High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

15 Venn Diagram Questions And Practice Problems (Middle & High School): Exam Style Questions Included

Beki Christian

Venn diagram questions involve visual representations of the relationship between two or more different groups of things. Venn diagrams are first covered in elementary school and their complexity and uses progress through middle and high school.

This article will look at the types of Venn diagram questions that might be encountered at middle school and high school, with a focus on exam style example questions and preparing for standardized tests. We will also cover problem-solving questions. Each question is followed by a worked solution.

How to solve Venn diagram questions

In middle school, sets and set notation are introduced when working with Venn diagrams. A set is a collection of objects. We identify a set using braces. For example, if set A contains the odd numbers between 1 and 10, then we can write this as: 

A = {1, 3, 5, 7, 9}

Venn diagrams sort objects, called elements, into two or more sets.

Venn Diagram example

This diagram shows the set of elements 

{1,2,3,4,5,6,7,8,9,10} sorted into the following sets.

Set A= factors of 10 

Set B= even numbers

The numbers in the overlap (intersection) belong to both sets. Those that are not in set A or set B are shown outside of the circles.

Different sections of a Venn diagram are denoted in different ways.

ξ represents the whole set, called the universal set.

∅ represents the empty set, a set containing no elements.

Venn Diagrams Worksheet

Venn Diagrams Worksheet

Download this quiz to check your students' understanding of Venn diagrams. Includes 10 questions with answers!

Let’s check out some other set notation examples!

A \cap B \quad




^{\prime}\mathrm{A} and B^{\prime}

The intersection of \mathrm{A} and \mathrm{B} .

The elements in both sets \mathrm{A} and \mathrm{B.} \quad

A \cup B \quad




^{\prime}\mathrm{A} or B^{\prime}

The union of \mathrm{A} or \mathrm{B.} .

Any element in set \mathrm{A} or set \mathrm{B.}

A^{\prime}




‘Not \mathrm{A}^{\prime}

The complement of \mathrm{A.}

Any element not in \mathrm{A.}

In middle school and high school, we often use Venn diagrams to establish probabilities.

We do this by reading information from the Venn diagram and applying the following formula.

For Venn diagrams we can say

Middle School Venn diagram questions

In middle school, students learn to use set notation with Venn diagrams and start to find probabilities using Venn diagrams. The questions below are examples of questions that students may encounter in 6th, 7th and 8th grade.

A question on Venn diagrams from third space learning online tutoring

Venn diagram questions 6th grade

1. This Venn diagram shows information about the number of people who have brown hair and the number of people who wear glasses.

15 Venn Diagram Questions Blog Question 1

How many people have brown hair and glasses?

GCSE Quiz False

The intersection, where the Venn diagrams overlap, is the part of the Venn diagram which represents brown hair AND glasses. There are 4 people in the intersection.

2. Which set of objects is represented by the Venn diagram below?

15 Venn Diagram Questions Question 2 Image 1

We can see from the Venn diagram that there are two green triangles, one triangle that is not green, three green shapes that are not triangles and two shapes that are not green or triangles. These shapes belong to set D.

Venn diagram questions 7th grade

3. Max asks 40 people whether they own a cat or a dog. 17 people own a dog, 14 people own a cat and 7 people own a cat and a dog. Choose the correct representation of this information on a Venn diagram.

Venn Diagram Symbols GCSE Question 3 Option A

There are 7 people who own a cat and a dog. Therefore, there must be 7 more people who own a cat, to make a total of 14 who own a cat, and 10 more people who own a dog, to make a total of 17 who own a dog.

Once we put this information on the Venn diagram, we can see that there are 7+7+10=24 people who own a cat, a dog or both.

40-24=16 , so there are 16 people who own neither.

4. The following Venn diagrams each show two sets, set A and set B . On which Venn diagram has A ′ been shaded?

15 Venn Diagram Questions Question 4 Option A

\mathrm{A}^{\prime} means not in \mathrm{A} . This is shown in diagram \mathrm{B.}

Venn diagram questions 8th grade

5. Place these values onto the following Venn diagram and use your diagram to find the number of elements in the set \text{S} \cup \text{O}.

\xi = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \text{S} = square numbers \text{O} = odd numbers

15 Venn Diagram Questions Question 5 Image 1

\text{S} \cup \text{O} is the union of \text{S} or \text{O} , so it includes any element in \text{S} , \text{O} or both. The total number of elements in \text{S} , \text{O} or both is 6.

6. The Venn diagram below shows a set of numbers that have been sorted into prime numbers and even numbers.

15 Venn Diagram Questions Question 6 Image 1

A number is chosen at random. Find the probability that the number is prime and not even.

The section of the Venn diagram representing prime and not even is shown below.

15 Venn Diagram Questions Question 6 Image 2

There are 3 numbers in the relevant section out of a possible 10 numbers altogether. The probability, as a fraction, is \frac{3}{10}.

7. Some people visit the theater. The Venn diagram shows the number of people who bought ice cream and drinks in the interval.

15 Venn Diagram Questions Question 7

Ice cream is sold for $3 and drinks are sold for $ 2. A total of £262 is spent. How many people bought both a drink and an ice cream?

Money spent on drinks: 32 \times \$2 = \$64

Money spent on ice cream: 16 \times \$3 = \$48

\$64+\$48=\$112 , so the information already on the Venn diagram represents \$112 worth of sales.

\$262-\$112 = \$150 , so another \$150 has been spent.

If someone bought a drink and an ice cream, they would have spent \$2+\$3 = \$5.

\$150 \div \$5=30 , so 30 people bought a drink and an ice cream.

High school Venn diagram questions

In high school, students are expected to be able to take information from word problems and put it onto a Venn diagram involving two or three sets. The use of set notation is extended and the probabilities become more complex.

In advanced math classes, Venn diagrams are used to calculate conditional probability.

Lower ability Venn diagram questions

8. 50 people are asked whether they have been to France or Spain.

18 people have been to France. 23 people have been to Spain. 6 people have been to both.

By representing this information on a Venn diagram, find the probability that a person chosen at random has not been to Spain or France.

15 Venn Diagram Questions Question 8 Image 1

6 people have been to both France and Spain. This means 17 more have been to Spain to make 23  altogether, and 12 more have been to France to make 18 altogether. This makes 35 who have been to France, Spain or both and therefore 15 who have been to neither.

The probability that a person chosen at random has not been to France or Spain is \frac{15}{50}.

9. Some people were asked whether they like running, cycling or swimming. The results are shown in the Venn diagram below.

15 Venn Diagram Questions Question 9 Image 1

One person is chosen at random. What is the probability that the person likes running and cycling?

15 Venn Diagram Questions Question 9 Image 2

9 people like running and cycling (we include those who also like swimming) out of 80 people altogether. The probability that a person chosen at random likes running and cycling is \frac{9}{80}.

10. ξ = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}

\text{A} = \{ even numbers \}

\text{B} = \{ multiples of 3 \}

By completing the following Venn diagram, find \text{P}(\text{A} \cup \text{B}^{\prime}).

15 Venn Diagram Questions Question 10 Image 1

\text{A} \cup \text{B}^{\prime} means \text{A} or not \text{B} . We need to include everything that is in \text{A} or is not in \text{B} . There are 13 elