275 , 1407–1415. [ Google Scholar ] [ CrossRef ]
  • Tang, D.; Zhang, M. Deep Learning in Sentiment Analysis. In Deep Learning in Natural Language Processing ; Springer: Berlin, Germany, 2018; pp. 219–253. [ Google Scholar ]
  • Araque, O.; Corcuera-Platas, I.; Sanchez-Rada, J.F.; Iglesias, C.A. Enhancing deep learning sentiment analysis with ensemble techniques in social applications. Expert Syst. Appl. 2017 , 77 , 236–246. [ Google Scholar ] [ CrossRef ]
  • Liu, J.; Chang, W.-C.; Wu, Y.; Yang, Y. Deep learning for extreme multi-label text classification. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, 7–11 August 2017; pp. 115–124. [ Google Scholar ]
  • Chen, M.; Wang, S.; Liang, P.P.; Baltrušaitis, T.; Zadeh, A.; Morency, L.-P. Multimodal sentiment analysis with word-level fusion and reinforcement learning. In Proceedings of the 19th ACM International Conference on Multimodal Interaction, Glasgow, UK, 13–17 November 2017; pp. 163–171. [ Google Scholar ]
  • Al-Sallab, A.; Baly, R.; Hajj, H.; Shaban, K.B.; El-Hajj, W.; Badaro, G. Aroma: A recursive deep learning model for opinion mining in arabic as a low resource language. ACM Trans. Asian Low-Resour. Lang. Inf. Process. (TALLIP) 2017 , 16 , 1–20. [ Google Scholar ] [ CrossRef ]
  • Kumar, S.; Gahalawat, M.; Roy, P.P.; Dogra, D.P.; Kim, B.-G.J.E. Exploring Impact of Age and Gender on Sentiment Analysis Using Machine Learning. Electronics 2020 , 9 , 374. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Available online: http://help.sentiment140.com/site-functionality (accessed on 12 March 2020).
  • Available online: https://www.kaggle.com/crowdflower/twitter-airline-sentiment (accessed on 12 March 2020).
  • Available online: http://alt.qcri.org/semeval2017/ (accessed on 12 March 2020).
  • Available online: https://www.kaggle.com/c/word2vec-nlp-tutorial/data (accessed on 12 March 2020).
  • Maas, A.L.; Daly, R.E.; Pham, P.T.; Huang, D.; Ng, A.Y.; Potts, C. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, Portland, OR, USA, 19–24 June 2011; pp. 142–150. [ Google Scholar ]
  • Available online: http://www.cs.cornell.edu/people/pabo/movie-review-data/ (accessed on 12 March 2020).
  • Blitzer, J.; Dredze, M.; Pereira, F. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, Prague, Czech Republic, 23–30 June 2007; pp. 440–447. [ Google Scholar ]
  • Kim, Y.; Sidney, J.; Buus, S.; Sette, A.; Nielsen, M.; Peters, B. Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions. BMC Bioinform. 2014 , 15 , 241. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Choi, Y.; Lee, H.J. Data properties and the performance of sentiment classification for electronic commerce applications. Inf. Syst. Front. 2017 , 19 , 993–1012. [ Google Scholar ] [ CrossRef ] [ Green Version ]
  • Neppalli, V.K.; Caragea, C.; Squicciarini, A.; Tapia, A.; Stehle, S.J. Sentiment analysis during Hurricane Sandy in emergency response. Int. J. Disaster Risk Reduct. 2017 , 21 , 213–222. [ Google Scholar ] [ CrossRef ] [ Green Version ]

Click here to enlarge figure

No.YearStudyResearch WorkMethodDatasetTarget
12019Alharbi el al. [ ]Twitter sentiment analysisCNNSemEval 2016 workshopFeature extraction from user behavior information
22019Kraus et al. [ ]Sentiment analysis based on rhetorical structure theoryTree-LSTM and Discourse-LSTMMovie
Database (IMD), food reviews (Amazon)
Aim to improve accuracy
32019Do et al. [ ]Comparative review of sentiment analysis based on deep learningCNN, LSTM, GRU, and hybrid approachesSemEval workshop and social network sitesAspect extraction and sentiment classification
42019Abid et al. [ ]Sentiment analysis through recent recurrent variantsCNN,
RNN
TwitterDomain-specific word embedding
52019Yang et al. [ ]Aspect-based sentiment analysisCoattention-LSTM, Coattention-MemNet, Coattention-LSTM + locationTwitter,
SemEval 2014
Target-level and context-level feature extraction
62019Wu et al. [ ]Sentiment analysis with variational autoencoderLSTM, Bi-LSTMFacebook,
Chinese VA,
Emobank
Encoding, sentiment prediction, and decoding
72018Pham et al. [ ]Aspect-based sentiment analysisLRNN-ASR,
FULL-LRNN-ASR
TripadvisorEnriching knowledge of the input through layers
82018Sohangir et al. [ ]Deep learning for financial sentiment analysisLSTM, doc2vec, and CNNStockTwitsImproving the performance of sentiment analysis for StockTwits
92018Li et al. [ ]How textual quality of online reviews affect classification performanceSRN, LSTM, and CNNMovie reviews from Impact of two influential textual features, namely the word count and review readability
102018Zhang et al. [ ]Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regressionCNNSemEval 2016,
Sentiment Tree Bank
LSTM attention and attentive pooling is integrated with CNN model to extract sentence features based on sentiment embedding, lexicon embedding, and semantic embedding
112018Schmitt et al. [ ]Joint aspect and polarity classification for aspect-based sentiment analysisCNN,
LSTM
SemEval 2017Approach based on aspect sentiment analysis to solve two classification problems (aspect categories + aspect polarity)
122018Qian et al. [ ]Sentiment analysis model on weather-related tweetsDNN, CNNTwitter,
social network sites
Feature extraction
132018Tang et al. [ ]Improving the state-of-the-art in many deep learning sentiment analysis tasksCNN, DNN, RNNSocial network sitesSentiment classification, opinion extraction, fine-grained sentiment analysis
142018Zhang et al. [ ]Survey of deep learning for sentiment analysisCNN, DNN, RNN, LSTMSocial network sitesSentiment analysis with word embedding, sarcasm analysis, emotion analysis, multimodal data for sentiment analysis
152017Choudhary et al. [ ]Comparative study of deep-learning-based sentimental analysis with existing techniquesCNN, DNN, RNN, lexicon,
hybrid
Social network sitesDomain dependency, sentiment polarity, negation, feature extraction, spam and fake review, huge lexicon, bi-polar words
162018Jangid et al. [ ]Financial sentiment analysisCNN, LSTM, RNNFinancial tweetsAspect-based sentiment analysis
172017Araque et al. [ ]Enhancing deep learning sentiment analysis with ensemble techniques in social applicationsDeep-learning-based sentiment classifier using a word embedding model and a linear machine learning algorithmSemEval 2013/2014, Vader, STS-Gold, IMDB, PL04, and Sentiment140Improving the performance of deep learning techniques and integrating them with traditional surface approaches based on manually extracted features
182017Jeong et al. [ ]A product opportunity mining approach based on topic modeling and sentiment analysisLDA-based topic modeling,
sentiment analysis, and opportunity algorithm
Twitter, Facebook, Instagram, and RedditIdentification of product development opportunities from customer-generated social media data
192017Gupta et al. [ ]Sentiment-/semantic-based approaches for emotion detectionLSTM-based deep learningTwitterCombining sentiment and semantic features
202017Preethi et al. [ ]Sentiment analysis for recommender system in the cloudRNN,
naïve Bayes classifier
AmazonRecommending the places that are near to the user’s current location by analyzing the different reviews and consequently computing the score grounded on it
212017Ramadhani et al. [ ]Twitter sentiment analysisDNNTwitterHandling a huge amount of unstructured data
222017Ain et al. [ ]A review of sentiment analysis using deep learning techniquesCNN, RNN, DNN, DBNSocial network sitesAnalyzing and structuring hidden information extracted from social media in the form of unstructured data
232017Roshanfekr et al. [ ]Sentiment analysis using deep learning on Persian textsNBSVM-Bi, Bidirectional-LSTM, CNNCustomer
reviews from
Evaluating deep learning methods using the Persian language
242017Paredes-Valverde et al. [ ] Sentiment analysis for improvement of products and servicesCNN + Word2vecTwitter in SpanishDetecting customer satisfaction and identifying opportunities for improvement of products and services
252017Jingzhou Liu et al. [ ]Extreme multilabel text classificationXML-CNNRCV1, EUR-Lex, Amazon, and WikiCapturing richer information from different regions of the document
262017Hassan et al. [ ]Sentiment analysis of short textsCNN, LSTM, on top of pretrained word vectorsStanford Large Movie Review, IMDB, Stanford Sentiment Treebank, SSTbAchieving comparable performances with fewer parameters on sentiment analysis tasks
272017Chen et al. [ ]Multimodal sentiment analysis with word-level fusion and reinforcement learningGated multimodal embedding LSTM with temporal attentionCMU-MOSI Developing a novel deep architecture for multimodal sentiment analysis that performs modality fusion at the word level
282017Al-Sallab et al. [ ]Opinion mining in Arabic as a low-resource languageRecursive deep learningOnline comments from QALB, Twitter, and Newswire articles written in MSAProviding more complete and comprehensive input features for the autoencoder and performing semantic composition
292016Vateekul et al. [ ]A study of sentiment analysis in ThaiLSTM,
DCNN
TwitterFinding the best parameters of LSTM and DCNN
302016Singhal, et al. [ ]A survey of sentiment analysis and deep learningCNN, RNTN, RNN, LSTMSentiment Treebank dataset, movie reviews, MPQA, and customer reviewsComparison of classification performance of different models on different datasets
312016Gao et al. [ ]Sentiment analysis using AdaBoost combinationCNNMovie reviews and IMDBStudying the possibility of leveraging the contribution of different filter lengths and grasping their potential in the final polarity of the sentence
322016Rojas-Barahona et al. [ ]Overview of deep learning for sentiment analysisCNN,
LSTM
Movie reviews, Sentiment Treebank, and TwitterTo extract the polarity from the data
DatasetsTF-IDFWord Embedding
DNNCNNRNNDNNCNNRNN
Sentiment1400.764974070.766885440.569579390.788167610.800608490.82819948
Tweets Airline0.859369440.854514570.828092260.89793090.903734390.90451624
Tweets SemEval0.836746690.813774850.548573180.836747480.843134310.85172402
IMDB Movie Reviews (1)0.852320000.823000000.563920000.845720000.860720000.87052000
IMDB Movie Reviews (2)0.855120000.806280020.587240000.802520000.826240000.86688000
Cornell Movie Reviews0.704372640.678677510.507877640.702214340.713656710.76693790
Book Reviews0.758764430.727415090.51694370.745604550.766309240.73347052
Music Reviews0.768500000.692000000.51700000.708000000.744500000.73100000
DatasetsTF-IDFWord Embedding
DNNCNNRNNDNNCNNRNN
Sentiment1400.757757000.740760350.777313050.790962620.800800200.83692316
Tweets Airline0.955655820.970036800.974178370.9577253
Tweets SemEval0.808172040.77440860.094623660.808602150.818279570.83139785
IMDB Movie Reviews (1)0.840720000.800800000.468800000.843600000.849600000.86808000
IMDB Movie Reviews (2)0.871120000.757440000.560880000.783040000.832480000.88832000
Cornell Movie Reviews0.714684740.678115540.842035750.704555520.720508600.80943813
Book Reviews0.742218100.730096890.630406100.739125950.815996700.74824778
Music Reviews0.765000000.697000000.742000000.686000000.729000000.73600000
DatasetsTF-IDFWord Embedding
DNNCNNRNNDNNCNNRNN
Sentiment1400.757757000.740760350.777313050.790962620.800800200.83692316
Tweets Airline0.884512730.863965430.836641490.91759076
Tweets SemEval0.835046690.815942190.588391330.834927670.840245020.84745555
IMDB Movie Reviews (1)0.850574020.839964280.618623970.847275120.86899030.87328478
IMDB Movie Reviews (2)0.844108530.839436120.592095260.814783980.822218710.85179503
Cornell Movie Reviews0.700706940.679209090.454314960.701423460.711177790.74808808
Book Reviews0.770718090.726450300.561459830.748778560.743352070.73283058
Music Reviews0.770971630.691266570.460685910.719007970.753288720.73186536
DatasetsTF-IDFWord Embedding
DNNCNNRNNDNNCNNRNN
Sentiment1400.763832250.759322970.640440560.788766100.800637050.82967613
Tweets Airline0.918633620.913857010.900112080.93720980
Tweets SemEval0.821147040.794333970.137519710.821307760.828846350.83874720
IMDB Movie Reviews (1)0.850574020.818711100.468345580.845400450.859089730.87020187
IMDB Movie Reviews (2)0.857401570.796332900.576065080.798596660.827317540.86967419
Cornell Movie Reviews0.707318590.678526700.590071890.702902910.715604120.77594109
Book Reviews0.755013880.727589400.511632960.743645020.777287960.73395298
Music Reviews0.767703930.691266570.567366720.700806240.740263850.73207829
DatasetsTF-IDFWord Embedding
DNNCNNRNNDNNCNNRNN
Sentiment1400.764996830.765359510.569509390.788161890.800621460.82818031
Tweets Airline0.735101030.687900470.617409930.81170789
Tweets SemEval0.834840590.811150210.518340410.834872210.841478270.85037175
IMDB Movie Reviews (1)0.852320000.823000000.563920000.845720000.860720000.87052000
IMDB Movie Reviews (2)0.855120000.806280000.587240000.802520000.826240000.86688000
Cornell Movie Reviews0.704372640.678677510.507877640.702214340.713656710.76693790
Book Reviews0.758755930.727401570.516764580.745588540.766305920.73348794
Music Reviews0.768500000.692000000.517000000.708000000.744500000.73207829
Dataset (%)TF-IDFWord Embedding
DNNCNNRNNDNNCNNRNN
101 min 37 s1 min 14 s11 min 18 s25.8 s39.6 s4 min 58 s
202 min 32 s2 min 25 s22 min 14 s41.3 s1 min 18 s11 min 59 s
303 min 26 s3 min 34 s32 min 56 s1 min1 min 53 s18 min 57 s
404 min 19 s4 min 53 s44 min 1 s1 min 21 s2 min 32 s25 min 9 s
50
606 min 33 s7 min 23 s1h 5 min 26 s2 min 10 s3 min 52 s37 min 35 s
707 min 47 s10 min 20 s1 h15 min5 s2 min 45 s4 min 38 s44 min 16 s
809 min 4 s18 min 32 s1 h27 min22 s3 min 19 s5 min 31 s50 min 47 s
9010 min 14 s29 min 49 s1 h37 min59 s3 min 47 s6 min 12 s57 min 3 s
100
DatasetTF-IDFWord Embedding
DNNCNNRNNDNNCNNRNN
Sentiment14011 min 55 s3 8min 17 s 4 min 18 s7 min 3 s
Tweets Airline1 min34.41 s1 h 54 s30.66 s1 min 22 s2 min 41 s
Tweets SemEval20.53 s24.5 s23 min 52 s26.75 s1 min 11 s2 min 43 s
IMDB Movie Reviews (1)1 min 11 s1 min 7 s 21.13 s32.66 s7 min 42 s
IMDB Movie Reviews (2)17.78 s22.05 s30 min 21 s31.32 s36.81 s8 min 23 s
Cornell Movie Reviews23.2 s16.83 s31 min 55 s12.9 s21.26 s4 min 40 s
Book Reviews11.93 s10.12 s21 min 9 s16.21 s20.6 s2 min17 s
Music Reviews26.48 s17.35 s29 min 50 s13.94 s16.89 s4 min 42 s

Share and Cite

Dang, N.C.; Moreno-García, M.N.; De la Prieta, F. Sentiment Analysis Based on Deep Learning: A Comparative Study. Electronics 2020 , 9 , 483. https://doi.org/10.3390/electronics9030483

Dang NC, Moreno-García MN, De la Prieta F. Sentiment Analysis Based on Deep Learning: A Comparative Study. Electronics . 2020; 9(3):483. https://doi.org/10.3390/electronics9030483

Dang, Nhan Cach, María N. Moreno-García, and Fernando De la Prieta. 2020. "Sentiment Analysis Based on Deep Learning: A Comparative Study" Electronics 9, no. 3: 483. https://doi.org/10.3390/electronics9030483

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

Help | Advanced Search

Computer Science > Computation and Language

Title: deep learning for sentiment analysis : a survey.

Abstract: Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.
Comments: 34 pages, 9 figures, 2 tables
Subjects: Computation and Language (cs.CL); Information Retrieval (cs.IR); Machine Learning (cs.LG); Machine Learning (stat.ML)
Cite as: [cs.CL]
  (or [cs.CL] for this version)
  Focus to learn more arXiv-issued DOI via DataCite

Submission history

Access paper:.

  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

1 blog link

Dblp - cs bibliography, bibtex formatted citation.

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

  • Corpus ID: 270391394

Large Language Models Meet Text-Centric Multimodal Sentiment Analysis: A Survey

  • Hao Yang , Yanyan Zhao , +5 authors Bing Qin
  • Published 12 June 2024
  • Computer Science, Linguistics

Ask This Paper

By using this feature, you agree to AI2's terms and conditions and that you will not submit any sensitive or confidential info.

AI2 may include your prompts and inputs in a public dataset for future AI research and development. Please check the box to opt-out.

Ask a question about " "

Supporting statements, figures and tables from this paper.

figure 1

185 References

Adapting bert for target-oriented multimodal sentiment classification.

  • Highly Influential

Unified Multi-modal Pre-training for Few-shot Sentiment Analysis with Prompt-based Learning

Few-shot multi-modal sentiment analysis with prompt-based vision-aware language modeling, an empirical study of multimodal entity-based sentiment analysis with chatgpt: improving in-context learning via entity-aware contrastive learning, large language models meet nlp: a survey, rng: reducing multi-level noise and multi-grained semantic gap for joint multimodal aspect-sentiment analysis, cofipara: a coarse-to-fine paradigm for multimodal sarcasm target identification with large multimodal models, mer 2024: semi-supervised learning, noise robustness, and open-vocabulary multimodal emotion recognition, multimodal sentiment analysis based on 3d stereoscopic attention, a multi-view interactive approach for multimodal sarcasm detection in social internet of things with knowledge enhancement, related papers.

Showing 1 through 3 of 0 Related Papers

IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Springer Nature - PMC COVID-19 Collection
  • PMC10026245

Logo of phenaturepg

Sentiment analysis: A survey on design framework, applications and future scopes

Monali bordoloi.

1 School of Computer Science and Engineering, VIT-AP University, Inavolu, Amaravati, Andhra Pradesh 522237 India

Saroj Kumar Biswas

2 Computer Science and Engineering Department, NIT Silchar, NIT Road, Silchar, Assam 788010 India

Sentiment analysis is a solution that enables the extraction of a summarized opinion or minute sentimental details regarding any topic or context from a voluminous source of data. Even though several research papers address various sentiment analysis methods, implementations, and algorithms, a paper that includes a thorough analysis of the process for developing an efficient sentiment analysis model is highly desirable. Various factors such as extraction of relevant sentimental words, proper classification of sentiments, dataset, data cleansing, etc. heavily influence the performance of a sentiment analysis model. This survey presents a systematic and in-depth knowledge of different techniques, algorithms, and other factors associated with designing an effective sentiment analysis model. The paper performs a critical assessment of different modules of a sentiment analysis framework while discussing various shortcomings associated with the existing methods or systems. The paper proposes potential multidisciplinary application areas of sentiment analysis based on the contents of data and provides prospective research directions.

Introduction

The advent of digitization accelerated the scope of the general public to express their sentiment or opinion on an online platform. An expert or general public nowadays desires to reach an optimal decision or opinion with the use of available opinionative data. Any online platform, such as an e-commercial website or a social media site, maintains a level of transparency, increasing its chance of influencing other users. However, a single topic or item can possess millions of varied opinions on a single platform. The opinions or sentiments expressed can hold minute details or even a general opinion, which increases the research community’s interest in further investigation. This was the beginning of the principle of sentiment analysis, also known as opinion mining. Sentiment analysis makes it easier to retrieve sentimental details, analyze opinionative/sentimental web data, and classify sentimental patterns in a variety of situations.

Sentiment analysis can be stated as the procedure to identify, recognize, and/or categorize the users’ emotions or opinions for any service like movies, product issues, events, or any attribute as positive, negative, or neutral (Mehta and Pandya 2020 ). When sentiment is stated as a polarity in computational linguistics, it is typically treated as a classification task. When sentiment scores lying inside a particular range are used to express the emotion, the task is however regarded as a regression problem. Cortis et al. ( 2017 ) mentioned various research works where sentiment analysis is approached as either a classification or regression task. While analyzing the sentiments by assigning the instances sentiment scores within the range [− 1,1], Cortis et al. ( 2017 ) discovered that there can be circumstances where the prediction is sometimes considered to be a classification task and other times to be regression. To solve the regression/classification problem, the authors developed a novel approach that combined the use of two evaluation methods to compute the similarity matrix. Therefore, mining and analysis of sentiment are either limited to positive/negative/neutral; or even deeper granular sentimental scale, depending on the necessity, topic, scenario, or application (Vakali et al. 2013 ).

In the last decade since the paper by Pang et al. ( 2002 ), a large number of techniques, methods, and enhancements have been proposed for the problem of sentiment analysis, in different tasks, at different levels. Numerous review papers on sentiment analysis are already available. It has been noted that the current studies do not give the scientific community a comprehensive picture of how to build a proper sentiment analysis model. A general, step-by-step framework that can be used as a guide by an expert or even by a new researcher would be ideal for designing a proper sentiment analysis model. Many of the existing surveys basically report the general approaches, methods, applications, and challenges available for sentiment analysis. The survey paper by Alessia et al. ( 2015 ) reports basic three levels of sentiment analysis, presents three types of sentiment classification approaches, discusses some of the available tools and methods, and points out four domains of applications of sentiment analysis. The study can be further extended to give more details about the different levels, methods/approaches, additional applications, and other related factors and areas. Wankhade et al. ( 2022 ) provided a detailed study of different sentiment analysis methods, four basic levels of sentiment analysis, applications based on domain and industries, and various challenges. The survey emphasizes several classification methods while discussing some of the necessary procedures in sentiment analysis. Instead of only concentrating on the procedures that are necessary for sentiment analysis, a detailed description of all the possible approaches is highly desirable as it can help in selecting the best among all for a certain type of sentiment analysis model. Each step/module of the sentiment analysis model should be discussed in detail to gain insight into which technique should be used given the domain, dataset availability, and other variables; or how to proceed further to achieve high performance. Further, applications of sentiment analysis are commonly described based on the domain or applicable industry. Possible application areas based purely on the dataset are rarely covered by recent review papers. Some of the survey papers focus on only one direction or angle of sentiment analysis. Multimodal sentiment analysis and its applications, as well as its prospects, challenges, and adjacent fields, were the main topics of the paper by Kaur and Kautish ( 2022 ). Schouten and Frasincar ( 2015 ) focused on the semantically rich concept-centric aspect-level sentiment analysis and foreseen the rise of machine learning techniques in this context in the future. Verma ( 2022 ) addressed the application of sentiment analysis to build a smart society, based on public services. The author showed that understanding the future research directions and changes in sentiment analysis for smart society unfolds immense opportunities for elated public services. Therefore, this survey paper aims to categorize sentiment analysis techniques in general, while critically evaluating and discussing various modules/steps associated with them.

This paper offers a broad foundation for creating a sentiment analysis model. Instead of focusing on specific areas, or enumerating the methodological steps in a scattered manner; this paper follows a systematic approach and provides an extensive discussion on different sentiment analysis levels, modules, techniques, algorithms, and other factors associated with designing an effective sentiment analysis model. The important contributions can be summarized as follows:

  • The paper outlines all the granularity levels at which sentiment analysis can be carried out, through appropriate representative examples.
  • The paper provides a generic step-by-step framework that can be followed while designing a simple as well as a high-quality sentiment analysis model. An overview of different techniques of data collection and standardization, along with pre-processing which significantly influences the efficiency of the model, are presented in this research work. Keyword extraction and sentiment classification having a great impact on a sentiment analysis model is thoroughly investigated.
  • Possible applications of sentiment analysis based on the available datasets are also presented in this paper.
  • The paper makes an effort to review the main research problems in recent articles in this field. To facilitate the future extension of studies on sentiment analysis, some of the research gaps along with possible solutions are also pointed out in this paper.

The remaining paper is organized into five different sections to provide a clear vision of the different angles associated with a sentiment analysis process. Section 2 provides knowledge of the background of sentiment analysis along with its different granularity levels. A detailed discussion of the framework for performing sentiment analysis is presented in the Sect. 3 . Each module associated with designing an effective sentiment analysis is discussed in this section. Section 4 discusses different performance measures which can be used to evaluate a sentiment analysis model. Section 5 presents various possible applications of sentiment analysis based on the content of the data. Section 6 discusses the future scope of research on sentiment analysis. At last, Sect. 7 concludes the paper.

Background and granularity levels of sentiment analysis

The first ever paper that focused on public or expert opinion was published in 1940 by Stagner ( 1940 ). However, at that time studies were survey based. As reported in Mäntylä et al. ( 2018 ), the earliest computer-based sentiment analysis was proposed by Wiebe ( 1990 ) to detect subjective sentences from a narrative. The research on modern sentiment analysis accelerated in 2002 with the paper by Pang et al. ( 2002 ), where ratings on movie reviews were used to perform machine learning-based sentiment classification. Pang et al. ( 2002 ) classified a document based on the overall sentiment, i.e., whether a review is positive or negative rather than based on the topic.

Current studies mostly concentrate on multilabel sentiment classification, while filtering out neutral opinions/sentiments. Due to the unavailability of proper knowledge of handling neutral opinion, the exclusion of neutral sentiment might lead to disruption in optimal decision-making or valuable information loss. Based on a consensus method, Valdivia et al. ( 2017 ) proposed two polarity aggregation models with neutrality proximity functions. Valdivia et al. ( 2018 ), filtered the neutral reviews using induced Ordered Weighted Averaging (OWA) operators based on fuzzy majority. Santos et al. ( 2020 ) demonstrated that the examination of neutral texts becomes more relevant and useful for comprehending and profiling particular frameworks when a specific polarity pre-dominates. Besides, there can be opinions that usually contain both positive and negative emotions as a result of noise. This kind of opinion is termed an ambivalence opinion, which is often misinterpreted as being neutral. Wang et al. ( 2020 ) presented a multi-level fine-scaled sentiment sensing and showed that the performance of the sentiment sensing improves with ambivalence handling. Wang et al. ( 2014 ) introduced the concept to classify a tweet with more positive than negative emotions into a positive category; and one with more negative emotions than the positive one into a negative sentiment category.

Computational linguistics, Natural Language Processing (NLP), text mining, and text analysis are different areas that are closely interlinked with the sentiment analysis process. The relationship between sentiment analysis and the different areas is summarized below:

Sentiment Analysis is a blend of linguistics and computer science (Taboada 2016 ; Hart 2013 ). Nowadays thousandths of human languages and other abbreviated or special languages exist, say the ones used in social media, which are used to convey thoughts, emotions, or opinions. People might use one single language or a combination of different languages, say for example Hinglish (a combination of Hindi and English) along with emoticons or some symbols to convey their messages. Computational linguistics assists in obtaining the computer-executable and understandable language from the vast source of raw languages through proper representation, to extract the associated sentiments properly. While developing formal theories of parsing and semantics along with statistical methods like deep learning, computational linguistics forms the foundation for performing sentiment analysis.

Linguistics knowledge aids in the development of the corpus set that will be used for sentiment analysis while understanding the characteristics of the data it operates on and determining which linguistic features may be applied. Data-driven or rule-based computer algorithms are designed to extract subjective information or to score polarity with the help of linguistic features, corpus linguistics, computational semantics, part of speech tagging, and the development of analytical systems for parsing. Connotations and associations are used to construct sentiment lexicons.

Recognition of sarcasm, mood classification, and polarity classification are some of the tasks covered by sentiment analysis, which is just a small subset of the discipline of computational linguistics. Approaches to classifying moods introduce a new dimension that is based on external psychological models. Methods for detecting sarcasm make use of ideas like “content” and “non-content” terms, which coexist in linguistic theory. Language models, such as Grice’s well-known maxims, are used to define sarcasm.

NLP deciphers human language and makes it machine understandable. With the aid of NLP, the sentiments behind human-generated online comments, social media posts, blogs, and other information can be processed and represented by patterns and structures that can be used by software to comprehend and implement them. Sentiment analysis can be considered as a subset of NLP which helps users in opinionative/sentimental decision-making.

Different NLP tasks such as tokenization, stemming, lemmatization, negation detection, n-gram creation, and feature extraction aid in proper sentiment analysis. NLP-based pre-processing helps in improving the polarity classifier’s performance by analyzing the sentiment lexicons that are associated with the subject (Chong et al. 2014 ). As a result, NLP facilitates text comprehension, accurately captures text polarity, and ultimately facilitates improved sentiment analysis (Rajput 2020 ; Solangi et al. 2018 ).

Advanced NLP techniques are often needed when dealing with emoticons, multilingual data, idioms, sarcasm, sense or tone, bias, negation, etc. Otherwise, the outcome can drastically deteriorate. If the NLTK’s general stopwords list is utilized, words like not, nor, and no, for instance, are frequently deleted when removing stopwords during pre-processing. However, the removal of such words can alter the actual sentiment of the data. Thus, depending on its application, NLP tasks can either improve or deteriorate the result.

Text messages, comments, reviews, and blog posts are excellent sources of sentimental information. The extraction of useful information and knowledge hidden in textual data is an important aspect of sentiment analysis. Mining the relevant information from textual data possesses multi-dimensional advantages such as improved decision-making, public influence, national security, health and safety, etc. (Zhang et al. 2021 ; Wakade et al. 2012 ). Text mining involves the use of statistical techniques to retrieve quantifiable data from unstructured text, and uses NLP to transform the unstructured text into normalized, structured data, which makes it suitable for sentiment analysis.

Sentiment analysis, however, is not just confined to text. In most cases, such as when a sarcastic comment is made, or while pointing a finger at someone and saying- “You are responsible!”, the exact sentiment behind the plain text might not be conveyed properly. Non-text data like video, audio, and image are helpful in such a scenario to portray sentiment accurately.

A key part of sentiment analysis is extracting insightful information, trends, and patterns. To extract them from unstructured and semi-structured text data, text analysis is a process that supports sentiment analysis. Using techniques including word spotting, manual rule usage, text classification, topic modeling, and thematic analysis, the procedure helps in the extraction of meaning from the text. Text analysis can be used to specify individual lexical items (words or phrases) and observe the pattern.

Sentiment analysis, in contrast to basic text analytics, fundamentally shows the emotion concealed beneath the words, while text analytics analyses the grammar and relationships between words. Sentiment analysis essentially identifies whether a topic conveys a positive, negative, neutral, or any other sentiment; while text analysis is used to identify the most popular topics and prevalent ideas-based texts. In addition, it can be more challenging to specify the intended target in the context of sentiment conveyed, than it is to determine a document’s general subject.

A textual document with numerous opinions would have a mixed polarity overall, as opposed to having no polarity at all (being objective). It is also important to distinguish the polarity and the strength of a conveyed sentiment. One may have strong feelings about a product being decent, average, or awful while having mild feelings about a product being excellent (due to the possibility that one just had it for a brief period before having an opinion.). Also, unlike topical (involving text) analysis, in many cases such as that of the quotes, it is critical to understand whether the sentiment conveyed in the document accurately reflects the author’s true intentions or not.

Analyzing the existence of an important word in conjunction with the use of a sentiment score approach can help to uncover the most profound and specific insights that can be used to make the best decision in many situations. Areas of application for sentiment analysis aided by appropriate text analysis include strategic decision-making, product creation, marketing, competition intelligence, content suggestion, regulatory compliance, and semantic search.

Granularity levels

At present, a sentiment analysis model can be implemented at various granular levels according to the requirement and scope. There are mainly four levels of sentiment analysis that have gained a lot of popularity. They are document level (Pang et al. 2002 ; Li and Li 2013 ; Hu and Li 2011 ; Li and Wu 2010 ; Rui et al. 2013 ; Zhan et al. 2009 ; Yu et al. 2010 ), sentence or phrase level (Nguyen and Nguyen 2017 ; Wilson et al. 2005 ; Narayanan et al. 2009 ; Liu et al. 2013 ; Yu et al. 2013 ; Tan et al. 2012 ; Mullen and Collier 2004 ), word level (Nielsen 2011 ; Dang et al. 2009 ; Reyes and Rosso 2012 ; Bollegala et al. 2012 ; Thelwall and Buckley 2013 ; Li et al. 2014 ), and entity or aspect level (Li et al. 2012 ; Li and Lu 2017 ; Quan and Ren 2014 ; Cruz Mata et al. 2013 ; Mostafa 2013 ; Yan et al. 2015 ; Li et al. 2015a ).

Some of the other research works concentrate on concept level (Zad et al. 2021 ; Tsai et al. 2013 ; Poria et al. 2013 ; Balahur et al. 2011 ; Cambria et al. 2022 ; Cambria 2013 ), link/user level (Rabelo et al. 2012 ; Bao et al. 2013 ; Tan et al. 2011 ), clause level (Kanayama and Nasukawa 2006 ; Liu et al. 2013 ), and sense level (Banea et al. 2014 ; Wiebe and Mihalcea 2006 ; Alfter et al. 2022 ) sentiment analysis. Some of the important levels of sentiment analysis are discussed in the following sub-sections. To understand the different levels, let us consider a customer review R as shown below.

R = “I feel the latest mobile from iPhone is really good. The camera has an outstanding resolution. It has a long battery life. I can even bear the mobile’s heating problem. However, I feel it could have been a bit light weighted. Given the configurations, it is a bit expensive; but I must give a thumbs up for the processor.”

In the following subsections, we will observe the analysis of review R based on different levels.

Document-level sentiment analysis

It aims to assess a document’s emotional content. It assumes that the overall document expresses a single sentiment (Pang et al. 2002 ; Hu and Li 2011 ). The general approach of this level is to combine the polarities of each word/sentence in the document to find the overall polarity (Kharde and Sonawane 2016 ). According to document-level sentiment analysis, the overall sentiment of the document represented by review R is positive. According to Turney ( 2002 ), there are two approaches to document sentiment classification namely term-counting and machine learning. Term counting measure derives a sentiment measure while calculating total positive and negative terms in the document. Machine learning approaches generally yield superior results as compared to term-counting approaches. In this approach, it is assumed that the document is focused on only one object and thus holds an opinion about that particular object only. Thus, if the document contains opinions about different objects, this approach is not suitable.

Sentence/phrase-level sentiment analysis

The sentiment associated with each sentence of a set of data is analyzed at this level of sentiment analysis. The general approach is to combine the sentiment orientation of each word in a sentence/phrase to compute the sentiment of the sentence/phrase (Kharde and Sonawane 2016 ). It attempts to classify a sentence as conveying either positive/negative/neutral/mixed sentiment or as a subjective or objective sentence (Katrekar and AVP 2005 ). Objective sentences are facts and do not convey any sentiment about an object or entity. They do not play any role in polarity determination and thus need to be filtered out (Kolkur et al. 2015 ). The polarity of a sentence in review R is found to be positive/negative/mixed irrespective of its overall polarity.

Word-level sentiment analysis

Through proper examination of the polarity of each and every word, this sentiment analysis level investigates how impactful individual words can be on the overall sentiment. The two methods of automatically assigning sentiment at this level are dictionary-based and corpus-based methods (Kharde and Sonawane 2016 ). According to Reyes and Rosso ( 2012 ), in corpus-based techniques, the co-occurrence patterns of words are used for sentiment determination. However, most of the time, statistical information needed for the determination of a word’s sentiment orientation is large corpus dependent. The dictionary-based approaches use synonyms, antonyms, and hierarchies from lexical resources such as WordNet and SentiWordNet (SWN) to determine the sentiments of words (Kharde and Sonawane 2016 ). Such techniques assign positive, negative, and objective sentiment scores to each synset. If the words in review R such as outstanding, expensive, etc. are evaluated individually, different words within a particular sentence are observed to hold different polarities.

Aspect or entity-level sentiment analysis

For a specific target entity, this approach essentially identifies various aspects associated with it. Then, the sentiment expressed towards the target by each of its aspects is determined in this level of sentiment analysis. As a result, it can be divided into two different tasks, namely extraction of aspects and sentiment classification of aspects (Liu and Zhang 2012 ). For the different aspects such as resolution, weight, and price of the same product in review R, different sentiments are conveyed.

Concept-level sentiment analysis

Most of the time, merely using emotional words to determine sentiment or opinion is insufficient. To obtain the best results, a thorough examination of the underlying meaning of the concepts and their interactions is required. Concept-level sentiment analysis intends to convey the semantic and affective information associated with opinions, with the use of web ontologies or semantic networks (Cambria 2013 ). Rather than simply using word-cooccurrences or other dictionary-based approaches as in word-level sentiment analysis, or finding overall opinion about a single item as in document-level sentiment analysis; concept-level sentiment analysis generally makes use of feature spotting and polarity detection based on different concepts. E.g., For “long battery life” in review R is considered positive. However, a “long route” might not be preferable if someone wants to reach the destination in minimum time, and thus can be considered as negative. Tsai et al. ( 2013 ) made use of features of the concept itself as well as features of the neighboring concepts.

User-level sentiment analysis

User–level sentiment analysis takes into account the fact that if there is a strong connection among users of a social platform, then the opinion of one user can influence other users. Also, they may hold similar sentiments/opinions for a particular topic (Tan et al. 2011 ). At the user level, all the followers of the reviewer of review R may get influenced by this review.

Clause-level sentiment analysis

A sentence can be a combination of multiple clauses, each conveying different sentiments. The clauses in review R can be observed to represent opposing polarity because they are separated by the word “but”. Clause-level sentiment analysis focuses on the sentiment associated with each clause based on aspect, associated condition, domain, grammatical dependencies of the words in the clause, etc.

Sense-level sentiment analysis

The words which form a sentence can interpret different meanings based on their usage in the sentence. Specifically, when the same word has multiple meanings, the sense with which the word is used, can highly affect the sentiment orientation of the whole sentence or document. E.g., let us consider the word “bear” in review R. Is the word bear referring to the mammal bear? Otherwise, is it indicating the bearing (holding) of something? In what sense it is used? Is it used as a noun or a verb? In such a case, proper knowledge of the grammatical structure or word sense can contribute immensely to the determination of the appropriate sentiment of any natural language text. Thus, solving words’ syntactic ambiguity and performing word sense disambiguation (Wiebe and Mihalcea 2006 ) are vital parts of designing an advanced sentiment analysis model. Alfter et al. ( 2022 ) provided a sense-level annotated resource rather than word-level annotation and performed various experiments to explore the explanations of difficult words.

The analysis of the review R at different levels shows that the same review can have different interpretations based on the requirement. Single-level approaches work well in most cases. However, sometimes when the evaluation of sentiments is based on very short document(s) or even very long document(s), the model may fail to handle the flexibility. To determine the polarity of the overall documents, Li et al. ( 2010 ) combined phrase-level and sentence-level sentiment analysis to design a multi-level model. Valakunde and Patwardhan ( 2013 ) advised following a ladder-like computation. In this technique, aspect or entity-level sentiment is employed to compute the sentence-level sentiments and then use the weightage of entities along with the sentence-level sentiments for evaluation of the complete document.

General framework of sentiment analysis

The evolution of sentiment analysis marks the emergence of different models by different experts. After going through more than 500 sentiment analysis models proposed till now, a general framework of sentiment analysis is presented in Fig.  1 . The framework comprises mainly four modules along with an additional optional module. The modules perform collection and standardization of data; pre-processing of the dataset; extraction of features or keywords which represent the overall dataset; prediction or classification of the sentiments associated with the keywords or the whole sentence or document according to the requirement; and summarization of the overall sentiment associated with the dataset. The different modules are discussed in detail below.

An external file that holds a picture, illustration, etc.
Object name is 10462_2023_10442_Fig1_HTML.jpg

Data collection and standardization

With the growing platforms of expression, the type and format of expressing people’s views, opinions, or sentiments on a particular subject is increasing. Among the different available types of data such as text, image, audio, or video, the research on textual data has gained momentum in the last few years. Currently, though multi-lingual text data has attracted few researchers, however, 90% of sentiment analysis studies, experimentation, and design concentrates mainly on English textual data.

The development, examination, and validation of a system typically depend on the quality and structure of data used for building, operating, and maintaining the model. The overall functionality of a model depends on the data used from the boundless and voluminous source of available data to a great extent. Many public data sources are available which are used by some researchers to design a sentiment analysis model. Publicly available dataset namely Blitzer’s multi-domain sentiment data (Blitzer et al. 2007 ) is used by Dang et al. ( 2009 ). Public product reviews by Epinions (epinions.com) are also used by some of the researchers (Kharde and Sonawane 2016 ; Fahrni and Klenner 2008 ). UCI Machine Learning Repository provides standard datasets for sentiment namely Twitter data for Arabic Sentient Analysis, Sentiment Labelled Sentences, Paper Reviews, Sentiment Analysis in Saudi Arabia about distance education during Covid-19, etc. The overwhelming rate of data production demands designing a system that keeps on updating the database from time to time to avoid generality or biased interest at a particular time. A manual approach to collecting a substantial volume of data is not a desirable practice. Thus, automatic big data collection techniques are indeed a vital aspect that must be keenly observed. Several tools or APIs have come up recently that help to collect data from online social or e-commercial platforms. Some of them are NodeXL, Google spreadsheet using Twitter Achiever, Zapier, Rapid Miner, Parsehub, BeautifulSoup in Python, WebHarvy, etc. Most of these tools or APIs help to collect real-time data. But the main problem occurs when someone desires to work with historical data; because many of these techniques such as Twitter API do not permit extracting tweets older than seven days. Building a standard database involves dealing with the unstructured information attached to the data from the internet. For a dataset representing a particular topic, proper standardization in an appropriate type, format, and context, extensively boosts the overall outcome of the analysis. To design a robust system, the homogeneity of the data must be maintained. Besides, proper labelling of the collected data can improve the performance of the sentiment analysis model. Different online labelling techniques are available nowadays. However, online labelling techniques are sometimes full of noise, which leads to lower accuracy of the system. Designing an automatic labelling system, which makes use of various statistical knowledge of the whole corpus and appropriate domain knowledge of words, proves to contribute more to enhancing the sentiment analysis process.

Pre-processing

The process of removing any sort of noise from a textual dataset and preparing a cleaned, relevant and well-structured dataset for the sentiment analysis process is called as pre-processing. Appropriate pre-processing of any dataset noticeably improves the sentiment analysis process. For analyzing the sentiment of online movie reviews, a three-tier approach is adopted by Zin et al. ( 2017 ) to examine the effect of pre-processing task. In the first tier, they experimented with the removal of stopwords using the English stopwords list. The stopwords are the words such as the articles a, an, the, etc., which have no effective role in determining sentiment. In the second tier, the sentiment analysis is performed after the removal of stopwords and all other meaningless characters/words such as date (16/11/20), special characters (@, #), and words with no meaning (a+, a-, b+). In the third tier, more cleaning strategies are used, i.e., numbers and words having less than three characters are removed along with the stopwords and meaningless words. Their results demonstrate that the different combinations of the pre-processing steps show favorable improvement in the classification process; thus, establishing the significance of the removal of stopwords, meaningless words such as special characters, numbers, and words with less than three characters. Jianqiang ( 2015 ) found that replacing negations, and expanding acronyms have a positive effect on sentiment classification, however, the removal of URLs, numbers, and stopwords hardly changes the accuracy. Efficient pre-processing can increase the accuracy of a sentiment analysis model. To establish it, Haddi et al. ( 2013 ) combined various pre-processing methods using online reviews of movies and followed different steps such as cleaning online text, removal of white space, expansion of abbreviations, stemming, eliminating stopwords, and handling negation. Apart from these, they also considered feature selection as a pre-processing step. They used the chi-square method to filter out the less impactful features. To handle negation, a few researchers such as Pang et al. ( 2002 ), used the following words to tag the negation word until a punctuation mark occurs. However, authors of Haddi et al. ( 2013 ) and Dave et al. ( 2003 ) observed that the results before and after the tagging remain almost the same. Therefore, Haddi et al. ( 2013 ) reduced the number of tagged following words to three and two. Saif et al. ( 2014 ) observed that a list of pre-complied stopwords negatively affects Twitter sentiment classification. However, with the use of pre-processing the original feature space is significantly reduced. Jianqiang and Xiaolin ( 2017 ) show that stopword removal, acronym expansion, and replacing negation are effective pre-processing steps. According to Jianqiang and Xiaolin, URLs and numbers do not contain useful information for sentiment analysis. They also found that reverting words with repeated characters shows fluctuating performance. This must be because, in some situations, a word such as goooood gets replaced by goood. Thus, creating confusion about whether it should be interpreted as good or god. Such a situation may alter the actual polarity conveyed by the word. Therefore, reverting words with repeated characters is not recommendable.

Feature/keyword extraction

In a sentiment analysis model, the words and symbols within the corpus are mainly used as the features (O’Keefe and Koprinska 2009 ). Traditional topical text classification approaches are used in most sentiment analysis systems, in which a document is treated as a Bag of Words (BOW), projected as a feature vector, and then categorized using a proper classification technique. Experts use a variety of feature sets to boost sentiment classification efficiency, including higher-order n-grams (Pang et al. 2002 ; Dave et al. 2003 ; Joshi and Rosé 2009 ), word pairs and dependency relations (Dave et al. 2003 ; Joshi and Rosé 2009 ; Gamon 2004 ; Subrahmanian and Reforgiato 2008 ). Using different word-relation feature sets namely unigram (one word), bigram (two words), and dependency parsing, Xia et al. ( 2011 ) performed sentiment classification using an ensemble framework. Wiebe and Mihalcea ( 2006 ) introduced a ground-breaking study focused on the Measure of Concern (MOC) to assess public issues using Twitter data and the most significant unigrams. While conducting text opinion mining, Sidorov et al. ( 2013 ) demonstrated the supremacy of unigrams, as well as other suitable settings such as minimal classes, the efficacy of balanced and unbalanced corpus, the usage of appropriate machine learning classifiers, and so on. Every word present in a dataset is not always important in the context of sentiment analysis. The difficulty of determining precise sentiment classifications has been increased by the continuous growth of knowledge. Even after cleaning the dataset with various pre-processing steps, using all of the data in the dataset can result in dimensionality issues, longer computation times, and the use of irrelevant or less significant features or terms. Especially in the case of higher dimensional and multivariate data, these problems become even worse. According to Li et al. ( 2017 ), a good word representation that captures sentiment is good at word sentiment analysis and sentence classification; and building document-level sentiment analysis dynamically based on words in need is the best practice. Keyword extraction is a method for extracting essential features/terms from textual data by defining particular terms, phrases, or words from a document to represent the document concisely (Benghuzzi and Elsheh 2020 ). If a text’s keywords are extracted correctly, the text’s subject can be thoroughly researched and evaluated, and a good decision can be made about the text. Given that, manually extracting keywords from such a large number of databases is a repetitive, time-consuming, and costly process, automated keyword extraction has become a popular field of research for most researchers in recent years. Automatic keyword extraction can be categorized into supervised, semi-supervised, and unsupervised methods (Beliga et al. 2015 ). The keywords are mainly represented using either Vector Space Model (VSM) or a Graph-Based Model (GBM) (Ravinuthala et al. 2016 ; Kwon et al. 2015 ). Once the datasets are represented using any of the VSM or GBM techniques, the keywords are extracted using simple statistics, linguistics, machine learning techniques, and hybridized methods (Bharti and Babu 2017 ). Simple methodologies that do not include training data and are independent of language and domain are included in the statistical keyword extraction methods. To identify keywords, researchers used frequency of terms, Term Frequency-Inverse Document Frequency (TF-IDF), co-occurrences of terms, n-gram statistics, PATricia (PAT) Tree, and other statistics from documents (Chen and Lin 2010 ). The linguistic approach examines the linguistic properties of words, sentences, and documents, with lexical, semantic, syntactic, and discourse analysis being the most frequently studied linguistic properties (HaCohen-Kerner 2003 ; Hulth 2003 ; Nguyen and Kan 2007 ). A machine learning technique takes into account supervised or unsupervised learning while extracting keywords. Supervised learning produces a system that is trained on a collection of relevant keywords followed by identification and analysis of keywords within unfamiliar texts (Medelyan and Witten 2006 ; Theng 2004 ; Zhang et al. 2006 ). All of these methods are combined in the hybrid method for keyword extraction. O’Keefe and Koprinska ( 2009 ) performed sentiment analysis using machine learning classifiers, which they validated using the movie review dataset. Along with the use of feature presence, feature frequency, and TF-IDF as feature weighting methods, they proposed SWN Word Score Groups (SWN-SG), SWN Word Polarity Groups (SWN-PG), and SWN Word Polarity Sums (SWN-PS) using words which are grouped by their SWN values. The authors suggest categorical Proportional Difference (PD), SWN Subjectivity Scores (SWNSS), and SWN Proportional Difference (SWNPD) as feature selection techniques. They discovered that feature weights based on unigrams, especially feature presence, outperformed SWN-based methods. Using different machine learning techniques; Tan and Zhang ( 2008 ) proposed a model for sentiment analysis in three domains: education, film, and home, which was written in Chinese and used various feature selection techniques for the purpose. Mars and Gouider ( 2017 ) proposed a MapReduce-based algorithm for determining opinion polarity using features of consumer opinions and big data technologies combined with Text Mining (TM) and machine learning tools. Using a supervised approach, Kummer and Savoy ( 2012 ) suggested a KL score for providing weightage to features for sentiment and opinion mining. All these research works establish that the machine learning approach of keyword extraction when incorporated with any other techniques has a great scope in the field of sentiment analysis. There are different kinds of methods that are used to perform keyword extraction using VSM and GBM approaches. They are discussed in detail below.

Vector space model

In VSM, the documents are represented as vectors of the terms (Wang et al. 2015 ). VSM involves building a matrix V which is usually termed as a document-term matrix, where the rows represent the documents in the dataset, whereas columns correspond to the terms of the whole dataset. Thus, if the set of documents is represented by D = ( d 1 , d 2 , . . . . , d m ) and the set of terms/tokens representing the entire corpus is T = ( t 1 , t 2 , . . . . , t n ) , then the element d t i , j ∈ V mxn , i = 1 , 2 , … , m , and j = 1 , 2 , … , n is assigned a weight w i , j . The weights can be assigned based on the word frequency associated with a document or the entire dataset. According to Abilhoa and De Castro ( 2014 ), the frequencies can be binary, absolute, relative, or weighted. Algorithms such as binary, Term Frequency (TF), TF–IDF, etc. are used in traditional term weighting schemes.

If document d i contains the term t j , the element d t i , j of a term vector is assigned a value 1 in the binary term weighting scheme, otherwise, the value 0 is assigned (Salton and Buckley 1988 ). It has the obvious drawback of being unable to recognize the most representative words in a text. Furthermore, using word frequency often helps to increase the importance of terms in documents.

The limitation of the binary term weighting scheme motivates the use of term frequency as the weight of a term for a specific text. The number of times a word appears in a text is known as its term frequency. As a result, a value w i , j is assigned to d t i , j with w i , j equaling the number of times the word t j appears in the document d i . However, as opposed to words that appear infrequently in documents, terms that appear consistently in all documents have less distinguishing power to describe a document (Kim et al. 2022 ). This is an area where the TF algorithm falls short.

The number of documents in the entire document corpus where a word appears is known as its document frequency. If a word has a higher document frequency, it has a lower distinguishing power, and vice versa. As a result, the Inverse Document Frequency (IDF) metric is used as a global weighting factor to highlight a term’s ability to identify documents. Equation  1 (Zhang et al. 2020 ) may be used to describe a term’s TF-IDF weight as follows:

where, t f k denotes the frequency of the term t k in a specific document and d f k denotes the document frequency of the term t k , i.e., the number of documents containing the term t k . The total number of documents in the corpus is denoted by m .

Using the traditional term-weighing techniques, many experts tried to propose their improvised version. Some of them are TF-CHI (Sebastiani and Debole 2003 ), TF-RF (Lan et al. 2008 ), TF-Prob (Liu et al. 2009 ), TF-IDF-ICSD (Ren and Sohrab 2013 ), and TF-IGM (Chen et al. 2016 ).

Graph based model

A graph G is constructed in GBM, with each node or vertex V i representing a document term or function t i and the edges E i , j representing the relationship between them (Beliga et al. 2015 ). Nasar et al. ( 2019 ) showed that various properties of a graph, like centrality measures, node’s co-occurrence, and others, play a significant role in keyword ranking. Semantic, syntactic, co-occurrence, and similarity relationships are some of the specific perspectives of graph-based text analysis. In GBM techniques, centrality measures tend to be the most significant deciding factor (Malliaros and Skianis 2015 ). The importance of a term is calculated by using the centrality measure, to calculate the importance of the node in the graph. Beliga ( 2014 ) presented the knowledge of nineteen different measures which are used for extraction purposes. Degree centrality, closeness centrality, betweenness centrality, selectivity centrality, eigenvector centrality, PageRank, TextRank, strength centrality, neighborhood size centrality, coreness centrality, clustering coefficient, and other centrality measures have been proposed so far. Some of the popular centrality measures are discussed below.

Degree centrality is used to measure how often a term occurs with any other term. For a particular node, the total count of edges incident on it is used to measure the metric (Beliga 2014 ). The more edges that cross the node, the more significant it is in the graph. A node V i ’s degree centrality is measured using Eq.  2 .

where, D C ( V i ) represents node V i ’s degree centrality, ∣ N ∣ indicates the total count of nodes and ∣ n ( V i ) ∣ represents the overall nodes linked with the node V i .

Closeness centrality determines the closeness of a term with all other terms of the dataset. This metric calculates the average of the shortest distance from a given node to every other node in the graph. It is defined by Eq.  3 (Tamilselvam et al. 2017 ) as the reciprocal of the number of all node distances to any node, i.e. the inverse of farness.

where, C C ( V i ) represents node V i ’s closeness centrality, ∣ N ∣ represents graph’s node count, and d i s t ( V i , V j ) represents the shortest distance from node V i to node V j .

This metric is used to see how often a word appears in the middle of another term. This metric indicates how many times a node serves as a bridge between two nodes on the shortest path. For a node V i , it is calculated using Eq.  4 (Tamilselvam et al. 2017 ).

In Eq.  4 , B C ( V i ) represents V i ’s betweenness centrality, σ V x V y represents the overall shortest paths from node V x to V y , and the overall shortest paths from node V x to V y via. V i is represented by σ V x V y ( V i ) .

Selectivity Centrality ( S C ( V i ) ) (Beliga et al. 2015 ) is the average weight on a node’s edges. As shown in Eq.  5 , S C ( V i ) is equal to the fraction of strength of node s ( V i ) to its degree d ( V i ) .

As shown in Eq.  6 , node V i ′ s strength, s ( V i ) , is the summation of overall edge weights incident on ( V i ) .

This centrality measure determines the global importance of a term. It is calculated for a node using the centralities of the neighbors of the node. It is calculated using the adjacency matrix and a matrix calculation to determine the principal eigenvector (Golbeck 2013 ). Assume that A is a ( nxn ) similarity matrix, with A = ( α V i V j ) , α V i V j = 1 if V i is bound to V j and α V i V j = 0 , otherwise. The i-th entry in the normalized eigenvector belonging to the largest eigenvalue of A is then used to describe the eigenvector centrality E V C ( V i ) of node V i . Equation  7 (Bonacich 2007 ) shows the formula for eigenvector centrality.

where, λ is the largest eigenvalue of A . Castillo et al. ( 2015 ) suggested a supervised model with the use of degree and closeness centrality measures of a co-occurrence graph, to determine words belonging to each sentiment while representing existing relationships among document terms. Nagarajan et al. ( 2016 ) have also suggested an algorithm for the extraction of keywords based on centrality metrics of degree and closeness. For obtaining the optimal set of ranked keywords, Vega-Oliveros et al. ( 2019 ) used nine popular graph centralities for the determination of keywords and introduced a new multi-centrality metric. They found that all of the centrality measures have a strong relationship. The authors also discovered that degree centrality is the quickest and most efficient measure to compute. While experimenting with various centrality measures, Lahiri et al. ( 2014 ) also noticed that degree centrality makes keyword and key extraction much simpler. Abilhoa and De Castro ( 2014 ) suggest a keyword extraction model based on graph representation, and eccentricity and closeness centrality measures. As a tiebreaker, they used the degree centrality. In several real-world models, disconnected graphs are common, and using eccentricity and closeness centralities to achieve the expected result often fails. Yadav et al. ( 2014 ) recommended extracting keywords using degree, eccentricity, closeness, and other centralities of the graph while emphasizing the semantics of the terms. With the use of Part of Speech (PoS) tagging, Bronselaer and Pasi ( 2013 ) presented a method to represent textual documents in a graph-based representation. Using various centralities, Beliga et al. ( 2015 ) proposed a node selectivity-driven keyword extraction approach. Kwon et al. ( 2015 ) suggested yet another ground-breaking keyword weighting and extraction method using graph. To improvise the traditional TextRank algorithm, Wang et al. ( 2018 ) used document frequency and Average Term Frequency (ATF) to calculate the node weight for extraction of keywords belonging to a particular domain. Bellaachia and Al-Dhelaan ( 2012 ) introduced the Node and Edge rank (NE-rank) algorithm for keyword extraction, which basically combines node weight (i.e., TF-IDF in this case) with TextRank. Khan et al. ( 2016 ) suggested Term-ranker, which is a re-ranking approach using graph for the extraction of single-word and multi-words using a statistical method. They identified classes of semantically related words while estimating term similarity using term embedding, and used graph refinement and centrality measures for extraction of top-ranked terms. For directed graphs, Ravinuthala et al. ( 2016 ) weighted the edges based on themes and examined their framework for keywords produced both automatically and manually. Using the PageRank algorithm, Devika and Subramaniyaswamy ( 2021 ) extracted keywords based on the graph’s semantics and centralities. The above studies show that centrality measures are a catalyst for effective sentiment analysis. This is because a powerful keyword’s effect or position in determining the sentiment score is often greater than a weaker keyword. For the extraction of sentiment sentences, Shimada et al. ( 2009 )suggested the use of a hierarchical acyclic-directed graph and similarity estimation. For sentences’ sentiment representation, Wu et al. ( 2011 ) developed an integer linear programming-based structural learning system using graph. Using graphs, Duari and Bhatnagar ( 2019 ) also suggested keyword’s score determination and extraction procedures based on the sentences’ cooccurrence with a window size set to 2, position-dependent weights, contextual hierarchy, and connections based on semantics. In comparison to other existing models, their model has an excessively high dimensionality with terms in the text interpreted as nodes and edges representing node relationships in the graph. A variety of unsupervised graph-driven automated keyword extraction approaches is investigated by Mothe et al. ( 2018 ) using node ranking and varying word embedding and co-occurrence hybridization. Litvak et al. ( 2011 ) suggested DegExt, an unsupervised cross-lingual keyphrase extractor that makes use of syntactic representation of text using graphs. Order-relationship between terms represented by nodes is represented by the edges of such graphs. However, without a restriction on the maximum number of possible nodes which can be used, their algorithm generates exponentially larger graphs with larger datasets. As a result, dimensionality is one of the consequences of a graph-based keyword extraction procedure that must be regulated using appropriate means for sentiment analysis to be efficient. Chen et al. ( 2019 ) suggested extracting keywords using an unsupervised approach that relied solely on the article as a corpus. Words are ranked in their model based on their occurrence in strong motifs. Bougouin et al. ( 2013 ) assessed the relevance of a document’s topic in order to suggest TopicRank, an unsupervised approach for extracting key phrases. However, it should be mentioned that their model does not have the optimal key selection approach. To retrieve topic-wise essential keywords, Zhao et al. ( 2011 ) suggested a three-stage algorithm. Edge-weighting is used to rate the keywords (i.e., nodes) using two words’ co-occurrence frequency, followed by generation as well as the ranking of candidate keyphrases. Shi et al. ( 2017 ) suggested an automated single document keyphrase extraction technique based on co-occurrence-based knowledge graphs, which learns hidden semantic associations between documents using Personalized PageRank (PPR). Thus, many experts have used co-occurrence graphs, as well as other graph properties such as centrality metrics, to demonstrate the effectiveness of these methods for keyword ranking in sentiment analysis.

Sentiment prediction and classification techniques

Different techniques have emerged till now for serving sentiment prediction and classification purposes. Several researchers group the techniques based on the applicability of the techniques, challenges, or simply the general topics of sentiment analysis. According to Cambria ( 2016 ), affective computing can be performed either by using knowledge-based techniques, statistical methods, or hybrid approaches. Knowledge-based techniques categorize text into affect categories with the use of popular sources of affect words or multi-word expressions, based on the presence of affect words such as ‘happy’, ‘sad’, ‘angry’ etc. Statistical methods make use of affectively annotated training corpus and determine the valence of affect keywords through word co-occurrence frequencies, the valence of other arbitrary keywords, etc. Hybrid approaches such as Sentic Computing (Cambria and Hussain 2015 ) make use of knowledge-driven linguistic patterns and statistical methods to infer polarity from the text.

Medhat et al. ( 2014 ) presented different classification techniques of sentiment analysis in a very refined and illustrative manner. Inspired by their paper, the current sentiment prediction and classification techniques are depicted in The evolution of sentiment analysis marks the emergence of different models by different experts. After going through more than 500 sentiment analysis models proposed till now, a general framework of sentiment analysis is presented in Fig.  2 . The framework comprises mainly four modules along with an additional optional module. The modules perform collection and standardization of data; pre-processing of the dataset; extraction of features or keywords which represent the overall dataset; prediction or classification of the sentiments associated with the keywords or the whole sentence or document according to the requirement; and summarization of the overall sentiment associated with the dataset. The different modules are discussed in detail below. The techniques are examined thoroughly below, to assist in choosing the best sentiment analysis classification or prediction method for a particular task.

An external file that holds a picture, illustration, etc.
Object name is 10462_2023_10442_Fig2_HTML.jpg

Sentiment classification techniques

Machine learning approach

The machine learning approach of sentiment classification uses well-known machine learning classifiers or algorithms along with linguistic features to classify the given set of data into appropriate sentiment classes (Cambria and Hussain 2015 ). Given a set of data, machine learning algorithms focus to build models which can learn from the representative data Patil et al. ( 2016 ). The extraction and selection of the best set of features to be used to detect sentiment are crucial to the models’ performance Serrano-Guerrero et al. ( 2015 ). There are basically two types of machine learning techniques namely supervised and unsupervised. However, some researchers also use a hybrid approach by combining both these techniques.

The supervised machine learning approach is based on the usage of the initial set of labeled documents/opinions, to determine the associated sentiment or opinion of any test set or new document. Among the different supervised learning techniques Support Vector Machine (SVM), Naive Bayes, Maximum Entropy, Artificial Neural Network (ANN), Random Forest, and Gradient Boosting are some of the most popular techniques which are employed in the sentiment analysis process. A brief introduction to each of these techniques is presented below; followed by a discussion on some of the research works using these algorithms either individually, in combination, or in comparison to each other.

SVM classifier is basically designed for binary classification. However, if the model is extended to support multi-class classification, One-vs-Rest (OvR)/One against all or One-vs-One (OvO)/One against one strategy is applied for the SVM classifier (Hsu and Lin 2002 ). In OvR, the multi-class dataset is re-designed into multiple binary datasets, where data belonging to one class is considered positive while the rest are considered negative. Using the binary datasets, the classifier is then trained. The final decision on the assignment of a class is made by choosing the class which classifies the test data with the greatest margin. Another, strategy One-vs-One (OvO) can also be used, and thus choose the class which is selected by majority classifiers. OvO involves splitting the original dataset into datasets representing one class versus every other class one by one.

Ahmad et al. ( 2018 ) presented a systematic review of sentiment analysis using SVM. Based on the papers published during the span of 5 years, i.e., from 2012 to 2017, they found that a lot of research works are published either using SVM directly for analysis or in a hybrid manner or even for comparing their proposed model with SVM. Some of the recent studies that used SVM for sentiment analysis are listed in Table ​ Table1 1 .

Recent literature on sentiment analysis using SVM

AuthorsTitle of the paperContribution(s)
Hidayat et al. ( )Sentiment analysis of Twitter data related to Rinca Island development using Doc2Vec and SVM and logistic regression as a classifier.

Studied public opinion on Twitter regarding the development in Rinca Island using SVM and logistic regression.

Used two types of Doc2Vec, distributed memory model of a paragraph vector (PV-DM) and a paragraph vector with a distributed bag of Words (PV-DBOW).

The result of PV-DBOW with SVM, PV-DM with SVM showed the best results.

Cepeda and Jaiswal ( )Sentiment Analysis on Covid-19 Vaccinations in Ireland using Support Vector Machine

Used tweets on the Covid-19 vaccination program in Ireland.

A lexicon and rule-based VADER tool labeled the global dataset as negative, positive, and neutral. After that, Irish tweets were classified into different sentiments using SVM.

Results show positive sentiment toward vaccines at the beginning of the vaccination drive, however, this sentiment gradually changed to negative in early 2021.

Mullen and Collier ( )Sentiment analysis using support vector machines with diverse information sources

Uses SVMs to bring together diverse sources of potentially pertinent information, including several favourability measures for phrases and adjectives and, where available, knowledge of the topic of the text.

Hybrid SVMs which combine unigram-style feature-based SVMs with those based on real-valued favourability measures obtain superior performance.

Zainuddin and Selamat ( )Sentiment analysis using support vector machine

The features were extracted using N-grams and different weighting schemes.

Use of Chi-Square weight features to select informative features for the classification using SVM proves to improve the accuracy.

Luo et al. ( )Affective-feature-based sentiment analysis using SVM classifier

Considered text sentiment analysis as a binary classification.

The feature selection method of Chi-square Difference between the Positive and Negative Categories (CDPNC) was proposed to consider the entire corpus contribution of features and each category contribution of features.

The sentiment Vector Space Model (s-VSM) was used for text representation to solve data sparseness.

With the combination of document frequency with Chi-Square, the experimental results were found to be superior to other feature selection methods using SVM.

Patil et al. ( )Sentiment analysis using support vector machine.

Stated that SVM acknowledges some properties of text like high dimensional feature space, few irrelevant features, sparse instance vector and also eliminates the need for feature selection with the ability to generalize high dimensional feature space.

The authors showed that the textual sentiment analysis performed better using SVM as compared to ANN.

Prastyo et al. ( )Tweets Responding to the Indonesian Government’s Handling of COVID-19: Sentiment Analysis Using SVM with Normalized PolyKernel

The SVM analysis on the sentiments on general aspects using two-classes dataset achieved the highest performance in average accuracy, precision, recall, and f-measure.

Demonstrated that the SVM algorithm with the Normalized Poly Kernel can be used to predict sentiment on Twitter for new data quickly and accurately.

There are basically two models which are commonly used for text analysis i.e., Multivariate Bernoulli Naive Bayes (MBNB) and Multinomial Naive Bayes (MNB) (Altheneyan and Menai 2014 ).

However, for continuous data, Gaussian Naive Bayes is also used. MBNB is used for classification when multiple keywords (features) represent a dataset. In MBNB, the document-term matrix is built using BoW, where the keywords for a document are represented by 1 and 0 based on the occurrence or non-occurrence in the document.

Whenever the count of occurrence is considered, MNB is used. In MNB, the distribution is associated with vector parameters θ c = ( θ c 1 , θ c 2 , . . . , θ ci ) for class c , where i is the number of keywords, and θ ci is the probability P ( V i ∣ C l a s s c ) of keyword V i appearing in a dataset belonging to class c . For estimating θ c , a smoothed variant of maximum likelihood namely relative frequency counting is employed as shown below.

where, α is the smoothing factor, N ci is the number of times keyword k appears in the training set and N c is the total number of keywords in class c .

To conduct a thorough investigation of the sentiment of micro-blog data, Le and Nguyen ( 2015 ) developed a sentiment analysis model using Naive Bayes and SVM, as well as information gain, unigram, bigram, and object-oriented feature extraction methods. Wawre and Deshmukh ( 2016 ) presented a system for sentiment classification that included comparisons of the common machine learning approaches Naive Bayes and SVM. Bhargav et al. ( 2019 ) used the Naive Bayes algorithm and NLP to analyze customer sentiments in various hotels.

Using the empirical probability distribution, maximum entropy models a given dataset by finding the highest entropy to satisfy the constraints of the prior knowledge. The unique distribution that shows maximum entropy is of the exponential form as shown in Eq.  12 .

Here, f i ( d o c i , C ) is a keyword and λ i is a parameter to be estimated. The denominator of Eq.  12 is a normalizing factor to ensure proper probability.

The flexibility offered by the maximum entropy classifier helps to augment syntactic, semantic, and pragmatic features with the stochastic rule systems. However, the computational resources and annotated training data required for the estimation of parameters for even the simplest maximum entropy model are very high. Thus, for large datasets, the model is not only expensive but is also sensitive to round-off errors because of the sparsely distributed features. For the estimation of parameters, different methods such as gradient ascent, conjugate gradient, variable metric methods, Generalized Iterative Scaling, and Improved Iterative Scaling are available (Hemalatha et al. 2013 ). Yan and Huang ( 2015 ) used the maximum entropy classifier to perform Tibetan sentences’ sentiment analysis, based on the probability difference between positive and negative outcomes. To identify the sentiment expressed by multilingual text, Boiy and Moens ( 2009 ) combined SVM, MNB, and maximum entropy describing different blogs, reviews, and forum texts using unigram feature vectors.

Deep learning (DL): Deep Learning is essentially an ANN with three or more layers that has the capability to handle large datasets and their associated complexities such as non-linearity, intricate patterns, etc. It involves the transformation and extraction of features automatically, which facilitates self-learning as it goes by multiple hidden layers, in a way similar to humans. These advantages of deep learning lead to enhanced performance of a sentiment analysis model and thus have led to its popularity since 2015 for the same. The input features of many deep learning models are generally preferred to be word embeddings. Word embeddings can be learned from text data by using an embedding layer, Word2Vec, or Glove vectors. Word2Vec can be learned either by the Continuous Bag of Words (CBOW) or the Continuous Skip-Gram model. Some of the common deep learning algorithms include CNNs, RecNN, RNN, Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and Deep Belief Networks (DBN). The detailed study by Yadav and Vishwakarma ( 2020 ) on sentiment analysis using DL, has found that LSTM performs better than other popular DL algorithms.

Tembhurne and Diwan ( 2021 ) provided valuable insight into the usage of several architectural versions of sequential deep neural networks, such as RNN, for sentiment analysis of inputs in any form, including textual, visual, and multimodal inputs. Tang et al. ( 2015 ) introduced several deep NNs with the use of sentiment-specific word embeddings for performing word-level, sentence-level, and lexical-level sentiment analysis. To encode the sentiment polarity of sentences, the authors introduced different NNs including a prediction model and a ranking model. They discovered discriminative features from different domains using sentiment embeddings to perform sentiment classification of reviews. According to the authors, the SEHyRank model shows the best performance among all the other proposed models. To fit CNN in aspect-based sentiment analysis, Wang et al. ( 2021 ) proposed an aspect mask to keep the important sentiment words and reduce the noisy ones. Their work made use of the position of aspects to perform aspect-based sentiment analysis in a unified framework. Hidayatullah et al. ( 2021 ) performed sentiment analysis using tweets on the Indonesian President Election 2019 using various deep neural network algorithms. According to the authors, Bidirectional LSTM (Bi-LSTM) showed better results as compared to CNN, LSTM, CNN-LSTM, GRU-LSTM, and other machine learning algorithms namely SVM, Logistic Regression (LR), and MNB. Soubraylu and Rajalakshmi ( 2021 ) proposed a hybrid convolutional bidirectional recurrent neural network, where the rich set of phrase-level features are extracted by the CNN layer and the chronological features are extracted by Bidirectional Gated Recurrent Unit (BGRU) through long-term dependency in a multi-layered sentence. Priyadarshini and Cotton ( 2021 ) suggested a sentiment analysis model using LSTM-CNN for a fully connected deep neural network and a grid search strategy for hyperparameter tuning optimization.

The Emotional Recurrent Unit (ERU) is an RNN, which contains a Generalized Neural Tensor Block (GNTB) and a Two-Channel Feature Extractor (TFE) designed to tackle conversational sentiment analysis. Generally, using ERU for sentiment analysis involves obtaining the context representation, incorporating the influence of the context information into an utterance, and extracting emotional features for classification. Li et al. ( 2022 ) employed ERU in a bidirectional manner to propose a Bidirectional Emotional Recurrent Unit (BiERU) to perform sentiment classification or regression. BiERU follows a two-step task instead of the three steps mentioned for simple ERUs. According to the source of context information, the authors presented two types of BiERUs namely, BiERU with global context (BiERU-gc) and BiERU with local context (BiERU-lc). As compared to c-LSTM (Poria et al. 2017 ), CMN (Hazarika et al. 2018 ), DialogueRNN (Majumder et al. 2019 ), and DialogueGCN (Ghosal et al. 2019 ), AGHMN (Jiao et al. 2020 ), BiERU showed better performance in most of the cases.

The low correlation between models is the key. Much the same as how speculations with low relationships meet up to shape a portfolio that is more prominent than the number of its parts, uncorrelated models can create group expectations that are more exact than any of the individual forecasts. The explanation behind this great impact is that the trees shield each other from their individual mistakes. While a few trees might not be right, numerous different trees will be correct, so as a gathering the trees can move the right way. So, the requirements for the random forest to perform well are:

There should be some real sign in our highlights so that models manufactured utilizing those highlights show improvement over random speculating.

The predictions made by the individual trees need to have low correlations with one another. As we realize that a forest is comprised of trees and more trees imply a more robust forest. Likewise, a random forest algorithm makes choice trees on information tests and afterward gets the forecast from every one of them, and lastly chooses the best arrangement by methods for casting a ballot. It is a gathering strategy that is superior to a solitary choice tree since it decreases the over-fitting by averaging the outcome.

Baid et al. ( 2017 ) analyzed the movie reviews using various techniques like Naïve Bayes, K-Nearest Neighbour, and Random Forest. The authors showed that Naïve Bayes performed better as compared to other algorithms. While performing sentiment analysis of real-time 2019 election twitter data, Hitesh et al. ( 2019 ) demonstrated that Word2Vec with Random Forest improves the accuracy of sentiment analysis significantly compared to traditional methods such as BoW and TF-IDF. This is because Word2Vec improves the quality of features by considering the contextual semantics of words.

Jain and Dandannavar ( 2016 ) suggested a system for sentiment analysis of tweets based on an NLP-based technique and machine learning algorithms such as MNB and decision tree, which use features extracted based on various parameters. For sentiment analysis of online movie reviews, Sharma and Dey ( 2012 ) have developed a noteworthy comparison of seven current machine learning techniques in conjunction with various feature selection approaches. Tan and Zhang ( 2008 ) also introduced a similar work, in which sentiment analysis of various fields, such as education, movies, and houses, is carried out using various feature selection methods along with machine learning techniques. Depending on the applicability and need for better-quality models for sentiment analysis, experts in the field use a variety of cascaded and ensemble approaches to combine machine learning algorithms with other existing options (Ji et al. 2015 ; Tripathy et al. 2015 ; Xia et al. 2011 ; Ye et al. 2009 ).

In unsupervised learning, the models are trained using unlabeled datasets. This technique in most cases relies on clustering methods such as k-means clustering, expectation-maximization, and cobweb. Darena et al. ( 2012 ) used k-means clustering through the use of Cluto 2.1.2 to determine the sentiment associated with customer reviews.

In self-supervised learning, the model begins with unlabeled datasets and then trains itself to learn a part of the input by leveraging the underlying structure of the data. Although the use of an unlabeled dataset gives this learning technique the notion of being unsupervised, they are basically designed to execute downstream tasks that are traditionally addressed by supervised learning. One of the self-supervised learning techniques which have gained a lot of popularity in recent years is the Pretrained Language Model (PML).

Typical steps in the process of creating a sentiment analysis model from scratch usually involve making use of standard sentiment lexicons, sentiment scoring and data labeling by human experts, and proper parameter tuning of the model that performs well on the rest of the dataset. This procedure could be expensive and time-consuming. PLM makes it simpler for developers of sentiment analysis models to implement the model in less training time with improved accuracy, by providing extensive semantic and syntactic information with the usage of a few lines of code. PLM acts as a reusable NLP model for various tasks associated with sentiment analysis such as PoS tagging, lemmatization, dependency parsing, tokenization, etc. Thus, PLMs can be proved to be advantageous to solve similar new tasks using old experience, without training the sentiment analysis model from the scratch.

Chan et al. ( 2022 ) provided a detailed study on the evolution and advancement of sentiment analysis using pretrained models. Additionally, the authors covered various tasks of sentiment analysis, for which the pretrained models can be used. The early works on PML involved transferring a single pretrained embedding layer to the task-oriented network architecture. To cope with numerous challenges such as word sense, polysemy, grammatical structure, semantics, and anaphora, models are presently being improved to a higher representation level.

Bidirectional Encoder Representations from Transformers BERT (Devlin et al. 2018 ), NLTK (Loper and Bird 2002 ), Stanford NLP (Manning et al. 2014 ), Universal Language Model Fine-tuning (ULMFit) (Howard and Ruder 2018 ), Embeddings from Language Models (ELMo) (Sarzynska-Wawer et al. 2021 ) are some of the well-known PLMs that serve as open-source NLP libraries for sentiment analysis. The performance of BERT was determined to be superior by Mathew and Bindu ( 2020 ) who thoroughly analyzed numerous PLMs that are frequently used for sentiment analysis.

Many pre-trained models use self-supervision strategies to learn the semantic content; however, give less importance to the sentiment-specific knowledge during the pre-training phase. There might also be a risk of overfitting associated with a pretraining model, which may lead to domain-specific sentiment mismatch between the source and the target domain. While dealing with social media related content, the PLM might cause biases in the results. The language in which the PLM was trained might differ from the language which is generally used in social media platforms. Further in-depth analysis and model development may be constrained if PLM behaves in a black-box manner. In a few cases, the PLM might not be able to handle the multi-class problem, if it was originally designed for identifying single or binary classes. This might also lead to ignorance/mishandling of one of the important classes, say neutral class, if the PLM was initially designed for handling positive and negative classes. Thus, while choosing a particular PLM model, we must consider the domain and data it was originally designed for. Also, a human expert might be required to validate the results, whenever required, to assure the quality of the sentiment analysis model.

Mao et al. ( 2022 ) provided an in-depth analysis of how PLMs are biased toward prompt-based sentiment analysis and emotion detection. According to the authors, the number of label classes, emotional label-word selections, prompt templates and positions, and the word forms of emotion lexicons leads to biased results. To address the issue of cross-domain tasks, Zhou et al. ( 2020 ) proposed SENTIX, a sentiment-aware model that learns the domain invariant sentiment knowledge during the pre-training phase. For addressing several factors related to sentiment analysis, experts have till now presented a variety of improvised modifications of the original PLMs. Some of them include Dynamic Re-weighting BERT (DR-BERT) (Zhang et al. 2022 ), BERT-based Dilated CNN (BERT-DCNN) (Jain et al. 2022 ), Attention-based ELMo (A-ELMo) (Huang and Zhao 2022 ), Contextual Sentiment Embeddings (CoSE) (Wang et al. 2022a ), Extended Universal Language Model Fine-Tuning (Ext-ULMFiT) and Fine-Tuned (FiT-BERT) (Fazlourrahman et al. 2022 ), etc.

Many researchers combine supervised and unsupervised techniques to generate hybrid approaches or even semi-supervised techniques which can be used to classify sentiments (König and Brill 2006 ; Kim and Lee 2014 ). With new information generated every millisecond, finding a fully labeled large dataset representing all the required information is nearly impossible. In such a scenario, semi-supervised algorithms train an initial model on a few labeled samples and then iteratively apply it to the greater number of unlabelled data and make predictions on new data. Among various semi-supervised techniques, Graph Convolution Network (GCN) (Kipf and Welling 2016 ; Keramatfar et al. 2022 ; Dai et al. 2022 ; Zhao et al. 2022 ; Lu et al. 2022 ; Yu and Zhang 2022 ; Ma et al. 2022 ) has recently gained the attention of researchers for performing sentiment analysis.

GCN is based on CNN which operates directly on graphs while taking advantage of the syntactic structure and word dependency relation to correctly analyze sentiment. GCNs learn the features by inspecting neighboring nodes. By using a syntactic dependency tree, a GCN model captures the relation among different words and links specific aspects to syntax-related words. Each layer of the multi-layer GCN architecture encodes and updates the representation of the graph’s nodes using features from those nodes’ closest neighbors. GCNs assist in performing node-level, edge-level, and graph-level prediction tasks for sentiment analysis, such as determining how connections on a social media platform affect the opinions of the users within that network, creating user recommendations based on connections between various products previously purchased, suggesting movies, etc. Generally, GCNs focus on learning the dependency information from contextual words to aspect words based on the dependency tree of the sentence. As a result, GCN has mainly attracted researchers in the field of aspect-based sentiment analysis.

Lu et al. ( 2021 ) built a GCN on the sentence dependency tree to fully utilize the syntactical and semantic information. Their methodology fixed the issues of incorrectly detecting irrelevant contextual words as clues for evaluating aspect sentiment, disregarding syntactical constraints, and long-range sentiment dependencies, which were present in earlier models. SenticGCN was proposed by Liang et al. ( 2022 ) to capture the affective dependencies of the sentences according to the specific aspects. To combine the affective knowledge between aspects and opinion words, the model performs aspect-based sentiment analysis using SenticNet along with GCN.

Along with the local structure information of a given sentence, such as locality, sequential knowledge, or syntactical dependency constraints within the sentence, global dependency information also holds importance in determining the sentiments accurately. Zhu et al. ( 2021 ) proposed a model named Global and Local Dependency Guided Graph Convolutional Networks (GL-GCN), where word global semantic dependency relations were revealed with the use of a word-document graph representing the entire corpus. An attention mechanism was adopted by the authors to combine both local and global dependency structure signals.

In general, the layers in GCN models are not devised distinctively for processing the aspect. To handle this issue, Chen et al. ( 2021 ) integrated GCN and co-attention networks for aspect-based sentiment analysis, to extract relevant information from contexts and remove the noise while considering colloquial texts. Tian et al. ( 2021 ) addressed the issues of the inability to learn from different layers of GCN, not considering dependency types, and lacking mechanisms for differentiating between various relations in the context of sentiment analysis. The authors utilized dependency types for aspect-based sentiment analysis with Type-aware GCN (T-GCN).

Opinion terms are used in a lexicon-based approach to execute sentiment classification tasks. This method suggests that a sentence’s or document’s cumulative polarity is the sum of the polarities of individual terms or phrases (Devika et al. 2016 ). According to Zhang et al. ( 2014 ), in opinion lexicon methods, evaluated and tagged sentiment-related words are counted and weighted with the use of a lexicon to perform sentiment analysis. This approach is based on sentiment lexicons, which are a compilation of recognized and pre-compiled terms, phrases, and idioms formed for traditional communication genres, according to Kharde and Sonawane ( 2016 ). More complex systems, such as dictionaries or ontologies, may also be used for this approach (Kontopoulos et al. 2013 ). Some of the recent lexicons available for sentiment analysis are discussed below in Table ​ Table2 2 .

Lexicons for sentiment analysis

S. no.Sentiment lexicaMain featurePros and/or cons
1Loughran and McDonald Sentiment Word Lists (Loughran and McDonald )

The dictionary reports counts, the proportion of the total, the average proportion per document, the standard deviation of proportion per document, document count, seven sentiment category identifiers, the number of syllables, and the source for each word.

Indicator for sentiment related to financial context: “negative”, “positive”, “litigious”, “uncertainty”, “constraining”, or “superfluous”.

Cons:

Does not contain acronyms, hyphenated words, names, or phrases, British English,

Contains a limited number of abbreviations.

2Stock Market Lexicon (Oliveira et al. )

Learning stock market lexicon from StockTwits for the stock market and general financial applications.

About 17.44% of the StockTwits messages are labeled as “bullish” or “bearish” by their authors, to show their sentiment toward the mentioned stocks.

Pros:

Presents Sentiment oriented word embeddings for the stock market.

Cons:

Imbalanced dataset Bullish is much higher than that labeled as Bearish, with an overall ratio of 4.03.

3SentiWordNet 3.0 (Baccianella et al. )

Makes use of WordNet 3.0 to assign positive, negative, and objective scores to terms.

Comprises more than 100,000 words that occur in different contexts.

Pros:

For machine learning based sentiment classification a mixture of documents of different domains achieves good results.

Cons:

For Cross-domain sentiment analysis, rule-based approaches with fixed opinion lexica are unsuited.

4SenticNet 7 (Cambria et al. ) The input sentence is translated from natural language into a sort of ‘protolanguage’ sentence, which generalizes words and multiword expressions in terms of primitives and, hence, connects these (in a semantic-role-labeling fashion) to their corresponding emotion and polarity labels.

Pros:

Sentence, which generalizes words contains multiword expressions which enable polarity disambiguation.

Cons:

Sentence, which generalizes words do not handle sarcasm or antithetic opinion targets perfectly.

5VADER (Hutto and Gilbert )

A lexicon and rule-based sentiment analysis tool that is specifically attuned to sentiments expressed in social media.

Used for sentiment analysis of text which is sensitive to both the polarities, i.e., positive/negative and finds the intensity (strength) of emotion.

Especially attuned to microblog-like contexts.

Pros:

Not only presents the positivity and negativity score but also tells us about how positive or negative a sentiment is.

Cons:

May not work for complex data, does not recognize context, and requires additional tools for visualizing output.

6Opinion Lexicon (Hu and Liu ) A list of positive and negative opinion words or sentiment words for English customer reviews (around 6800 words).

Cons:

Does not help to find features that are liked by customers.

7MPQA Subjectivity Lexicon (Wilson and Wiebe )

In the corpus, individual expressions are marked that correspond to explicit mentions of private states, speech events, and expressive subjective elements.

Annotators were asked to judge all expressions in context.

Includes 5,097 negative and 2,533 positive words. Each word is assigned a strong or weak polarity.

Cons:

It is rooted in the subjective interpretations of a single person.

Works great for short sentences, such as tweets or Facebook posts.
8NRC Hashtag Sentiment Lexicon (Mohammad and Kiritchenko ; Mohammad )

Association of words with positive (negative) sentiment generated automatically from tweets with sentiment-word hashtags such as #amazing and #terrible.

Number of terms: 54,129 unigrams, 316,531 bigrams, 308,808 pairs,

Association scores: real-valued.

Words can have multiple meanings and senses, and the meaning and sense that is common in one domain may not be common in another. Furthermore, words that are not generally considered sentiment-bearing can imply sentiments in specific contexts.

9NRC Hashtag Emotion Lexicon (Mohammad et al. ; Zhu et al. ; Kiritchenko et al. )

Association of words with eight emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and disgust) and two sentiments (negative and positive).

Manually annotated on Amazon’s Mechanical Turk.

Generated automatically from tweets with emotion-word hashtags such as #happy and #anger.

Number of terms: 16,862 unigrams (words), 5,000 word senses, Association scores: real-valued

Pros:

Available in 40 different languages.

Cons:

Words can have multiple meanings and senses, and the meaning and sense that is common in one domain may not be common in another. Furthermore, words that are not generally considered sentiment-bearing can imply sentiments in specific contexts.

10NRC Hashtag Affirmative Context Sentiment Lexicon (Mohammad et al. ; Zhu et al. ; Kiritchenko et al. )

Association of words with positive (negative) sentiment in affirmative or negated contexts generated automatically from tweets with sentiment-word hashtags such as #amazing and #terrible.

Number of terms: Affirmative contexts: 36,357 unigrams, 159,479 bigrams.

Association scores: real-valued

Pros:

Available in 40 different languages.

Cons:

Words can have multiple meanings and senses, and the meaning and sense that is common in one domain may not be common in another. Furthermore, words that are not generally considered sentiment-bearing can imply sentiments in specific contexts.

11NRC Hashtag Negated Context Sentiment Lexicon (Mohammad et al. ; Zhu et al. ; Kiritchenko et al. )

Association of words with positive (negative) sentiment in negated contexts generated automatically from tweets with sentiment-word hashtags such as #amazing and #terrible.

Number of terms: Negated contexts: 7,592 unigrams, 23,875 bigrams.

Association scores: real-valued

Pros:

Available in 40 different languages.

Cons:

Words can have multiple meanings and senses, and the meaning and sense that is common in one domain may not be common in another. Furthermore, words that are not generally considered sentiment-bearing can imply sentiments in specific contexts.

12NRC Word-Emotion Association Lexicon/NRC Emotion Lexicon (Mohammad and Turney , )

Association of words with eight emotions (anger, fear, anticipation, trust, surprise, sadness, joy, and disgust) and two sentiments (negative and positive) manually annotated on Amazon’s Mechanical Turk.

Available in 40 different languages.

Number of terms: 14,182 unigrams (words), 25,000 word senses.

Association scores: binary (associated or not).

Pros:

Available in 40 different languages.

Cons:

Words can have multiple meanings and senses, and the meaning and sense that is common in one domain may not be common in another. Furthermore, words that are not generally considered sentiment-bearing can imply sentiments in specific contexts.

13Emoticon Lexicon/Sentiment140 Lexicon (Mohammad et al. ; Zhu et al. ; Kiritchenko et al. )

Association of words with positive (negative) sentiment generated automatically from tweets with emoticons such as:) and:(.

Number of terms: 62,468 unigrams, 677, 698 bigrams, 480,010 pairs.

Number of terms: 14,182 unigrams (words), 25,000 word senses.

Association scores: real-valued.

Pros:

Available in 40 different languages.

Cons:

Words can have multiple meanings and senses, and the meaning and sense that is common in one domain may not be common in another. Furthermore, words that are not generally considered sentiment-bearing can imply sentiments in specific contexts.

14Sentiment140 Affirmative Context Lexicon (Mohammad et al. ; Zhu et al. ; Kiritchenko et al. )

Association of words with positive (negative) sentiment in affirmative contexts generated automatically from tweets with emoticons such as:) and:(.

Number of terms: Affirmative contexts: 45,255 unigrams, 240,076 bigrams.

Pros:

Available in 40 different languages.

Cons:

Words can have multiple meanings and senses, and the meaning and sense that is common in one domain may not be common in another. Furthermore, words that are not generally considered sentiment-bearing can imply sentiments in specific contexts.

15Yelp Restaurant Sentiment Lexicon (Kiritchenko et al. )

The Yelp dataset is a subset of our businesses, reviews, and user data for use in personal, educational, and academic purposes.

Created from the Yelp dataset, from the subset of entries about these restaurant-related businesses.

Cons:

Few reviews are considered to be fake.

No proper boundary to detect neutrality.

Consists of 10 attributes, namely, unique Business ID, Date of Review, Review ID, Stars given by the user, Review given by the user, Type of text entered—Review, Unique User ID, Cool column: The number of cool votes the review received, Useful column: The number of useful votes the review received, Funny Column: The number of funny votes the review received.

Number of reviews: 183,935 reviews.

Have one to five-star ratings associated with each review.

16Amazon Laptop Sentiment Lexicon (McAuley and Leskovec )

Collected reviews posted on Amazon.com from June 1995 to March 2013. Extracted from this subset are all reviews that mention either a laptop or notebook.

Have one to five-star ratings associated with each review.

26,577 entries for unigrams (includes affirmative and negated context entries), 155,167 entries for bigrams.

Cons:

May not work well with the neutral sentiment.

17Macquarie Semantic Orientation Lexicon (Mohammad et al. )

76,400 terms.

Sentiments: negative, positive

Automatic: Using the structure of a thesaurus and affixes.

18Harvard’s General Inquirer Lexicon (Stone and Hunt )

A lexicon attaching syntactic, semantic, and pragmatic information to part-of-speech tagged words.

2000 positive and 2000 negative words.

19IMDB (Yenter and Verma )

50K movie reviews.

A set of 25,000 highly polar movie reviews for training and 25,000 for testing.

Pros:

The data is refreshed daily.

Cons:

IMDB reviews are not considered to be overly trustworthy, as big Hollywood studios generally dictate the scores and the overall consensus.

The algorithm used by IMDB to collate its reviews is generally considered inferior to those used by Rotten Tomatoes and similar sites.

20AFINN (Nielsen )

AFINN is the simplest yet most popular lexicon used for sentiment analysis developed by Finn Årup Nielsen.

It contains 3300+ words with a polarity score associated with each word.

A list of English terms manually rated for valence with an integer between -5 (negative) and +5 (positive) by Finn Årup Nielsen between 2009 and 2011.

Primarily analyze Twitter sentiment.

Cons:

Using the raw AFINN score the longer texts may yield higher values simply because they contain more words.

21Corpus of Business News (Moreno-Ortiz et al. )

Covers non-specific sentiment-carrying terms and phrases.

It contains 6,470 entries, both single and multi-word expressions, each with tags denoting their semantic orientation and intensity.

Pros:

A wide coverage, a domain-specific lexicon for the analysis of economic and financial texts in English.

22DepecheMood Affective Lexicon (Staiano and Guerini )

Harvested crowd-sourced affective annotation from a social news network.

Considered the affective dimensions namely Afraid, Amused, Angry, Annoyed, Don’_Care, Happy, Inspired, and Sad.

37 thousand terms annotated with emotion scores.

Cons:

Cannot handle similar words which are not present in the training document.

23Financial Phrasebank (Malo et al. )

Polar sentiment dataset of sentences from financial news.

The dataset consists of 4840 sentences from English-language financial news categorized by sentiment. The dataset is divided by an agreement rate of 5–8 annotators.

Pros:

Works well for NLP-related tasks in multi-class financial domain classifications.

The lexicon-based approach is categorized into three methods: manual, dictionary-based, and corpus-based methods based on the various approaches to classification (Zhang et al. 2014 ). Because of the considerable time investment, researchers seldom use the manual approach, though it is often paired with the other two automated approaches.

Dictionary-based approach starts with a series of manually annotated opinion seed terms. The collection is then extended by searching through a dictionary such as WordNet (Miller et al. 1990 ) to find synonyms and antonyms. SWN (Baccianella et al. 2010 ) is one of the earliest thesauri and makes use of WordNet to assign positive, negative, and objective ratings to terms. The new words are added to the initial list after they have been discovered. The next iteration begins and the method continues until no new words need to be added after a particular point. While considering valence shifters (intensifiers, downtoners, negation, and irrealis markers), Read and Carroll ( 2009 ) proposed a word-level sentiment analysis model called Semantic Orientation CALculator (SO-CAL). In SO-CAL, lexicon-based sentiment classification is performed using dictionaries of sentiment-bearing terms annotated with their polarities and strengths.

The use of a dictionary for sentiment analysis suffers from one major drawback. This methodology does not adequately handle the domain and context-sensitive orientations of opinion terms.

The corpus-based approach uses syntactic patterns or co-occurring patterns in a vast corpus to extend the original seed list of opinion terms (Cambria and Hussain 2015 ). It is very tough to generate a huge corpus using the corpus-based approach, to cover each and every English word. However, using a domain corpus has the advantage of allowing you to identify the domain and context-related opinion terms as well as their orientations. The corpus-based approach aims to provide dictionaries that are specially related to a particular domain (Kharde and Sonawane 2016 ). To expand the dictionary, statistical or semantic approaches may be used to look for words that are similar as discussed below.

The statistical approach includes searching co-occurrence patterns or seed opinion words. Searching for co-occurrence trends or seed opinion terms is one statistical technique. If the corpus is insufficient, the issue of certain words not being available can be solved by using the whole collection of indexed documents on the web as the corpus for creating the dictionary (Turney 2002 ). In a broad annotated corpus, even the appearance of a word in the positive or negative text may be used to determine its polarity (Read and Carroll 2009 ). Similar opinion words are likely to co-occur in a corpus, according to Cambria and Hussain ( 2015 ), and hence the polarity of an unfamiliar word can be calculated using the relative frequency of co-occurrence with another word. In this case, PMI can be used (Turney 2002 ). The statistical approach to the semantic orientation of a word is used in conjunction with PMI (Cambria and Hussain 2015 ). Another such approach is Latent Semantic Analysis (LSA) (Deerwester et al. 1990 ).

Semantically close words are assigned similar polarities based on this approach. This method is based on various criteria for measuring word similarity (Cambria and Hussain 2015 ). The relative count of positive and negative synonyms of an unknown word can be used to find out the polarity of that word using different semantic relationships given by WordNet (Kim and Hovy 2004 ).

A combination of both statistical and semantic approaches is also followed by a few researchers to perform sentiment analysis. Zhang et al. ( 2012 ) applied a mixture of both these approaches to online reviews to determine the weakness of products. Sentence-based sentiment analysis, according to their model, is carried out by taking into account the effect of degree adverbs to determine the polarity of each aspect within a sentence. To find the implicit features, they used the collocation statistics-based selection method-Pointwise Mutual Information (PMI). With the use of semantic methods, feature words of the products are grouped into corresponding aspects.

Ding et al. ( 2008 ) demonstrated that the same term can have multiple polarities in different contexts, even within the same domain. Therefore, rather than simply finding domain-dependent sentient words using the corpus-based approach, they explored the notion of intra-sentential and inter-sentential sentiment consistency.

In the lexicon-based approach, one point is worth noticing. The initial manual annotation of the seed list can be a costly procedure. Secondly and most importantly, the use of a dictionary even for seed list generation can lead to the insufficiency of handling cross-domain problems. Thus, the usage of a proper technique to generate a seed list for a lexicon-based approach is an open problem. Also, whenever linguistic rules are involved in handling knowledge, there might be situations where it fails to correctly grasp the affective sentiment.

Hybrid approaches which use sentiment lexicons in machine learning methods have also attracted many researchers to combine the benefits of both approaches. Trinh et al. ( 2018 ) used the hybrid approach to perform sentiment analysis of Facebook comments in the Vietnamese language. While their dictionary is partly based on SO-CAL, the authors manually built the dictionary to include nouns, verbs, adjectives, and adverbs along with emotional icons. They performed sentence-level sentiment analysis of product reviews using the SVM classifier. Appel et al. ( 2016 ) also performed sentence-level sentiment analysis using a combination of lexicon and machine learning approaches. They extended their sentiment lexicon with the use of SWN and used fuzzy sets to determine the polarity of sentences. Using an SVM classifier, Zhang et al. ( 2011 ) performed entity-level sentiment analysis of tweets, with the use of a lexicon that supports business marketing or social studies. They made use of the lexicon by Ding et al. ( 2008 ) along with some frequently used opinion hashtags to build the lexicon for their model. Pitogo and Ramos ( 2020 ) performed sentiment analysis for Facebook comments using a lexicon-based approach called Valence Aware Dictionary and Sentiment Reasoner (VADER) along with a hierarchical clustering algorithm.

Sentiment or opinion summarization

Sentiment or Opinion summarization or aggregation aims to provide an idea of the overall influence or polarity depicted by the dataset, by summing up the polarity of all individual words/aspects /sentences/documents of the dataset. Sentiment summarization must not be confused with text summarization, though they are slightly related. Text summarization aims to provide a summary of the dataset, while sentiment summarization provides a generalized polarity depicted by the whole dataset.

Different types of summarization models are proposed by researchers to obtain an average sentiment. Pang and Lee ( 2004 ) first extracted all subjective sentences and then summarized those subjective sentences. Blair-Goldensohn et al. ( 2008 ) used a tool to choose a few representative documents from a vast number of documents and then used them for emotion summarization based on aspects. By mining opinion features from product feedback, Hu and Liu ( 2004 ) suggested an aspect-based sentiment summarization strategy for online consumer reviews. Using the ratings on different aspects, Titov and McDonald ( 2008 ) proposed a model which can contribute to the sentiment summarization process. Their algorithm is designed to find related topics in text and collect textual evidence from reviews to support aspect ratings. Sokolova and Lapalme ( 2009 ) developed an emotion summarization model to summarise the opinionated text in consumer goods by integrating different polarity detection techniques and automated aspect detection algorithms. Different types of summarization models are proposed by researchers to obtain an average sentiment. Pang and Lee ( 2004 ) first extracted all subjective sentences and then summarized those subjective sentences. Blair-Goldensohn et al. ( 2008 ) used a tool to choose a few representative documents from a vast number of documents and then used them for emotion summarization based on aspects. By mining opinion features from product feedback, Hu and Liu ( 2004 ) suggested an aspect-based sentiment summarization strategy for online consumer reviews. Using the ratings on different aspects, Titov and McDonald ( 2008 ) proposed a model which can contribute to the sentiment summarization process. Their algorithm is designed to find related topics in text and collect textual evidence from reviews to support aspect ratings. Bahrainian and Dengel ( 2013 ) developed an emotion summarization model to summarise the opinionated text in consumer goods by integrating different polarity detection techniques and automated aspect detection algorithms.

Performance analysis measures

The evaluation of performance is one of the principal concepts associated with building a resourceful model. Once the sentiments are classified as either positive or negative, the performance of the model needs to be evaluated. The papers by Sokolova and Lapalme ( 2009 ) provided a better understanding of the applicability of performance measures depending on the variability of the classification tasks. Among different kinds of available metrics for measuring the performance of a textual sentiment analysis model, metrics based on the confusion matrix are widely used (Sokolova and Lapalme 2007 , 2009 ; John and Kartheeban 2019 ). The details concerning the classifications that are expected and those that are calculated by a classifier are shown in the confusion matrix. A confusion matrix for binary classification problems consists of four separate data entries, namely True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN), as shown in Table ​ Table3 3 .

Confusion matrix for binary classification

Actual classification
PositiveNegative
ExpectationPositiveTPFN
NegativeFPTN

TP overall positive data that are classified as positive, TN overall negative data that are classified as negative, FP overall negative data that are classified as positive, FN overall positive data that are classified as negative

The most frequently used performance metric is accuracy to measure the overall effectiveness of the model. Accuracy determines the proportion of a total number of instances (i.e., documents/ sentences/words) that are correctly predicted by the sentiment analysis model. Equation  13 shows the formula for estimating the model’s accuracy.

Apart from accuracy, precision and recall are well-known metrics that are best suited for text applications (Sokolova and Lapalme 2007 ). The number of correctly classified positive instances is determined by positive predictive value or precision, while the number of correctly classified negative instances is determined by negative predictive value. The proportion of actual positive instances that are correctly classified is determined by sensitivity or recall; the proportion of actual negative instances that are correctly classified is determined by negative recall or specificity.

The following are the formulas for calculating them (Salari et al. 2014 ).

Precision and recall are better indicators of the current system’s success than accuracy for an imbalanced binary classifier. Yet, in certain situations, a system may have high precision but poor recall, or vice versa. In this case, the f-measure allows you to articulate all issues with a single number. Once the precision and recall for a binary or multi-class classification task have been calculated, the two scores together form the f-measure, as seen in Eq.  18 . F - m e a s u r e , F = 2 ∗ P r e c i s i o n ∗ R e c a l l P r e c i s i o n + R e c a l l 18 Accuracy or f-measure can show overoptimistic inflated results, especially on imbalanced datasets. Matthew’s Correlation Coefficient (MCC) is a more reliable statistical rate that produces a high score only if the prediction obtained good results in all of the four confusion matrix categories proportionally, both to the size of positive elements and the size of negative elements in the dataset. The confusion matrix or an error matrix can be summed up using MCC as shown in Eq.  19

. MCC ranges from [− 1,1], where 1 indicates the best agreement between the predicted and actual values. The MCC helps us to identify the ineffectiveness of the classifier in classifying especially the minority class samples. M C C = T N ∗ T P - F N ∗ F P ( T P + F P ) ( T P + F N ) ( T N + F P ) ( T N + F N ) 19 To measure the ability of a sentiment classifier to distinguish between the polarity classes, an Area Under the Curve (AUC) is employed. The curve in AUC is generally a ROC (Receiver Operating Characteristic) curve, which is a graph showing the performance of a classification model at all classification thresholds as shown in Fig. 

3 . ROC plots TP and FP. AUC is an aggregated evaluation of the classifier as the threshold varies over all possible values. The Precision-Recall AUC summarizes the curve using a range of threshold values as a single score. AUC measures how true positive rate (recall) and false positive rate trade-off. Specifically, for imbalanced datasets, where overfitting needs to be avoided, AUC works as a preferable evaluation matrix. AUC represents the probability that a random positive instance is positioned to the right of a random negative instance. AUC ranges from 0 to 1. An AUC of 0.0 denotes a model that makes all incorrect classifications, whereas an AUC of 1.0 denotes a model that makes all correct classifications.

An external file that holds a picture, illustration, etc.
Object name is 10462_2023_10442_Fig3_HTML.jpg

AUC under ROC

When a regression task is adopted for sentiment analysis, Mean Squared Error (MSE) is employed to find the squared difference between actual and predicted values. It is an absolute measure of the goodness of fit of dependent variables in the model. The formula of MSE is given in Eq.  20 . The lower the value of MSE, the better the sentiment analyzer. It can be used as a loss function as the graph of MSE is differentiable. However, it is not very suitable in case the dataset contains outliers.

In contrast to the context dependency of MSE, R squared is a context-independent metric that is used for a regression task. It is a relative measure of how well the model fits dependent variables or how close the data is to the fitted regression line. Coefficient of Determination and Goodness of Fit are other names for R squared and it is calculated using Eq.  21 .

where SSR is the squared sum error of the regression line and SSM is the squared sum error of the mean line.

Other performance evaluation metrics that can be also considered for evaluating a sentiment analysis model are Root Mean Squared Error (RMSE), Residual Standard Error (RSE), Mean Absolute Error (MAE), etc.

Applications of sentiment analysis

Sentiment analysis or opinion mining has recently been used in studies on e-commerce feedback, tweets, Facebook posts, YouTube content, blog entries, and a variety of other data mining and knowledge-based AI programs. As a result, it has progressed significantly in fields including Information Retrieval (IR), web data analysis, mining of text, analysis of text, NLP, computational linguistics, and biometrics. Using different approaches/methods/ frameworks analyzed in this paper beforehand, sentiment analysis can be applied to various fields such as tourism, education, defense, business, politics, public, finance, hazards, health, and safety. The broad range of applications will aim to obtain the best possible combination of strengths, whether or not any of the components in Fig.  1 or any of the approaches indicated in Fig.  2 are present. Depending on the requirement/aim/ framework of a sentiment analysis model, applications can vary from a straightforward prediction of the polarity of a single word to uncovering sensitive or hidden information, or even a pattern to protect a nation from any potential terrorist attack or disaster. Many research works mention different application areas based on different domains or approaches used (Alessia et al. 2015 ; Jain and Gupta 2022 ; Saxena et al. 2022 ; Feldman 2013 ; Govindarajan 2022 ; Ravi and Ravi 2015 ). The knowledge of diverse application fields based purely on the dataset at hand is challenging to find in existing research papers. This paper aims to outline several sentiment analysis application areas based on the data/content/material in hand, that can be used by researchers for sentiment analysis.

Reviews on products

Sentiment analysis using reviews on different products with different brands is the most widespread practice, which encompasses different application angles. For a particular product, the number of brands has been increasing day to day. Also, the same brand may offer products with different specifications. Nowadays even different online shopping sites are available that sell the same product. This creates confusion among customers to reach an optimal decision. Though shopping sites offer the option of displaying comments and star ratings left by former customers to assist potential buyers, the count of current feedback can be so large that scrolling through thousands of them can be a time-consuming process. Sentiment analysis helps to alleviate this condition by giving a concise perspective on a product or brand as a whole, or even on a certain feature/aspect of the product. Also, it can be used by the sellers or manufacturers to concentrate on the suitable aspects or specifications, which can be used for upgrading the product or deciding the advertisement strategy. Product analysis by buyers, suppliers, and sellers; competitor analysis or market study by sellers or manufacturers; brand tracking and reputation management by manufacturers; customer service by e-commerce sites; and customer analysis by sellers and manufacturers are among the various application directions associated with sentiment analysis of product feedback. The necessity to detect fake reviews before using the available data for decision-making was highlighted in the research work by Vidanagama et al. ( 2022 ). The authors made use of a rule-based classifier, a domain feature ontology, and Mahalanobis distance to detect fake reviews while performing aspect-based sentiment analysis. Cao et al. ( 2022 ) have introduced a quality evaluation model of products by combining deep learning, word vector conversion, keyword clustering, and feature word extraction technologies. Their model improves product features based on consumer online reviews and finally calculates customer satisfaction and attention based on short text comments with sentiment tags. With the use of pre-trained word embeddings, Bhuvaneshwari et al. ( 2022 ) proposed a Bi-LSTM Self Attention based CNN (BAC) model for analysis of user reviews. Wang et al. ( 2022b ) designed multi-attention bi-directional LSTM (BLSTM(MA)), and used Latent Dirichlet Allocation (LDA) modeling to perform multimodal fusion for sentiment analysis of product reviews. Alantari et al. ( 2022 ) examined 260,489 reviews from five review platforms, covering 25,241 products in nine different product categories. They discovered that pretrained neural network-based machine learning techniques, in particular, provide the most precise forecasts, while topic models like LDA provide more thorough diagnostics. To make predictions, topic models are better suited than neural network models, which are not good at making diagnoses. As a result, the preference of the analysts for prediction or diagnostics is likely to determine how text review processing technologies are chosen in the future.

Political Tweets, Facebook comments, Blog posts, and YouTube Videos

Recently, people have started to openly share their views or opinion on different political parties, electoral candidates, government policies, and rules on different public platforms such as Twitter, Facebook, YouTube, and blogs. These create a great influence on the followers. Therefore, they are used by many experts to predict the outcome of an election beforehand, monitor public sentiment on various political movements, or analyze the sentiment of the public on a proposed government rule, bill, or law.

With the use of pre-trained models and the Chi-square test, Antypas et al. ( 2022 ) proposed a multilingual sentiment analysis model to analyze both influential and less popular politicians’ tweets from members of parliament of Greece, Spain, and the United Kingdom. Their study indicates that negative tweets spread rapidly as compared to positive ones. Using Valence Aware Dictionary and sentiment Reasoner (VADER), and 2 million tweets on the 2019 Indian Lok Sabha Election, Passi and Motisariya ( 2022 ) analyzed sentiments of Twitter users towards each of the Indian political parties. Using the aging estimation method with the proportion of positive message rate to negative messages rate, Yavari et al. ( 2022 ) designed an indicator of the election results in the future.

Tweets or comments on Facebook/YouTube/Instagram on social cause or events

Expressions of opinions on different social causes or events have also increased recently. This increases the scope of designing application portals that perform public sentiment analysis, monitor, and predict different possible outcomes of such an event or cause and decide the possible steps which need to be adopted in the future in case there is an outbreak of any chaotic situation.

A multi-grained sentiment analysis and event summary method employing crowd-sourced social media data on explosive accidents was built by Ouyang et al. ( 2017 ). The system can determine which components of the event draw users’ attention, identify which microblog is responsible for a large shift in sentiment, and detect those aspects of the event that affect users’ attention. Smith and Cipolli ( 2022 ) studied the emotional discourse before and after a prohibition on graphic photos of self-harm on Facebook and Instagram using a corpus of 8,013 tweets. By clarifying topical content using statistical modeling to extract abstract topics in discourse, the authors offered an insight into how the policy change relating to self-harm was viewed by those with a vested interest.

Reviews on Blogs/Tweets/Facebook comments on movie

Reviews on an upcoming movie or a movie that is onscreen in the theatres can be used to decide the success or failure of the movie. Different movie recommender systems can also be designed using the reviews from the audience. Also, the distributors or producers can use such reviews to improve their advertising strategy based on the different aspects which are liked by the viewers.

Using sentiment analysis to gain a deeper understanding of user preferences, Dang et al. ( 2021 ) proposed methods to enhance the functionality of recommender systems for streaming services. The Multimodal Album Reviews Dataset (MARD) and Amazon Movie Reviews were used to test and compare two different LSTM and CNN combinations, LSTM-CNN and CNN-LSTM. They started with a version of the recommendation engine without sentiment analysis or genres as their baseline. As compared to the baseline, the results demonstrate that their models are superior in terms of rating prediction and top recommendation list evaluation. Pavitha et al. ( 2022 ) designed a system for analyzing movie reviews in different languages, classifying them into either positive or negative using Naive Bayes and Support Vector Classifier (SVC), and recommending similar movies to users based on Cosine Similarity. For B-T4SA and IMDB movie reviews, Zhu et al. ( 2022 ) proposed a self-supervised sentiment analysis model namely Senti-ITEM. The model pairs a representative image with the social media text as a pretext task, extract features in a shared embedding space, and uses SVM for sentiment classification.

Tweets/Facebook comments on pandemic/crisis /environmental issues

Nowadays people encountering abrupt situations or difficulties due to the Covid-19 pandemic or any environmental issues such as storm or earthquake posts real-time tweets or comments on Facebook. In such a situation, by analyzing tweets or comments properly, government or any agency, or even nearby people can offer help, and perform disaster management and crisis analysis.

Hodson et al. ( 2022 ) suggested a corpus-assisted discourse analysis approach, for analyzing public opinion on COVID-19 tweets and YouTube comments related to Canadian Public Health Office. The authors found that different platforms convey key differences between comments, specifically based on the tone used in YouTube videos as compared to plain text in Tweets. To capture sarcasm or get clear information, cross-platform and diverse methods must be adopted to facilitate health-related communication and public opinion. Chopra et al. ( 2022 ) employed logistic regression, Naive Bayes, XGBoost, LSTM, GloVe, and BERT to predict disaster warnings from tweets and evaluate the seriousness of the content.

Tweets/Facebook comments/YouTube videos on Stock Market

One of the trending application areas of sentiment analysis is Stock Market Prediction. Identifying stocks and share with great potential and deciding the optimal time to buy them at the lowest price and sell them at the peak time can be performed using a suitable sentiment analysis model. Using stock market data with SVM, Ren et al. ( 2018 ) suggested a model that forecasts movement direction and predicts stock prices while capturing investor psychology. Sousa et al. ( 2019 ) used the BERT algorithm to analyze the sentiments of news articles and provide relevant information that can facilitate stock market-related quick decision-making. Considering both positive and negative financial news, de Oliveira Carosia et al. ( 2021 ) analyzed the influence on the stock market using three Artificial Deep Neural Networks namely Multi-Layer Perceptron (MLP), LSTM, and CNN. The findings of this sentiment analysis model’s observations revealed that while recurrent neural networks, such as LSTM, perform better in terms of time characteristics when used to predict the stock market, CNNs perform better when assessing text semantics.

Future scope of research in sentiment analysis

There are numerous scientific studies in the literature that focus on each of the components of the sentiment analysis approach, either independently or in combination. Each of these sentiment analysis modules offers plenty of opportunities for further investigation, improvisation, and innovation. Several challenges and issues are also faced during the process of performing sentiment analysis, which may hinder the proper functioning or performance of the model. Some of them are domain dependency, reference problems, sarcasm detection, spam detection, time period, etc. Most of these challenges influence the development of better techniques and algorithms to handle them. Some of the primary research gaps that offer scope for future research and hence encourage further sentiment analysis research are discussed below:

  • It has been found that current techniques dedicated to sentiment analysis do not employ effective data initialization and pre-processing techniques. Rather than relying on established NLP pre-processing techniques, an advanced pre-processing technique, such as standard normalization that takes deliberately into account, the case of negation and mixed emotion would be extremely beneficial.
  • One of the most critical steps in improving the performance of a sentiment analysis model is keyword extraction. Many sentiment analysis models have been observed to extract keywords using generalized dictionaries. The use of generalized dictionaries, on the other hand, produces inaccurate findings since most of these dictionaries include keywords that are relevant to a specific domain. However, there is no predefined list of keywords for a certain domain or subject in the real world. Different researchers have shown the supremacy of the degree centrality metric for the graph-based method of obtaining the best collection of representative and sentimental words. As a result, it may be used to find key terms or phrases. Automatic keyword extraction techniques can be used for sentiment analysis in a variety of applications, both independently and in combination. Most of these techniques have found applications in a variety of research areas, including Data Analysis, TM, IR, and NLP since they allow for the condensing of text records.
  • Assignment of polarity scores to keywords using sentiment dictionaries has gained a lot of attention in sentiment analysis. However, depending on its use in a specific domain, a term can serve as a positive or negative word at different times. Therefore, the usage of sentiment dictionaries with pre-defined polarities for words is not an appropriate practice for sentiment analysis. Existing sentiment dictionaries fail to handle sarcasm or negations to a great extent. It is observed that many machine learning based techniques are trained to work only for a particular domain. They do not consider that the words can change their polarity based on the context and domain of application. Thus, whenever the same word is tested for another domain using the trained classifier, it shows incorrect results in some situations.
  • New edge and node weighing approaches may be introduced and used in place of NE-Rank or TextRank centralities to determine keyword rank. To achieve improved outcomes in the future, different ensemble or individual improvised centralities may be used. This establishes a framework for future research into graph mining algorithms for sentiment analysis in various fields.

The era of digitization marks the astonishing growth of subjective textual data online. Proper analysis of the textual information, to rightly reflect the public sentiment regarding any topic, demands proper investigation of textual data. Sentiment analysis has emerged as the most important task which helps to enhance the decision-making process by extracting the underlying sentiment or opinion of data. Even though sentiment analysis has progressed in recent years, modern models have flaws such as domain dependence, negation management, high dimensionality, and the failure to use efficient keyword extraction. This paper examines and provides a comprehensive discussion of different perspectives related to the creation and implementation of an effective sentiment analysis model. A thorough examination and establishment of various modules of the sentiment analysis methodology are carried out to plan and improve effective sentiment analysis models. The keyword extraction algorithm is vital to the success of a sentiment analysis model and thus is well-studied in this paper. The paper also discusses sentiment classification methods, which form an essential aspect of a sentiment analysis model. The paper conducts a detailed review of both machine learning and lexicon-based approaches to textual data sentiment analysis.

As a thorough, well-organized study on sentiment analysis, this research effort can assist academicians and industry experts in analyzing and developing powerful sentiment analysis models in a wide range of domains. Sentiment analysis models have a lot of potential for further development and use in the near future because they have a broad range of uses in social, industrial, political, economic, health and safety, education, defense financial contexts, and others. Each of the sentiment analysis modules as discussed in this paper can be investigated, improvised, and supplemented with certain relevant algorithms to design an efficient sentiment analysis model. This study also offers prospective guidelines for carrying out proper sentiment analysis research.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Monali Bordoloi, Email: [email protected] .

Saroj Kumar Biswas, Email: moc.oohay@mukjorassib .

  • Abilhoa WD, De Castro LN. A keyword extraction method from twitter messages represented as graphs. Appl Math Comput. 2014; 240 :308–325. [ Google Scholar ]
  • Ahmad M, Aftab S, Bashir MS, Hameed N (2018) Sentiment analysis using SVM: a systematic literature review. Int J Adv Comput Sci Appl 9 (2)
  • Alantari HJ, Currim IS, Deng Y, Singh S. An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews. Int J Res Mark. 2022; 39 (1):1–19. doi: 10.1016/j.ijresmar.2021.10.011. [ CrossRef ] [ Google Scholar ]
  • Alessia D, Ferri F, Grifoni P, Guzzo T. Approaches, tools and applications for sentiment analysis implementation. Int J Comput Appl. 2015; 125 (3):26–33. [ Google Scholar ]
  • Alfter D, Cardon R, François T (2022) A dictionary-based study of word sense difficulty. In: Proceedings of the 2nd workshop on tools and resources to empower people with REAding DIfficulties (READI) within the 13th language resources and evaluation conference. European Language Resources Association, pp 17–24
  • Altheneyan AS, Menai MEB. Naïve bayes classifiers for authorship attribution of Arabic texts. J King Saud Univ-Comput Inf Sci. 2014; 26 (4):473–484. [ Google Scholar ]
  • Antypas D, Preece A, Collados JC (2022) Politics and virality in the time of twitter: a large-scale cross-party sentiment analysis in Greece, Spain and united kingdom. arXiv preprint arXiv:2202.00396
  • Appel O, Chiclana F, Carter J, Fujita H. A hybrid approach to the sentiment analysis problem at the sentence level. Knowl-Based Syst. 2016; 108 :110–124. doi: 10.1016/j.knosys.2016.05.040. [ CrossRef ] [ Google Scholar ]
  • Athanasiou V, Maragoudakis M. A novel, gradient boosting framework for sentiment analysis in languages where NLP resources are not plentiful: a case study for modern Greek. Algorithms. 2017; 10 (1):34. doi: 10.3390/a10010034. [ CrossRef ] [ Google Scholar ]
  • Baccianella S, Esuli A, Sebastiani F (2010) Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the seventh international conference on language resources and evaluation (LREC’10), vol 10. European Language Resources Association (ELRA), pp 2200–2204
  • Bahrainian S-A, Dengel A (2013) Sentiment analysis and summarization of twitter data. In: 2013 IEEE 16th international conference on computational science and engineering. IEEE, pp 227–234
  • Baid P, Gupta A, Chaplot N. Sentiment analysis of movie reviews using machine learning techniques. Int J Comput Appl. 2017; 179 (7):45–49. [ Google Scholar ]
  • Balahur A, Hermida JM, Montoyo A. Building and exploiting emotinet, a knowledge base for emotion detection based on the appraisal theory model. IEEE Trans Affect Comput. 2011; 3 (1):88–101. doi: 10.1109/T-AFFC.2011.33. [ CrossRef ] [ Google Scholar ]
  • Banea C, Mihalcea R, Wiebe J. Sense-level subjectivity in a multilingual setting. Comput Speech Lang. 2014; 28 (1):7–19. doi: 10.1016/j.csl.2013.03.002. [ CrossRef ] [ Google Scholar ]
  • Bao H, Li Q, Liao SS, Song S, Gao H. A new temporal and social PMF-based method to predict users’ interests in micro-blogging. Decis Support Syst. 2013; 55 (3):698–709. doi: 10.1016/j.dss.2013.02.007. [ CrossRef ] [ Google Scholar ]
  • Beliga S (2014) Keyword extraction: a review of methods and approaches. University of Rijeka, Department of Informatics, Rijeka 1(9)
  • Beliga S, Meštrović A, Martinčić-Ipšić S. An overview of graph-based keyword extraction methods and approaches. J Inf Org Sci. 2015; 39 (1):1–20. [ Google Scholar ]
  • Bellaachia A, Al-Dhelaan M (2012) Ne-rank: a novel graph-based keyphrase extraction in twitter. In: 2012 IEEE/WIC/ACM international conferences on web intelligence and intelligent agent technology, vol 1. IEEE, pp 372–379
  • Benghuzzi H, Elsheh MM (2020) An investigation of keywords extraction from textual documents using word2vec and decision tree. Int J Comput Sci Inf Secur 18 (5)
  • Bhargav PS, Reddy GN, Chand RR, Pujitha K, Mathur A. Sentiment analysis for hotel rating using machine learning algorithms. Int J Innov Technol Explor Eng (IJITEE) 2019; 8 (6):1225–1228. [ Google Scholar ]
  • Bharti SK, Babu KS (2017) Automatic keyword extraction for text summarization: a survey. arXiv preprint arXiv:1704.03242 4:410–427
  • Bhuvaneshwari P, Rao AN, Robinson YH, Thippeswamy M. Sentiment analysis for user reviews using bi-lstm self-attention based CNN model. Multimedia Tools Appl. 2022; 81 (9):12405–12419. doi: 10.1007/s11042-022-12410-4. [ CrossRef ] [ Google Scholar ]
  • Blair-Goldensohn S, Hannan K, McDonald R, Neylon T, Reis G, Reynar J (2008) Building a sentiment summarizer for local service reviews. WWW2008 workshop on NLP challenges in the information explosion era
  • Blitzer J, Dredze M, Pereira F (2007) Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification. In: Proceedings of the 45th annual meeting of the Association of Computational Linguistics. ACL, pp 440–447
  • Boiy E, Moens M-F. A machine learning approach to sentiment analysis in multilingual web texts. Inf Retrieval. 2009; 12 (5):526–558. doi: 10.1007/s10791-008-9070-z. [ CrossRef ] [ Google Scholar ]
  • Bollegala D, Weir D, Carroll J. Cross-domain sentiment classification using a sentiment sensitive thesaurus. IEEE Trans Knowl Data Eng. 2012; 25 (8):1719–1731. doi: 10.1109/TKDE.2012.103. [ CrossRef ] [ Google Scholar ]
  • Bonacich P. Some unique properties of eigenvector centrality. Soc Netw. 2007; 29 (4):555–564. doi: 10.1016/j.socnet.2007.04.002. [ CrossRef ] [ Google Scholar ]
  • Bougouin A, Boudin F, Daille B (2013) Topicrank: graph-based topic ranking for keyphrase extraction. In: International joint conference on natural language processing (IJCNLP), pp 543–551
  • Bronselaer A, Pasi G (2013) An approach to graph-based analysis of textual documents. In: 8th European Society for fuzzy logic and technology (EUSFLAT-2013). Atlantis Press, pp 634–641
  • Cambria E (2013) An introduction to concept-level sentiment analysis. In: Castro F, Gelbukh A, González M (eds) Advances in soft computing and its applications. Mexican international conference on artificial intelligence, MICAI 2013. Lecture notes in computer science, vol 8266. Springer, pp 478–483
  • Cambria E. Affective computing and sentiment analysis. IEEE Intell Syst. 2016; 31 (02):102–107. doi: 10.1109/MIS.2016.31. [ CrossRef ] [ Google Scholar ]
  • Cambria E, Hussain A. Sentic computing. Cogn Comput. 2015; 7 (2):183–185. doi: 10.1007/s12559-015-9325-0. [ CrossRef ] [ Google Scholar ]
  • Cambria E, Liu Q, Decherchi S, Xing F, Kwok K (2022) Senticnet 7: a commonsense-based neurosymbolic AI framework for explainable sentiment analysis. In: Proceedings of LREC 2022. European Language Resources Association (ELRA), pp 3829–3839
  • Cao J, Li J, Yin M, Wang Y. Online reviews sentiment analysis and product feature improvement with deep learning. Trans Asian Low-Resour Lang Inf Process. 2022 doi: 10.1145/3522575. [ CrossRef ] [ Google Scholar ]
  • Castillo E, Cervantes O, Vilarino D, Báez D, Sánchez A (2015) Udlap: sentiment analysis using a graph-based representation. In: Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015). ACL, pp 556–560
  • Cepeda K, Jaiswal R (2022) Sentiment analysis on covid-19 vaccinations in Ireland using support vector machine. In: 2022 33rd Irish signals and systems conference (ISSC). IEEE, pp 1–6
  • Chan JY-L, Bea KT, Leow SMH, Phoong SW, Cheng WK (2022) State of the art: a review of sentiment analysis based on sequential transfer learning. Artif Intell Rev 1–32
  • Chen P-I, Lin S-J. Automatic keyword prediction using google similarity distance. Expert Syst Appl. 2010; 37 (3):1928–1938. doi: 10.1016/j.eswa.2009.07.016. [ CrossRef ] [ Google Scholar ]
  • Chen K, Zhang Z, Long J, Zhang H. Turning from TF-IDF to TF-IGM for term weighting in text classification. Expert Syst Appl. 2016; 66 :245–260. doi: 10.1016/j.eswa.2016.09.009. [ CrossRef ] [ Google Scholar ]
  • Chen Y, Wang J, Li P, Guo P. Single document keyword extraction via quantifying higher-order structural features of word co-occurrence graph. Comput Speech Lang. 2019; 57 :98–107. doi: 10.1016/j.csl.2019.01.007. [ CrossRef ] [ Google Scholar ]
  • Chen Z, Xue Y, Xiao L, Chen J, Zhang H (2021) Aspect-based sentiment analysis using graph convolutional networks and co-attention mechanism. In: International conference on neural information processing. Springer, pp 441–448
  • Chong WY, Selvaretnam B, Soon L-K (2014) Natural language processing for sentiment analysis: an exploratory analysis on tweets. In: 2014 4th international conference on artificial intelligence with applications in engineering and technology. IEEE, pp 212–217
  • Chopra M, Singh SK, Aggarwal K, Gupta A (2022) Predicting catastrophic events using machine learning models for natural language processing. In: Data mining approaches for big data and sentiment analysis in social media. IGI Global, pp 223–243
  • Cortis K, Freitas A, Daudert T, Huerlimann M, Zarrouk M, Handschuh S, Davis B (2017) Semeval-2017 task 5: Fine-grained sentiment analysis on financial microblogs and news. In: 11th International workshop on semantic evaluations (SemEval-2017): Proceedings of the workshop, Stroudsburg, PA, USA. Association for Computational Linguistics (ACL), pp 519–535
  • Cruz Mata F, Troyano Jiménez JA, de Salamanca Enríquez, Ros F, Ortega Rodríguez FJ, García Vallejo CA. ‘Long autonomy or long delay?’ The importance of domain in opinion mining. Expert Sys Appl. 2013; 40 (8):3174–3184. doi: 10.1016/j.eswa.2012.12.031. [ CrossRef ] [ Google Scholar ]
  • Dai A, Hu X, Nie J, Chen J. Learning from word semantics to sentence syntax by graph convolutional networks for aspect-based sentiment analysis. Int J Data Sci Anal. 2022; 14 (1):17–26. doi: 10.1007/s41060-022-00315-2. [ CrossRef ] [ Google Scholar ]
  • Dang Y, Zhang Y, Chen H. A lexicon-enhanced method for sentiment classification: an experiment on online product reviews. IEEE Intell Syst. 2009; 25 (4):46–53. doi: 10.1109/MIS.2009.105. [ CrossRef ] [ Google Scholar ]
  • Dang CN, Moreno-García MN, De la Prieta F. Using hybrid deep learning models of sentiment analysis and item genres in recommender systems for streaming services. Electronics. 2021; 10 (20):2459. doi: 10.3390/electronics10202459. [ CrossRef ] [ Google Scholar ]
  • Darena F, Zizka J, Burda K (2012) Grouping of customer opinions written in natural language using unsupervised machine learning. In: 2012 14th international symposium on symbolic and numeric algorithms for scientific computing. IEEE, pp 265–270
  • Dave K, Lawrence S, Pennock DM (2003) Mining the peanut gallery: opinion extraction and semantic classification of product reviews. In: Proceedings of the 12th international conference on World Wide Web. ACM, pp 519–528
  • de Oliveira Carosia AE, Coelho GP, da Silva AEA. Investment strategies applied to the Brazilian stock market: a methodology based on sentiment analysis with deep learning. Expert Syst Appl. 2021; 184 :115470. doi: 10.1016/j.eswa.2021.115470. [ CrossRef ] [ Google Scholar ]
  • Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. J Am Soc Inf Sci. 1990; 41 (6):391–407. doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9. [ CrossRef ] [ Google Scholar ]
  • Devika R, Subramaniyaswamy V. A semantic graph-based keyword extraction model using ranking method on big social data. Wirel Netw. 2021; 27 (8):5447–5459. doi: 10.1007/s11276-019-02128-x. [ CrossRef ] [ Google Scholar ]
  • Devika M, Sunitha C, Ganesh A. Sentiment analysis: a comparative study on different approaches. Procedia Comput Sci. 2016; 87 :44–49. doi: 10.1016/j.procs.2016.05.124. [ CrossRef ] [ Google Scholar ]
  • Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT. ACL, pp 4171–4186
  • Ding X, Liu B, Yu PS (2008) A holistic lexicon-based approach to opinion mining. In: Proceedings of the 2008 international conference on web search and data mining, vol 39. Elsevier, pp 231–240
  • Duari S, Bhatnagar V. scake: semantic connectivity aware keyword extraction. Inf Sci. 2019; 477 :100–117. doi: 10.1016/j.ins.2018.10.034. [ CrossRef ] [ Google Scholar ]
  • Fahrni A, Klenner M (2008) Old wine or warm beer: target-specific sentiment analysis of adjectives. University of Zurich, pp 60–63
  • Fazlourrahman B, Aparna B, Shashirekha H (2022) Coffitt-covid-19 fake news detection using fine-tuned transfer learning approaches. In: Congress on intelligent systems, vol 111. Springer, pp 879–890
  • Feldman R. Techniques and applications for sentiment analysis. Commun ACM. 2013; 56 (4):82–89. doi: 10.1145/2436256.2436274. [ CrossRef ] [ Google Scholar ]
  • Gamon M (2004) Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis. In: COLING 2004: proceedings of the 20th international conference on computational linguistics. ACL and AFNLP, pp 841–847
  • Ghosal D, Majumder N, Poria S, Chhaya N, Gelbukh A (2019) Dialoguegcn: a graph convolutional neural network for emotion recognition in conversation. In: EMNLP-IJCNLP 2019-2019 conference on empirical methods in natural language processing and 9th international joint conference on natural language processing, proceedings of the conference, pp 154–164
  • Golbeck J. Analyzing the Social Web. ACM: Newnes; 2013. [ Google Scholar ]
  • Govindarajan M (2022) Approaches and applications for sentiment analysis: a literature review. In: Data mining approaches for big data and sentiment analysis in social media. IGI Global, pp 1–23
  • HaCohen-Kerner Y (2003) Automatic extraction of keywords from abstracts. In: International conference on knowledge-based and intelligent information and engineering systems. Springer, pp 843–849
  • Haddi E, Liu X, Shi Y. The role of text pre-processing in sentiment analysis. Procedia Comput Sci. 2013; 17 :26–32. doi: 10.1016/j.procs.2013.05.005. [ CrossRef ] [ Google Scholar ]
  • Hart L (2013) The linguistics of sentiment analysis. University Honors Theses. 10.15760/honors.19
  • Hazarika D, Poria S, Zadeh A, Cambria E, Morency L-P, Zimmermann R (2018) Conversational memory network for emotion recognition in dyadic dialogue videos. In: Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting, vol 2018. NIH Public Access, p 2122 [ PMC free article ] [ PubMed ]
  • Hemalatha I, Varma GS, Govardhan A. Sentiment analysis tool using machine learning algorithms. Int J Emerg Trends Technol Comput Sci. 2013; 2 (2):105–109. [ Google Scholar ]
  • Hidayat THJ, Ruldeviyani Y, Aditama AR, Madya GR, Nugraha AW, Adisaputra MW. Sentiment analysis of twitter data related to Rinca island development using doc2vec and SVM and logistic regression as classifier. Procedia Comput Sci. 2022; 197 :660–667. doi: 10.1016/j.procs.2021.12.187. [ CrossRef ] [ Google Scholar ]
  • Hidayatullah AF, Cahyaningtyas S, Hakim AM (2021) Sentiment analysis on twitter using neural network: Indonesian presidential election 2019 dataset. In: IOP conference series: materials science and engineering, vol 1077. IOP Publishing, p 012001
  • Hitesh M, Vaibhav V, Kalki YA, Kamtam SH, Kumari S (2019) Real-time sentiment analysis of 2019 election tweets using word2vec and random forest model. In: 2019 2nd international conference on intelligent communication and computational techniques (ICCT). IEEE, pp 146–151
  • Hodson J, Veletsianos G, Houlden S. Public responses to covid-19 information from the public health office on twitter and Youtube: implications for research practice. J Inf Technol Polit. 2022; 19 (2):156–164. doi: 10.1080/19331681.2021.1945987. [ CrossRef ] [ Google Scholar ]
  • Howard J, Ruder S (2018) Universal language model fine-tuning for text classification. In: Proceedings of the 56th annual meeting of the Association for Computational Linguistics, vol 1. ACL
  • Hsu C-W, Lin C-J. A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw. 2002; 13 (2):415–425. doi: 10.1109/72.991427. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Hu Y, Li W. Document sentiment classification by exploring description model of topical terms. Comput Speech Lang. 2011; 25 (2):386–403. doi: 10.1016/j.csl.2010.07.004. [ CrossRef ] [ Google Scholar ]
  • Hu M, Liu B (2004) Mining opinion features in customer reviews. In: AAAI, vol 4. AAAI, pp 755–760
  • Huang C, Zhao Q. Sensitive information detection method based on attention mechanism-based Elmo. J Comput Appl. 2022; 42 (7):2009–2014. [ Google Scholar ]
  • Hulth A (2003) Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 conference on empirical methods in natural language processing. ACL, pp 216–223
  • Hutto C, Gilbert E (2014) Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the international AAAI conference on web and social media, vol 8. AAAI, pp 216–225
  • Jain AP, Dandannavar P (2016) Application of machine learning techniques to sentiment analysis. In: 2016 2nd international conference on applied and theoretical computing and communication technology (iCATccT). IEEE, pp 628–632
  • Jain S, Gupta V (2022) Sentiment analysis: a recent survey with applications and a proposed ensemble algorithm. In: Computational intelligence in data mining. Springer, pp 13–25
  • Jain PK, Quamer W, Saravanan V, Pamula R (2022) Employing BERT-DCNN with sentic knowledge base for social media sentiment analysis. J Ambient Intell Human Comput 1–13
  • Ji X, Chun S, Wei Z, Geller J. Twitter sentiment classification for measuring public health concerns. Soc Netw Anal Min. 2015; 5 (1):1–25. doi: 10.1007/s13278-015-0253-5. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Jianqiang Z (2015) Pre-processing boosting twitter sentiment analysis? In: 2015 IEEE international conference on Smart City/SocialCom/SustainCom (SmartCity). IEEE, pp 748–753
  • Jianqiang Z, Xiaolin G. Comparison research on text pre-processing methods on twitter sentiment analysis. IEEE Access. 2017; 5 :2870–2879. doi: 10.1109/ACCESS.2017.2672677. [ CrossRef ] [ Google Scholar ]
  • Jiao W, Lyu M, King I. Real-time emotion recognition via attention gated hierarchical memory network. Proceedings of the AAAI conference on artificial intelligence. 2020; 34 :8002–8009. doi: 10.1609/aaai.v34i05.6309. [ CrossRef ] [ Google Scholar ]
  • John SM, Kartheeban K (2019) Sentiment scoring and performance metrics examination of various supervised classifiers. Int J Innov Technol Explor Eng 9(2S2), 1120–1126
  • Joshi M, Rosé C (2009) Generalizing dependency features for opinion mining. In: Proceedings of the ACL-IJCNLP 2009 conference short papers. ACL, pp 313–316
  • Kanayama H, Nasukawa T (2006) Fully automatic lexicon expansion for domain-oriented sentiment analysis. In: Proceedings of the 2006 conference on empirical methods in natural language processing. Association for Computational Linguistics, pp 355–363
  • Katrekar A, AVP BDA (2005) An introduction to sentiment analysis. GlobalLogic Inc 1–6
  • Kaur R, Kautish S (2022) Multimodal sentiment analysis: a survey and comparison. In: Research anthology on implementing sentiment analysis across multiple disciplines. IGI Global, pp 1846–1870
  • Keramatfar A, Amirkhani H, Bidgoly AJ. Modeling tweet dependencies with graph convolutional networks for sentiment analysis. Cognit Comput. 2022 doi: 10.1007/s12559-021-09986-8. [ CrossRef ] [ Google Scholar ]
  • Khan MT, Ma Y, Kim J-j (2016) Term ranker: a graph-based re-ranking approach. In: The twenty-ninth international flairs conference. AAAI
  • Kharde V, Sonawane P, et al. Sentiment analysis of twitter data: a survey of techniques. Int J Comput Appl. 2016; 975 :0975–8887. [ Google Scholar ]
  • Kim S-M, Hovy E (2004) Determining the sentiment of opinions. In: COLING 2004: Proceedings of the 20th international conference on computational linguistics. ACL, pp 1367–1373
  • Kim K, Lee J. Sentiment visualization and classification via semi-supervised nonlinear dimensionality reduction. Pattern Recogn. 2014; 47 (2):758–768. doi: 10.1016/j.patcog.2013.07.022. [ CrossRef ] [ Google Scholar ]
  • Kim H, Howland P, Park H, Christianini N. Dimension reduction in text classification with support vector machines. J Mach Learn Res. 2005; 6 (1):37–53. [ Google Scholar ]
  • Kim J, Kim H-U, Adamowski J, Hatami S, Jeong H. Comparative study of term-weighting schemes for environmental big data using machine learning. Environ Model Softw. 2022; 157 :105536. doi: 10.1016/j.envsoft.2022.105536. [ CrossRef ] [ Google Scholar ]
  • Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907
  • Kiritchenko S, Zhu X, Mohammad SM. Sentiment analysis of short informal texts. J Artif Intell Res. 2014; 50 :723–762. doi: 10.1613/jair.4272. [ CrossRef ] [ Google Scholar ]
  • Kiritchenko S, Zhu X, Cherry C, Mohammad S (2014b) Nrc-canada-2014: Detecting aspects and sentiment in customer reviews. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014). ACL, pp 437–442
  • Kolkur S, Dantal G, Mahe R. Study of different levels for sentiment analysis. Int J Curr Eng Technol. 2015; 5 (2):768–770. [ Google Scholar ]
  • König AC, Brill E (2006) Reducing the human overhead in text categorization. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 598–603
  • Kontopoulos E, Berberidis C, Dergiades T, Bassiliades N. Ontology-based sentiment analysis of twitter posts. Expert Syst Appl. 2013; 40 (10):4065–4074. doi: 10.1016/j.eswa.2013.01.001. [ CrossRef ] [ Google Scholar ]
  • Kummer O, Savoy J (2012) Feature weighting strategies in sentiment analysis. In: SDAD 2012: the first international workshop on sentiment discovery from affective data, pp 48–55
  • Kwon K, Choi C-H, Lee J, Jeong J, Cho W-S (2015) A graph based representative keywords extraction model from news articles. In: Proceedings of the 2015 international conference on big data applications and services. ACM, pp 30–36
  • Lahiri S, Choudhury SR, Caragea C (2014) Keyword and keyphrase extraction using centrality measures on collocation networks. arXiv preprint arXiv:1401.6571
  • Lan M, Tan CL, Su J, Lu Y. Supervised and traditional term weighting methods for automatic text categorization. IEEE Trans Pattern Anal Mach Intell. 2008; 31 (4):721–735. doi: 10.1109/TPAMI.2008.110. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Le B, Nguyen H (2015) Twitter sentiment analysis using machine learning techniques. In: Advanced computational methods for knowledge engineering. Springer, pp 279–289
  • Li Y-M, Li T-Y. Deriving market intelligence from microblogs. Decis Support Syst. 2013; 55 (1):206–217. doi: 10.1016/j.dss.2013.01.023. [ CrossRef ] [ Google Scholar ]
  • Li H, Lu W (2017) Learning latent sentiment scopes for entity-level sentiment analysis. In: Thirty-first AAAI conference on artificial intelligence. AAAI, pp 3482–3489
  • Li N, Wu DD. Using text mining and sentiment analysis for online forums hotspot detection and forecast. Decis Support Syst. 2010; 48 (2):354–368. doi: 10.1016/j.dss.2009.09.003. [ CrossRef ] [ Google Scholar ]
  • Li S, Zhang H, Xu W, Chen G, Guo J (2010) Exploiting combined multi-level model for document sentiment analysis. In: 2010 20th international conference on pattern recognition. IEEE, pp 4141–4144
  • Li S-K, Guan Z, Tang L-Y, Chen Z. Exploiting consumer reviews for product feature ranking. J Comput Sci Technol. 2012; 27 (3):635–649. doi: 10.1007/s11390-012-1250-z. [ CrossRef ] [ Google Scholar ]
  • Li X, Xie H, Chen L, Wang J, Deng X. News impact on stock price return via sentiment analysis. Knowl-Based Syst. 2014; 69 :14–23. doi: 10.1016/j.knosys.2014.04.022. [ CrossRef ] [ Google Scholar ]
  • Li S, Zhou L, Li Y. Improving aspect extraction by augmenting a frequency-based method with web-based similarity measures. Inf Process Manag. 2015; 51 (1):58–67. doi: 10.1016/j.ipm.2014.08.005. [ CrossRef ] [ Google Scholar ]
  • Li X, Li J, Wu Y. A global optimization approach to multi-polarity sentiment analysis. PLoS ONE. 2015; 10 (4):0124672. doi: 10.1371/journal.pone.0124672. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Li Y, Pan Q, Yang T, Wang S, Tang J, Cambria E. Learning word representations for sentiment analysis. Cognit Comput. 2017; 9 (6):843–851. doi: 10.1007/s12559-017-9492-2. [ CrossRef ] [ Google Scholar ]
  • Li W, Shao W, Ji S, Cambria E. Bieru: bidirectional emotional recurrent unit for conversational sentiment analysis. Neurocomputing. 2022; 467 :73–82. doi: 10.1016/j.neucom.2021.09.057. [ CrossRef ] [ Google Scholar ]
  • Liang B, Su H, Gui L, Cambria E, Xu R. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowl-Based Syst. 2022; 235 :107643. doi: 10.1016/j.knosys.2021.107643. [ CrossRef ] [ Google Scholar ]
  • Litvak M, Last M, Aizenman H, Gobits I, Kandel A (2011) Degext—a language-independent graph-based keyphrase extractor. In: Advances in intelligent web mastering—3 vol 86. Springer, pp 121–130
  • Liu B, Zhang L (2012) A survey of opinion mining and sentiment analysis. In: Mining text data. Springer, pp 415–463
  • Liu Y, Loh HT, Sun A. Imbalanced text classification: a term weighting approach. Expert Syst Appl. 2009; 36 (1):690–701. doi: 10.1016/j.eswa.2007.10.042. [ CrossRef ] [ Google Scholar ]
  • Liu H, He J, Wang T, Song W, Du X. Combining user preferences and user opinions for accurate recommendation. Electron Commer Res Appl. 2013; 12 (1):14–23. doi: 10.1016/j.elerap.2012.05.002. [ CrossRef ] [ Google Scholar ]
  • Loper E, Bird S (2002) Nltk: The natural language toolkit. In: Proceedings of the ACL-02 workshop on effective tools and methodologies for teaching natural language processing and computational linguistics, vol 1. ACM, pp 63–70
  • Loughran T, McDonald B. The use of word lists in textual analysis. J Behav Financ. 2015; 16 (1):1–11. doi: 10.1080/15427560.2015.1000335. [ CrossRef ] [ Google Scholar ]
  • Lu Q, Zhu Z, Zhang G, Kang S, Liu P. Aspect-gated graph convolutional networks for aspect-based sentiment analysis. Appl Intell. 2021; 51 (7):4408–4419. doi: 10.1007/s10489-020-02095-3. [ CrossRef ] [ Google Scholar ]
  • Lu Q, Sun X, Sutcliffe R, Xing Y, Zhang H. Sentiment interaction and multi-graph perception with graph convolutional networks for aspect-based sentiment analysis. Knowl-Based Syst. 2022; 256 :109840. doi: 10.1016/j.knosys.2022.109840. [ CrossRef ] [ Google Scholar ]
  • Luo F, Li C, Cao Z (2016) Affective-feature-based sentiment analysis using svm classifier. In: 2016 IEEE 20th international conference on computer supported cooperative work in design (CSCWD). IEEE, pp 276–281
  • Ma Y, Song R, Gu X, Shen Q, Xu H (2022) Multiple graph convolutional networks for aspect-based sentiment analysis. Appl Intell 1–14
  • Majumder N, Poria S, Hazarika D, Mihalcea R, Gelbukh A, Cambria E (2019) Dialoguernn: An attentive RNN for emotion detection in conversations. In: Proceedings of the AAAI conference on artificial intelligence, vol 33. IEEE, pp 6818–6825
  • Malliaros FD, Skianis K (2015) Graph-based term weighting for text categorization. In: Proceedings of the 2015 IEEE/ACM international conference on advances in social networks analysis and mining 2015. ACM, pp 1473–1479
  • Malo P, Sinha A, Korhonen P, Wallenius J, Takala P. Good debt or bad debt: detecting semantic orientations in economic texts. J Am Soc Inf Sci. 2014; 65 (4):782–796. [ Google Scholar ]
  • Manning CD, Surdeanu M, Bauer J, Finkel JR, Bethard S, McClosky D (2014) The stanford corenlp natural language processing toolkit. In: Proceedings of 52nd annual meeting of the Association for Computational Linguistics: system demonstrations. ACL, pp 55–60
  • Mäntylä MV, Graziotin D, Kuutila M. The evolution of sentiment analysis-a review of research topics, venues, and top cited papers. Comput Sci Rev. 2018; 27 :16–32. doi: 10.1016/j.cosrev.2017.10.002. [ CrossRef ] [ Google Scholar ]
  • Mao R, Liu Q, He K, Li W, Cambria E (2022) The biases of pre-trained language models: An empirical study on prompt-based sentiment analysis and emotion detection. IEEE Trans Affect Comput
  • Mars A, Gouider MS. Big data analysis to features opinions extraction of customer. Procedia Comput Sci. 2017; 112 :906–916. doi: 10.1016/j.procs.2017.08.114. [ CrossRef ] [ Google Scholar ]
  • Mathew L, Bindu V (2020) A review of natural language processing techniques for sentiment analysis using pre-trained models. In: 2020 fourth international conference on computing methodologies and communication (ICCMC). IEEE, pp 340–345
  • McAuley J, Leskovec J (2013) Hidden factors and hidden topics: understanding rating dimensions with review text. In: Proceedings of the 7th ACM conference on recommender systems. ACM, pp 165–172
  • Medelyan O, Witten IH (2006) Thesaurus based automatic keyphrase indexing. In: Proceedings of the 6th ACM/IEEE-CS joint conference on digital libraries. ACM, pp 296–297
  • Medhat W, Hassan A, Korashy H. Sentiment analysis algorithms and applications: a survey. Ain Shams Eng J. 2014; 5 (4):1093–1113. doi: 10.1016/j.asej.2014.04.011. [ CrossRef ] [ Google Scholar ]
  • Mehta P, Pandya S. A review on sentiment analysis methodologies, practices and applications. Int J Sci Technol Res. 2020; 9 (2):601–609. [ Google Scholar ]
  • Miller GA, Beckwith R, Fellbaum C, Gross D, Miller KJ. Introduction to wordnet: an on-line lexical database. Int J Lexicogr. 1990; 3 (4):235–244. doi: 10.1093/ijl/3.4.235. [ CrossRef ] [ Google Scholar ]
  • Mohammad S (2012) # emotional tweets. In: * SEM 2012: The first joint conference on lexical and computational semantics–Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the sixth international workshop on semantic evaluation (SemEval 2012). ACL, pp 246–255
  • Mohammad SM, Kiritchenko S. Using hashtags to capture fine emotion categories from tweets. Comput Intell. 2015; 31 (2):301–326. doi: 10.1111/coin.12024. [ CrossRef ] [ Google Scholar ]
  • Mohammad S, Turney P (2010) Emotions evoked by common words and phrases: Using mechanical Turk to create an emotion lexicon. In: Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text. ACL, pp 26–34
  • Mohammad SM, Turney PD. Crowdsourcing a word-emotion association lexicon. Comput Intell. 2013; 29 (3):436–465. doi: 10.1111/j.1467-8640.2012.00460.x. [ CrossRef ] [ Google Scholar ]
  • Mohammad S, Dunne C, Dorr B (2009) Generating high-coverage semantic orientation lexicons from overtly marked words and a thesaurus. In: Proceedings of the 2009 conference on empirical methods in natural language processing. ACL, pp 599–608
  • Mohammad SM, Kiritchenko S, Zhu X (2013) Nrc-canada: building the state-of-the-art in sentiment analysis of tweets. In: Second joint conference on lexical and computational semantics (* SEM), Volume 2: Proceedings of the seventh international workshop on semantic evaluation (SemEval 2013), vol 2. ACL, pp 321–327
  • Moreno-Ortiz A, Fernández-Cruz J, Hernández CPC (2020) Design and evaluation of Sentiecon: a fine-grained economic/financial sentiment lexicon from a corpus of business news. In: Proceedings of The 12th language resources and evaluation conference. ACL, pp 5065–5072
  • Mostafa MM. More than words: social networks’ text mining for consumer brand sentiments. Expert Syst Appl. 2013; 40 (10):4241–4251. doi: 10.1016/j.eswa.2013.01.019. [ CrossRef ] [ Google Scholar ]
  • Mothe J, Ramiandrisoa F, Rasolomanana M (2018) Automatic keyphrase extraction using graph-based methods. In: Proceedings of the 33rd annual ACM symposium on applied computing. ACM, pp 728–730
  • Mullen T, Collier N (2004) Sentiment analysis using support vector machines with diverse information sources. In: Proceedings of the 2004 conference on empirical methods in natural language processing. ACL, pp 412–418
  • Nagarajan R, Nair S, Aruna P, Puviarasan N. Keyword extraction using graph based approach. Int J Adv Res Comput Sci Softw Eng. 2016; 6 (10):25–29. [ Google Scholar ]
  • Narayanan R, Liu B, Choudhary A (2009) Sentiment analysis of conditional sentences. In: Proceedings of the 2009 conference on empirical methods in natural language processing. ACL and AFNLP, pp 180–189
  • Nasar Z, Jaffry SW, Malik MK. Textual keyword extraction and summarization: state-of-the-art. Inf Process Manage. 2019; 56 (6):102088. doi: 10.1016/j.ipm.2019.102088. [ CrossRef ] [ Google Scholar ]
  • Nguyen TD, Kan M-Y (2007) Keyphrase extraction in scientific publications. In: International conference on Asian digital libraries. Springer, pp 317–326
  • Nguyen H, Nguyen M-L (2017) A deep neural architecture for sentence-level sentiment classification in twitter social networking. In: International conference of the Pacific Association for Computational Linguistics. Springer, pp 15–27
  • Nielsen FÅ (2011) A new anew: evaluation of a word list for sentiment analysis in microblogs. In: 1st workshop on making sense of Microposts: big things come in small packages, pp 93–98
  • Nielsen FÅ (2017) afinn project
  • O’Keefe T, Koprinska I (2009) Feature selection and weighting methods in sentiment analysis. In: Proceedings of the 14th Australasian document computing symposium, Sydney, pp 67–74
  • Oliveira N, Cortez P, Areal N (2014) Automatic creation of stock market lexicons for sentiment analysis using stocktwits data. In: Proceedings of the 18th international database engineering & applications symposium. ACM, pp 115–123
  • Ouyang Y, Guo B, Zhang J, Yu Z, Zhou X. Sentistory: multi-grained sentiment analysis and event summarization with crowdsourced social media data. Pers Ubiquit Comput. 2017; 21 (1):97–111. doi: 10.1007/s00779-016-0977-x. [ CrossRef ] [ Google Scholar ]
  • Pang B, Lee L (2004) A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts. ACM
  • Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the ACL-02 conference on empirical methods in natural language processing, Morristown, NJ, USA. Association for Computational Linguistics, pp 79–86
  • Passi K, Motisariya J (2022) Twitter sentiment analysis of the 2019 indian election. In: IOT with smart systems. Springer, pp 805–814
  • Patil P, April Yalagi P. Sentiment analysis levels and techniques: a survey. Int J Innov Eng Technol. 2016; 6 :523. [ Google Scholar ]
  • Patil G, Galande V, Kekan V, Dange K. Sentiment analysis using support vector machine. Int J Innov Res Comput Commun Eng. 2014; 2 (1):2607–2612. [ Google Scholar ]
  • Pavitha N, Pungliya V, Raut A, Bhonsle R, Purohit A, Patel A, Shashidhar R (2022) Movie recommendation and sentiment analysis using machine learning. In: Global transitions proceedings. Elsevier
  • Pitogo VA, Ramos CDL (2020) Social media enabled e-participation: a lexicon-based sentiment analysis using unsupervised machine learning. In: Proceedings of the 13th international conference on theory and practice of electronic governance, pp 518–528. ACM
  • Poria S, Gelbukh A, Hussain A, Howard N, Das D, Bandyopadhyay S. Enhanced senticnet with affective labels for concept-based opinion mining. IEEE Intell Syst. 2013; 28 (2):31–38. doi: 10.1109/MIS.2013.4. [ CrossRef ] [ Google Scholar ]
  • Poria S, Cambria E, Hazarika D, Majumder N, Zadeh A, Morency L-P (2017) Context-dependent sentiment analysis in user-generated videos. In: Proceedings of the 55th annual meeting of the Association for Computational Linguistics (volume 1: Long Papers). ACL, pp 873–883
  • Prasad AG, Sanjana S, Bhat SM, Harish B (2017) Sentiment analysis for sarcasm detection on streaming short text data. In: 2017 2nd International conference on knowledge engineering and applications (ICKEA). IEEE, pp 1–5
  • Prastyo PH, Sumi AS, Dian AW, Permanasari AE. Tweets responding to the Indonesian government’s handling of covid-19: sentiment analysis using svm with normalized poly kernel. J Inf Syst Eng Bus Intell. 2020; 6 (2):112–122. doi: 10.20473/jisebi.6.2.112-122. [ CrossRef ] [ Google Scholar ]
  • Priyadarshini I, Cotton C. A novel lstm-cnn-grid search-based deep neural network for sentiment analysis. J Supercomput. 2021; 77 (12):13911–13932. doi: 10.1007/s11227-021-03838-w. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Quan C, Ren F. Unsupervised product feature extraction for feature-oriented opinion determination. Inf Sci. 2014; 272 :16–28. doi: 10.1016/j.ins.2014.02.063. [ CrossRef ] [ Google Scholar ]
  • Rabelo JC, Prudêncio RB, Barros FA (2012) Using link structure to infer opinions in social networks. In: 2012 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 681–685
  • Rajput A. Natural language processing, sentiment analysis, and clinical analytics. In: Lytras MD, Sarirete A, editors. Innovation in health informatics. Academic Press: Elsevier; 2020. pp. 79–97. [ Google Scholar ]
  • Ravi K, Ravi V. A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowl-Based Syst. 2015; 89 :14–46. doi: 10.1016/j.knosys.2015.06.015. [ CrossRef ] [ Google Scholar ]
  • Ravinuthala MKV et al (2016) Thematic text graph: a text representation technique for keyword weighting in extractive summarization system. Int J Inf Eng Electron Bus 8(4)
  • Read J, Carroll J (2009) Weakly supervised techniques for domain-independent sentiment classification. In: Proceedings of the 1st international CIKM workshop on topic-sentiment analysis for mass opinion. ACM, pp 45–52
  • Ren F, Sohrab MG. Class-indexing-based term weighting for automatic text classification. Inf Sci. 2013; 236 :109–125. doi: 10.1016/j.ins.2013.02.029. [ CrossRef ] [ Google Scholar ]
  • Ren R, Wu DD, Liu T. Forecasting stock market movement direction using sentiment analysis and support vector machine. IEEE Syst J. 2018; 13 (1):760–770. doi: 10.1109/JSYST.2018.2794462. [ CrossRef ] [ Google Scholar ]
  • Reyes A, Rosso P. Making objective decisions from subjective data: detecting irony in customer reviews. Decis Support Syst. 2012; 53 (4):754–760. doi: 10.1016/j.dss.2012.05.027. [ CrossRef ] [ Google Scholar ]
  • Rui H, Liu Y, Whinston A. Whose and what chatter matters? The effect of tweets on movie sales. Decis Support Syst. 2013; 55 (4):863–870. doi: 10.1016/j.dss.2012.12.022. [ CrossRef ] [ Google Scholar ]
  • Saif H, Fernández M, He Y, Alani H (2014) On stopwords, filtering and data sparsity for sentiment analysis of Twitter, pp 810–817
  • Salari N, Shohaimi S, Najafi F, Nallappan M, Karishnarajah I. A novel hybrid classification model of genetic algorithms, modified k-nearest neighbor and developed backpropagation neural network. PLoS ONE. 2014; 9 (11):112987. doi: 10.1371/journal.pone.0112987. [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Salton G, Buckley C. Term-weighting approaches in automatic text retrieval. Inf Process Manage. 1988; 24 (5):513–523. doi: 10.1016/0306-4573(88)90021-0. [ CrossRef ] [ Google Scholar ]
  • Santos G, Mota VF, Benevenuto F, Silva TH. Neutrality may matter: sentiment analysis in reviews of AIRBNB, booking, and Couchsurfing in Brazil and USA. Soc Netw Anal Min. 2020; 10 (1):1–13. doi: 10.1007/s13278-020-00656-5. [ CrossRef ] [ Google Scholar ]
  • Sarzynska-Wawer J, Wawer A, Pawlak A, Szymanowska J, Stefaniak I, Jarkiewicz M, Okruszek L. Detecting formal thought disorder by deep contextualized word representations. Psychiatry Res. 2021; 304 :114135. doi: 10.1016/j.psychres.2021.114135. [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Saxena A, Reddy H, Saxena P (2022) Introduction to sentiment analysis covering basics, tools, evaluation metrics, challenges, and applications. In: Principles of social networking. Springer, pp 249–277
  • Schouten K, Frasincar F. Survey on aspect-level sentiment analysis. IEEE Trans Knowl Data Eng. 2015; 28 (3):813–830. doi: 10.1109/TKDE.2015.2485209. [ CrossRef ] [ Google Scholar ]
  • Sebastiani F, Debole F (2003) Supervised term weighting for automated text categorization. In: Proceeding the 18th ACM symposium on applied computing. ACM, pp 784–788
  • Serrano-Guerrero J, Olivas JA, Romero FP, Herrera-Viedma E. Sentiment analysis: a review and comparative analysis of web services. Inf Sci. 2015; 311 :18–38. doi: 10.1016/j.ins.2015.03.040. [ CrossRef ] [ Google Scholar ]
  • Sharma A, Dey S (2012) A comparative study of feature selection and machine learning techniques for sentiment analysis. In: Proceedings of the 2012 ACM research in applied computation symposium, pp 1–7
  • Shi W, Zheng W, Yu JX, Cheng H, Zou L. Keyphrase extraction using knowledge graphs. Data Sci Eng. 2017; 2 (4):275–288. doi: 10.1007/s41019-017-0055-z. [ CrossRef ] [ Google Scholar ]
  • Shimada K, Hashimoto D, Endo T (2009) A graph-based approach for sentiment sentence extraction. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 38–48
  • Sidorov G, Miranda-Jiménez S, Viveros-Jiménez F, Gelbukh A, Castro-Sánchez N, Velásquez F, Díaz-Rangel I, Suárez-Guerra S, Trevino A, Gordon J (2013) Empirical study of machine learning based approach for opinion mining in tweets. In: Mexican international conference on artificial intelligence. Springer, pp 1–14
  • Smith H, Cipolli W. The Instagram/Facebook ban on graphic self-harm imagery: a sentiment analysis and topic modeling approach. Policy Internet. 2022; 14 (1):170–185. doi: 10.1002/poi3.272. [ CrossRef ] [ Google Scholar ]
  • Sokolova M, Lapalme G (2007) Performance measures in classification of human communications. In: Conference of the Canadian Society for computational studies of intelligence. Springer, pp 159–170
  • Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Inf Process Manage. 2009; 45 (4):427–437. doi: 10.1016/j.ipm.2009.03.002. [ CrossRef ] [ Google Scholar ]
  • Solangi YA, Solangi ZA, Aarain S, Abro A, Mallah GA, Shah A (2018) Review on natural language processing (NLP) and its toolkits for opinion mining and sentiment analysis. In: 2018 IEEE 5th international conference on engineering technologies and applied sciences (ICETAS). IEEE, pp 1–4
  • Soubraylu S, Rajalakshmi R. Hybrid convolutional bidirectional recurrent neural network based sentiment analysis on movie reviews. Comput Intell. 2021; 37 (2):735–757. doi: 10.1111/coin.12400. [ CrossRef ] [ Google Scholar ]
  • Sousa MG, Sakiyama K, de Souza Rodrigues L, Moraes PH, Fernandes ER, Matsubara ET (2019) Bert for stock market sentiment analysis. In: 2019 IEEE 31st international conference on tools with artificial intelligence (ICTAI). IEEE, pp 1597–1601
  • Stagner R. The cross-out technique as a method in public opinion analysis. J Soc Psychol. 1940; 11 (1):79–90. doi: 10.1080/00224545.1940.9918734. [ CrossRef ] [ Google Scholar ]
  • Staiano J, Guerini M (2014) Depechemood: a lexicon for emotion analysis from crowd-annotated news. ACL, pp 427–433. arXiv preprint arXiv:1405.1605
  • Stone PJ, Hunt EB (1963) A computer approach to content analysis: studies using the general inquirer system. In: Proceedings of the May 21-23, 1963, Spring Joint Computer Conference. ACL, pp 241–256
  • Subrahmanian VS, Reforgiato D. Ava: adjective-verb-adverb combinations for sentiment analysis. IEEE Intell Syst. 2008; 23 (4):43–50. doi: 10.1109/MIS.2008.57. [ CrossRef ] [ Google Scholar ]
  • Taboada M. Sentiment analysis: an overview from linguistics. Ann Rev Linguist. 2016; 2 :325–347. doi: 10.1146/annurev-linguistics-011415-040518. [ CrossRef ] [ Google Scholar ]
  • Tamilselvam S, Nagar S, Mishra A, Dey K (2017) Graph based sentiment aggregation using conceptnet ontology. In: Proceedings of the eighth international joint conference on natural language processing (Volume 1: Long Papers), vol 1. ACL, pp 525–535
  • Tan S, Zhang J. An empirical study of sentiment analysis for Chinese documents. Expert Syst Appl. 2008; 34 (4):2622–2629. doi: 10.1016/j.eswa.2007.05.028. [ CrossRef ] [ Google Scholar ]
  • Tan C, Lee L, Tang J, Jiang L, Zhou M, Li P (2011) User-level sentiment analysis incorporating social networks. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. Association for Computing Machinery, pp 1397–1405
  • Tan LK-W, Na J-C, Theng Y-L, Chang K. Phrase-level sentiment polarity classification using rule-based typed dependencies and additional complex phrases consideration. J Comput Sci Technol. 2012; 27 (3):650–666. doi: 10.1007/s11390-012-1251-y. [ CrossRef ] [ Google Scholar ]
  • Tang D, Wei F, Qin B, Yang N, Liu T, Zhou M. Sentiment embeddings with applications to sentiment analysis. IEEE Trans Knowl Data Eng. 2015; 28 (2):496–509. doi: 10.1109/TKDE.2015.2489653. [ CrossRef ] [ Google Scholar ]
  • Tembhurne JV, Diwan T. Sentiment analysis in textual, visual and multimodal inputs using recurrent neural networks. Multimedia Tools Appl. 2021; 80 (5):6871–6910. doi: 10.1007/s11042-020-10037-x. [ CrossRef ] [ Google Scholar ]
  • Thelwall M, Buckley K. Topic-based sentiment analysis for the social web: the role of mood and issue-related words. J Am Soc Inform Sci Technol. 2013; 64 (8):1608–1617. doi: 10.1002/asi.22872. [ CrossRef ] [ Google Scholar ]
  • Theng Y-L (2004) Design and usability of digital libraries: case studies in the Asia Pacific: case studies in the Asia Pacific. IGI Global, pp 129–152
  • Tian Y, Chen G, Song Y (2021) Aspect-based sentiment analysis with type-aware graph convolutional networks and layer ensemble. In: Proceedings of the 2021 conference of the North American chapter of the Association for Computational Linguistics: Human Language Technologies. ACL, pp 2910–2922
  • Titov I, McDonald R (2008) A joint model of text and aspect ratings for sentiment summarization. In: Proceedings of ACL-08: HLT. ACL, pp 308–316
  • Trinh S, Nguyen L, Vo M (2018) Combining lexicon-based and learning-based methods for sentiment analysis for product reviews in Vietnamese language. In: International conference on computer and information science. Springer, pp 57–75
  • Tripathy A, Agrawal A, Rath SK. Classification of sentimental reviews using machine learning techniques. Procedia Comput Sci. 2015; 57 :821–829. doi: 10.1016/j.procs.2015.07.523. [ CrossRef ] [ Google Scholar ]
  • Tsai AC-R, Wu C-E, Tsai RT-H, Hsu JY. Building a concept-level sentiment dictionary based on commonsense knowledge. IEEE Intell Syst. 2013; 28 (2):22–30. doi: 10.1109/MIS.2013.25. [ CrossRef ] [ Google Scholar ]
  • Turney PD (2002) Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pp 417–424
  • Vakali A, Chatzakou D, Koutsonikola V, Andreadis G (2013) Social data sentiment analysis in smart environments-extending dual polarities for crowd pulse capturing. In: International conference on data management technologies and applications, vol 2. SCITEPRESS, pp 175–182
  • Valakunde N, Patwardhan M (2013) Multi-aspect and multi-class based document sentiment analysis of educational data catering accreditation process. In: 2013 International conference on cloud & ubiquitous computing & emerging technologies. IEEE, pp 188–192
  • Valdivia A, Luzíón MV, Herrera F (2017) Neutrality in the sentiment analysis problem based on fuzzy majority. In: 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp 1–6
  • Valdivia A, Luzón MV, Cambria E, Herrera F. Consensus vote models for detecting and filtering neutrality in sentiment analysis. Inf Fusion. 2018; 44 :126–135. doi: 10.1016/j.inffus.2018.03.007. [ CrossRef ] [ Google Scholar ]
  • Vega-Oliveros DA, Gomes PS, Milios EE, Berton L. A multi-centrality index for graph-based keyword extraction. Inf Process Manag. 2019; 56 (6):102063. doi: 10.1016/j.ipm.2019.102063. [ CrossRef ] [ Google Scholar ]
  • Verma S. Sentiment analysis of public services for smart society: literature review and future research directions. Gov Inf Q. 2022; 39 :101708. doi: 10.1016/j.giq.2022.101708. [ CrossRef ] [ Google Scholar ]
  • Vidanagama D, Silva A, Karunananda A. Ontology based sentiment analysis for fake review detection. Expert Syst Appl. 2022; 206 :117869. doi: 10.1016/j.eswa.2022.117869. [ CrossRef ] [ Google Scholar ]
  • Wakade S, Shekar C, Liszka KJ, Chan C-C (2012) Text mining for sentiment analysis of twitter data. In: Proceedings of the international conference on information and knowledge engineering (IKE). The Steering Committee of The World Congress in Computer Science, Computer  … , pp 1–6
  • Wang Z, Joo V, Tong C, Xin X, Chin HC (2014) Anomaly detection through enhanced sentiment analysis on social media data. In: 2014 IEEE 6th international conference on cloud computing technology and science. IEEE, pp 917–922
  • Wang T, Cai Y, Leung H-f, Cai Z, Min H (2015) Entropy-based term weighting schemes for text categorization in VSM. In: 2015 IEEE 27th international conference on tools with artificial intelligence (ICTAI). IEEE, pp 325–332
  • Wang J, Li C, Xia C. Improved centrality indicators to characterize the nodal spreading capability in complex networks. Appl Math Comput. 2018; 334 :388–400. [ Google Scholar ]
  • Wang Z, Ho S-B, Cambria E. Multi-level fine-scaled sentiment sensing with ambivalence handling. Int J Uncertain Fuzz Knowl-Based Syst. 2020; 28 (04):683–697. doi: 10.1142/S0218488520500294. [ CrossRef ] [ Google Scholar ]
  • Wang X, Li F, Zhang Z, Xu G, Zhang J, Sun X. A unified position-aware convolutional neural network for aspect based sentiment analysis. Neurocomputing. 2021; 450 :91–103. doi: 10.1016/j.neucom.2021.03.092. [ CrossRef ] [ Google Scholar ]
  • Wang J, Zhang Y, Yu L-C, Zhang X. Contextual sentiment embeddings via bi-directional GRU language model. Knowl-Based Syst. 2022; 235 :107663. doi: 10.1016/j.knosys.2021.107663. [ CrossRef ] [ Google Scholar ]
  • Wang Z, Gao P, Chu X. Sentiment analysis from customer-generated online videos on product review using topic modeling and multi-attention BLSTM. Adv Eng Inform. 2022; 52 :101588. doi: 10.1016/j.aei.2022.101588. [ CrossRef ] [ Google Scholar ]
  • Wankhade M, Rao ACS, Kulkarni C (2022) A survey on sentiment analysis methods, applications, and challenges. Artif Intell Rev 1–50
  • Wawre SV, Deshmukh SN. Sentiment classification using machine learning techniques. IJSR. 2016; 5 (4):819–821. doi: 10.21275/v5i4.NOV162724. [ CrossRef ] [ Google Scholar ]
  • Wiebe JM (1990) Recognizing subjective sentences: a computational investigation of narrative text. State University of New York at Buffalo
  • Wiebe J, Mihalcea R (2006) Word sense and subjectivity. In: Proceedings of the 21st International conference on computational linguistics and 44th annual meeting of the Association for Computational Linguistics, pp 1065–1072
  • Wilson T, Wiebe J (2003) Annotating opinions in the world press. In: Proceedings of the fourth SIGdial workshop of discourse and dialogue. ACL, pp 13–22
  • Wilson T, Wiebe J, Hoffmann P (2005) Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of human language technology conference and conference on empirical methods in natural language processing. ACL, pp 347–354
  • Wu Y, Zhang Q, Huang X-J, Wu L (2011) Structural opinion mining for graph-based sentiment representation. In: Proceedings of the 2011 conference on empirical methods in natural language processing. ACL, pp 1332–1341
  • Xia R, Zong C, Li S. Ensemble of feature sets and classification algorithms for sentiment classification. Inf Sci. 2011; 181 (6):1138–1152. doi: 10.1016/j.ins.2010.11.023. [ CrossRef ] [ Google Scholar ]
  • Yadav A, Vishwakarma DK. Sentiment analysis using deep learning architectures: a review. Artif Intell Rev. 2020; 53 (6):4335–4385. doi: 10.1007/s10462-019-09794-5. [ CrossRef ] [ Google Scholar ]
  • Yadav CS, Sharan A, Joshi ML (2014) Semantic graph based approach for text mining. In: 2014 international conference on issues and challenges in intelligent computing techniques (ICICT). IEEE, pp 596–601
  • Yan X, Huang T (2015) Tibetan sentence sentiment analysis based on the maximum entropy model. In: 2015 10th international conference on broadband and wireless computing, communication and applications (BWCCA). IEEE, pp 594–597
  • Yan Z, Xing M, Zhang D, Ma B. Exprs: an extended pagerank method for product feature extraction from online consumer reviews. Inf Manag. 2015; 52 (7):850–858. doi: 10.1016/j.im.2015.02.002. [ CrossRef ] [ Google Scholar ]
  • Yavari A, Hassanpour H, Rahimpour Cami B, Mahdavi M. Election prediction based on sentiment analysis using twitter data. Int J Eng. 2022; 35 (2):372–379. doi: 10.5829/IJE.2022.35.02B.13. [ CrossRef ] [ Google Scholar ]
  • Ye Q, Zhang Z, Law R. Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Syst Appl. 2009; 36 (3):6527–6535. doi: 10.1016/j.eswa.2008.07.035. [ CrossRef ] [ Google Scholar ]
  • Yenter A, Verma A (2017) Deep cnn-lstm with combined kernels from multiple branches for imdb review sentiment analysis. In: 2017 IEEE 8th annual ubiquitous computing, electronics and mobile communication conference (UEMCON). IEEE, pp 540–546
  • Yu B, Zhang S (2022) A novel weight-oriented graph convolutional network for aspect-based sentiment analysis. J Supercomput 1–26
  • Yu X, Liu Y, Huang X, An A. Mining online reviews for predicting sales performance: a case study in the movie domain. IEEE Trans Knowl Data Eng. 2010; 24 (4):720–734. doi: 10.1109/TKDE.2010.269. [ CrossRef ] [ Google Scholar ]
  • Yu Y, Duan W, Cao Q. The impact of social and conventional media on firm equity value: a sentiment analysis approach. Decis Support Syst. 2013; 55 (4):919–926. doi: 10.1016/j.dss.2012.12.028. [ CrossRef ] [ Google Scholar ]
  • Zad S, Heidari M, Jones JH, Uzuner O (2021) A survey on concept-level sentiment analysis techniques of textual data. In: 2021 IEEE World AI IoT Congress (AIIoT). IEEE, pp 0285–0291
  • Zainuddin N, Selamat A (2014) Sentiment analysis using support vector machine. In: 2014 international conference on computer, communications, and control technology (I4CT), pp 333–337. IEEE
  • Zhan J, Loh HT, Liu Y. Gather customer concerns from online product reviews-a text summarization approach. Expert Syst Appl. 2009; 36 (2):2107–2115. doi: 10.1016/j.eswa.2007.12.039. [ CrossRef ] [ Google Scholar ]
  • Zhang K, Xu H, Tang J, Li J (2006) Keyword extraction using support vector machine. In: International conference on web-age information management. Springer, pp 85–96
  • Zhang L, Ghosh R, Dekhil M, Hsu M, Liu B (2011) Combining lexicon-based and learning-based methods for twitter sentiment analysis. HP Laboratories, Technical Report HPL-2011 89, 1–8. HP Laboratories
  • Zhang W, Xu H, Wan W. Weakness finder: find product weakness from Chinese reviews by using aspects based sentiment analysis. Expert Syst Appl. 2012; 39 (11):10283–10291. doi: 10.1016/j.eswa.2012.02.166. [ CrossRef ] [ Google Scholar ]
  • Zhang H, Gan W, Jiang B (2014) Machine learning and lexicon based methods for sentiment classification: a survey. In: 2014 11th web information system and application conference. IEEE, pp 262–265
  • Zhang Y, Zhou Y, Yao J (2020) Feature extraction with tf-idf and game-theoretic shadowed sets. In: International conference on information processing and management of uncertainty in knowledge-based systems, pp 722–733. Springer
  • Zhang Q, Yi GY, Chen L-P, He W (2021) Text mining and sentiment analysis of covid-19 tweets. arXiv preprint arXiv:2106.15354
  • Zhang K, Zhang K, Zhang M, Zhao H, Liu Q, Wu W, Chen E (2022) Incorporating dynamic semantics into pre-trained language model for aspect-based sentiment analysis. In: Findings of the Association for Computational Linguistics: ACL 2022. ACL, pp 3599–3610
  • Zhao WX, Jiang J, He J, Song Y, Achanauparp P, Lim E-P, Li X (2011) Topical keyphrase extraction from twitter. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: human language technologies, pp 379–388
  • Zhao Z, Tang M, Tang W, Wang C, Chen X. Graph convolutional network with multiple weight mechanisms for aspect-based sentiment analysis. Neurocomputing. 2022; 500 :124–134. doi: 10.1016/j.neucom.2022.05.045. [ CrossRef ] [ Google Scholar ]
  • Zhou J, Tian J, Wang R, Wu Y, Xiao W, He L (2020) Sentix: a sentiment-aware pre-trained model for cross-domain sentiment analysis. In: Proceedings of the 28th international conference on computational linguistics. ACL, pp 568–579
  • Zhu X, Kiritchenko S, Mohammad S (2014) Nrc-canada-2014: recent improvements in the sentiment analysis of tweets. In: Proceedings of the 8th international workshop on semantic evaluation (SemEval 2014). ACL, pp 443–447
  • Zhu X, Zhu L, Guo J, Liang S, Dietze S. Gl-gcn: Global and local dependency guided graph convolutional networks for aspect-based sentiment classification. Expert Syst Appl. 2021; 186 :115712. doi: 10.1016/j.eswa.2021.115712. [ CrossRef ] [ Google Scholar ]
  • Zhu H, Zheng Z, Soleymani M, Nevatia R (2022) Self-supervised learning for sentiment analysis via image-text matching. In: ICASSP 2022–2022 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 1710–1714
  • Zin HM, Mustapha N, Murad MAA, Sharef NM (2017) The effects of pre-processing strategies in sentiment analysis of online movie reviews. In: AIP conference proceedings, vol 1891. AIP Publishing LLC, p. 020089

Integrating Social Media Insights for Innovation Performance Enhancement: A Transformer-Based Analysis

  • Published: 18 June 2024

Cite this article

sentiment analysis research papers 2019

  • Ang Wang 1 &
  • Yue Niu 2  

With the development of the times, social media in daily work is increasingly popular, which has a potential impact on employee innovation performance. However, current research only focuses on single factor analysis. In order to enhance this research, this paper studies transformer model, attention mechanism, and other advanced data analysis methods to investigate the subtle relationship between employees’ use of social media and its impact on a company’s innovation performance. Our research introduces a multidimensional approach that encompasses both organizational and individual perspectives, offering a comprehensive understanding of social media’s dualistic nature in fostering innovation. Employing an innovative methodological framework, we integrate factor analysis with a transformer-based feature fusion module, effectively capturing and analyzing the rich semantic nuances embedded in employee-generated social media content. This approach allows for the extraction and synthesis of key sentiment indicators, facilitating a more granular analysis of how social media engagement influences innovation-related behaviors and outcomes. Findings reveal that the strategic use of social media within corporate environments can significantly enhance innovation performance by providing a fertile ground for knowledge sharing, collaborative engagement, and the nurturing of a culture conducive to innovation. The proposed multimodal data fusion technique demonstrates superior accuracy in sentiment analysis, surpassing traditional unimodal approaches by significant margins. These insights contribute to the academic discourse on technology management and knowledge economy and offer practical implications for organizations aiming to harness social media’s potential in augmenting their innovation ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

sentiment analysis research papers 2019

Data Availability

The data can be obtained according to the requirements.

Akande, O. N., Ayoola, J., Misra, S., Ahuja, R., Agrawal, A., & Oluranti, J. (2022). Application of support vector machine and convolutional neural network for sentence-level sentiment analysis of companies products review. Advances in Electrical and Computer Technologies: Select Proceedings of ICAECT 2021. Singapore: Springer Nature Singapore, 133–145.

Chapter   Google Scholar  

Bala, H., Massey, A., & Seol, S. (2019). Social media in the workplace: Influence on employee agility and innovative behavior. 1–10.

Berraies, S., Lajili, R., & Chtioui, R. (2020). Social capital, employees’ well-being and knowledge sharing: Does enterprise social networks use matter? Tunisian knowledge-intensive firms. Journal of Intellectual Capital, 21 (6), 1153–1183.

Article   Google Scholar  

Caccamo, M., Pittino, D., & Tell, F. (2022). Boundary objects, knowledge integration, and innovation management: A systematic review of the literature. Technovation , 102645.

Cao, X., & Yu, L. (2019). Exploring the influence of excessive social media use at work: A three-dimension usage perspective. International Journal of Information Management, 46 , 83–92.

Chandrasekaran, G., Nguyen, T. N., & Hemanth, D. J. (2021). Multimodal sentimental analysis for social media applications: A comprehensive review. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 11 (5), e1415.

Google Scholar  

Chen, Y., Luo, H., Chen, J., & Guo, Y. (2022). Building data-driven dynamic capabilities to arrest knowledge hiding: A knowledge management perspective. Journal of Business Research, 139 , 1138–1154.

Chen, L., Hong, L., & Liu, J. (2021). Analysis of information dissemination orientation of new media police microblog platform. Artificial Intelligence and Security: 7th International Conference, ICAIS 2021, Dublin, Ireland, July 19–23, 2021, Proceedings, Part I 7. Springer International Springer International Publishing, 666–675.

Du, J., Cheng, Y., Zhou, Q., Zhang, J., Zhang, X. Y., & Li, G. (2020). Power load forecasting using BiLSTM-attention. IOP Conference Series: Earth and Environmental Science. IOP Publishing, 440(3): 032115.

Duggan, M., Ellison, N. B., Lampe, C., Lenhart, A., & Madden, M. (2015). Social media update 2014. Pew Research Center, 19 , 1–2.

Islam, M. R., & Zibran, M. F. (2018). SentiStrength-SE: Exploiting domain specificity for improved sentiment analysis in software engineering text. Journal of Systems and Software, 145 , 125–146.

Kaur, R., & Kautish, S. (2022). Multimodal sentiment analysis: A survey and comparison. Research Anthology on Implementing Sentiment Analysis Across Multiple Disciplines , 1846–1870.

Kumar, A., & Garg, G. (2019). Sentiment analysis of multimodal Twitter data. Multimedia Tools and Applications, 78 , 24103–24119.

Kvasničková, S. L., Pilař, L., Margarisová, K., & Kvasnička, R. (2020). Corporate social responsibility and social media: Comparison between developing and developed countries. Sustainability, 12 (13), 5255.

Li, J., Wang, X., Lv, G., & Zeng, Z. (2023). GraphMFT: A graph network based multimodal fusion technique for emotion recognition in conversation. Neurocomputing, 550 , 12.

Liang, M., Xin, Z., Yan, D. X., & Jian, X. F. (2021). How to improve employee satisfaction and efficiency through different enterprise social media use. Journal of Enterprise Information Management, 34 (3), 922–947.

Liu, Y., & Bakici, T. (2019). Enterprise social media usage: The motives and the moderating role of public social media experience. Computers in Human Behavior, 101 , 163–172.

Liu, A. T., Li, S. W., & Lee, H. (2021). Tera: Self-supervised learning of transformer encoder representation for speech. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 29 , 2351–2366.

Luqman, A., Talwar, S., Masood, A., & Dhir, A. (2021). Does enterprise social media use promote employee creativity and well-being? Journal of Business Research, 131 , 40–54.

Ma, L., Zhang, X., & Wang, G. (2022). The impact of enterprise social media use on employee performance: A grounded theory approach. Journal of Enterprise Information Management, 35 (2), 481–503.

Moftian, N., Gheibi, Y., Khara, R., Safarpour, H., Samad-Soltani, T., Vakiki, M., & Fooladlou, S. (2022). The effects of a spiral model knowledge-based conversion cycle on improving knowledge-based organisations performance. International Journal of Knowledge Management Studies, 13 (1), 71–89.

Namdar, A., Samet, H., Allahbakhshi, M., Tajdinian, M., & Ghanbari, T. (2022). A robust stator inter-turn fault detection in induction motor utilizing Kalman filter-based algorithm. Measurement, 187 , 110181.

Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning. Neurocomputing, 452 , 48–62.

Sharma, A., & Dey, S. (2012). Performance investigation of feature selection methods and sentiment lexicons for sentiment analysis. IJCA Special Issue on Advanced Computing and Communication Technologies for HPC Applications, 3 , 15–20.

Sharma, A., Sharma, K., & Kumar, A. (2023). Real-time emotional health detection using fine-tuned transfer networks with multimodal fusion. Neural Computing and Applications, 35 (31), 22935–22948.

Song, Q., Wang, Y., Chen, Y., Benitez, J., & Hu, J. (2019). Impact of the usage of social media in the workplace on team and employee performance. Information & Management, 56 (8), 103160.

Tahesrdoost, H., Sahibuddin, S., & Jalaliyoon, N. (2022). Exploratory factor analysis; concepts and theory. Advances in Applied and Pure Mathematics, 27 , 375–382.

Wang, R., & Huang, Y. (2018). Communicating corporate social responsibility (CSR) on social media: How do message source and types of CSR messages influence stakeholders’ perceptions? Corporate communications: An International Journal, 23 (3), 326–341.

Xie, C., Chen, D., Shi, H., & Fan, M. Y. (2021). Attention-based bidirectional long short term memory networks combine with phrase convolution layer for relation extraction. 2021 5th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI). IEEE, 1–6.

Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8 (4), e1253.

Zhang, X., Ma, L., Xu, B., & Xu, F. (2019). How social media usage affects employees’ job satisfaction and turnover intention: An empirical study in China. Information & Management, 56 (6), 103136.

Zhu, T., Li, L., Yang, J., Zhao, S., Liu, H., & Qian, J. (2022). Multimodal sentiment analysis with image-text interaction network. IEEE Transactions on Multimedia, 25 , 3375–3385.

Download references

Author information

Authors and affiliations.

School of Psychology, Northwest Normal University, Lanzhou, 730000, Gansu, China

Department of Applied Psychology, University of Nottingham Malaysia Campus, 43500, Semenyih, Malaysia

You can also search for this author in PubMed   Google Scholar

Contributions

Ang Wang was responsible for study conception and design. Yue Niu was responsible for data collection and analysis. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Yue Niu .

Ethics declarations

Ethical approval.

This study does not contain any studies with human or animals.

Consent to Participate

The authors declare that all the authors have informed consent.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Wang, A., Niu, Y. Integrating Social Media Insights for Innovation Performance Enhancement: A Transformer-Based Analysis. J Knowl Econ (2024). https://doi.org/10.1007/s13132-024-02162-x

Download citation

Received : 21 March 2024

Accepted : 06 June 2024

Published : 18 June 2024

DOI : https://doi.org/10.1007/s13132-024-02162-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Social media analysis
  • Innovation performance
  • Knowledge integration
  • Transformer models
  • Attention mechanisms
  • Employee engagement
  • Multimodal data fusion
  • Sentiment analysis
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (PDF) Sentiment Analysis-An Objective View

    sentiment analysis research papers 2019

  2. (PDF) A COMPREHENSIVE STUDY ON SENTIMENT ANALYSIS

    sentiment analysis research papers 2019

  3. Quick Introduction to Sentiment Analysis

    sentiment analysis research papers 2019

  4. Sentiment Analysis Research Papers

    sentiment analysis research papers 2019

  5. Sentiment Analysis Report

    sentiment analysis research papers 2019

  6. (PDF) Various Aspects of Sentiment Analysis: A Review

    sentiment analysis research papers 2019

VIDEO

  1. Sentiment Analysis and Basic Feature Extraction (Natural Language Processing at UT Austin)

  2. Sentiment Analysis Using Atlas ti (sentiment analysis) (atlasti)

  3. Lecture 5

  4. How to conduct sentiment Analysis?

  5. Sentiment Analysis: Introduction

  6. Homework 2: Sentiment Analysis

COMMENTS

  1. Sentiment Analysis in Social Media and Its Application: Systematic

    This paper focuses to provide a better understanding of the application of sentiment analysis in social media platform by examining related literature published between 2014 to 2019. Sentiment analysis is an approach that uses Natural Language Processing (NLP) to extract, convert and interpret opinion from a text and classify them into positive ...

  2. More than a Feeling: Accuracy and Application of Sentiment Analysis

    This makes accuracy, i.e., the share of correct sentiment predictions out of all predictions, also known as hit rate, a critical concern for sentiment research. Hartmann et al. (2019) were among the first to conduct a systematic comparison of the accuracy of sentiment analysis methods for marketing applications.

  3. A systematic review of social media-based sentiment analysis: Emerging

    2.1. The identification of research questions. Sentiment analysis techniques have been shown to enable individuals, organizations and governments to benefit from the wealth of meaningful information contained in the unstructured data of social media, and there has been a great deal of research devoted to the design of high-performance sentiment classifiers and their applications [1], [4], [5 ...

  4. Systematic reviews in sentiment analysis: a tertiary study

    The papers that discuss deep learning algorithms are recent papers published in 2018 and 2019, which stresses that sentiment analysis is a timely research subject and that the state-of-the-art is evolving rapidly.

  5. A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research

    Sentiment analysis is a critical subfield of natural language processing that focuses on categorizing text into three primary sentiments: positive, negative, and neutral. With the proliferation of online platforms where individuals can openly express their opinions and perspectives, it has become increasingly crucial for organizations to comprehend the underlying sentiments behind these ...

  6. A review on sentiment analysis and emotion detection from text

    In sentiment analysis, polarity is the primary concern, whereas, in emotion detection, the emotional or psychological state or mood is detected. Sentiment analysis is exceptionally subjective, whereas emotion detection is more objective and precise. Section 2.2 describes all about emotion detection in detail.

  7. Longitudinal analysis of sentiment and emotion in news media ...

    This work describes a chronological (2000-2019) analysis of sentiment and emotion in 23 million headlines from 47 news media outlets popular in the United States. We use Transformer language models fine-tuned for detection of sentiment (positive, negative) and Ekman's six basic emotions (anger, disgust, fear, joy, sadness, surprise) plus neutral to automatically label the headlines.

  8. Sentiment Analysis

    Sentiment Analysis. 1322 papers with code • 39 benchmarks • 93 datasets. Sentiment Analysis is the task of classifying the polarity of a given text. For instance, a text-based tweet can be categorized into either "positive", "negative", or "neutral". Given the text and accompanying labels, a model can be trained to predict the correct ...

  9. Sentiment Analysis Based on Deep Learning: A Comparative Study

    The study of public opinion can provide us with valuable information. The analysis of sentiment on social networks, such as Twitter or Facebook, has become a powerful means of learning about the users' opinions and has a wide range of applications. However, the efficiency and accuracy of sentiment analysis is being hindered by the challenges encountered in natural language processing (NLP).

  10. A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research

    identification and categorization of emotions and sentiments expressed through written. text. With the exponential growth of social media, the availability of public opinions and. sentiments has ...

  11. [1904.04206] Deep-Sentiment: Sentiment Analysis Using Ensemble of CNN

    Deep-Sentiment: Sentiment Analysis Using Ensemble of CNN and Bi-LSTM Models. Shervin Minaee, Elham Azimi, AmirAli Abdolrashidi. With the popularity of social networks, and e-commerce websites, sentiment analysis has become a more active area of research in the past few years. On a high level, sentiment analysis tries to understand the public ...

  12. A survey on sentiment analysis methods, applications, and challenges

    The rapid growth of Internet-based applications, such as social media platforms and blogs, has resulted in comments and reviews concerning day-to-day activities. Sentiment analysis is the process of gathering and analyzing people's opinions, thoughts, and impressions regarding various topics, products, subjects, and services. People's opinions can be beneficial to corporations, governments ...

  13. (PDF) A Study of Sentiment Analysis: Concepts ...

    PDF | On Jan 1, 2019, Ameen Abdullah Qaid Aqlan and others published A Study of Sentiment Analysis: Concepts, Techniques, and Challenges | Find, read and cite all the research you need on ResearchGate

  14. Text Sentiment Analysis: A Review

    Sentiment analysis is a big branch in the field of natural language processing. The development of text sentiment analysis not only has a great influence in the field of natural language processing, but also has a profound influence in the fields of politics, economy and social sciences which are influenced by people's subjective view. As an interdisciplinary research field, text sentiment ...

  15. Survey on sentiment analysis: evolution of research methods and topics

    Sentiment analysis, one of the research hotspots in the natural language processing field, has attracted the attention of researchers, and research papers on the field are increasingly published. ... Zunic et al. selected 86 papers from 299 papers retrieved in the period 2011-2019 to discuss the application of sentiment analysis techniques in ...

  16. The evolution of sentiment analysis—A review of research topics, venues

    Consequently, 99% of the papers have been published after 2004. Sentiment analysis papers are scattered to multiple publication venues, and the combined number of papers in the top-15 venues only represent ca. 30% of the papers in total. We present the top-20 cited papers from Google Scholar and Scopus and a taxonomy of research topics.

  17. [1801.07883] Deep Learning for Sentiment Analysis : A Survey

    Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and ...

  18. (PDF) Sentiment Analysis

    Abstract Sentiment or opinion analysis employs natural language processing to. extract a significant pattern of knowledge from a large amount of textual data. It examines comments, opinions ...

  19. PDF A Survey of Sentiment Analysis: Approaches, Datasets, and Future Research

    This paper offers an overview of the latest advancements in sentiment analysis, including preprocessing techniques, feature extraction methods, classification techniques, widely used datasets, and experimental results. Furthermore, this paper delves into the challenges posed by sentiment analysis datasets and discusses some limitations and ...

  20. Large Language Models Meet Text-Centric Multimodal Sentiment Analysis

    A comprehensive review of recent research in text-centric multimodal sentiment analysis tasks is presented, the potential of LLMs for text-centric multimodal sentiment analysis is examined, and the challenges and potential research directions for multimodal sentiment analysis in the future are explored. Compared to traditional sentiment analysis, which only considers text, multimodal sentiment ...

  21. Sentiment analysis: A survey on design framework ...

    Sentiment analysis is a solution that enables the extraction of a summarized opinion or minute sentimental details regarding any topic or context from a voluminous source of data. Even though several research papers address various sentiment analysis methods, implementations, and algorithms, a paper that includes a thorough analysis of the process for developing an efficient sentiment analysis ...

  22. Prediction of 2019 Indian Election Using Sentiment Analysis

    the aim of this paper is to study and compare people's opinions on Indian Government Schemes to evaluate the reputation of Schemes using sentiment analysis. In this research paper developed on social media twitter datasets of particular schemes and its polarity of sentiments. Popularity of Internet has been rapidly increased. Sentiment analysis and opinion mining is the field of study that ...

  23. Sentiment analysis: A survey on design framework, applications and

    Sentiment analysis is a solution that enables the extraction of a summarized opinion or minute sentimental details regarding any topic or context from a voluminous source of data. Even though several research papers address various sentiment analysis methods, implementations, and algorithms, a paper that includes a thorough analysis of the ...

  24. Social language in autism spectrum disorder: A computational analysis

    Individuals with autism spectrum disorder (ASD) demonstrate impairments with pragmatic (social) language, including narrative skills and conversational abilities. We aimed to quantitatively characterize narrative performance in ASD using natural language processing techniques: sentiment and language abstraction analyses based on the Linguistic Category Model. Individuals with ASD and with ...

  25. Sentiment analysis using Twitter data: a comparative application of

    In this paper, we implement social media data analysis to explore sentiments toward Covid-19 in England. ... we selected several critical time points for research and analysis in stages according to the plan of lifting the lockdown in England, and the duration of each stage is about two months. ... Oyebode O, Orji R (2019) Social media and ...

  26. Integrating Social Media Insights for Innovation Performance ...

    In order to enhance this research, this paper studies transformer model, attention mechanism, and other advanced data analysis methods to investigate the subtle relationship between employees' use of social media and its impact on a company's innovation performance. ... Kumar, A., & Garg, G. (2019). Sentiment analysis of multimodal Twitter ...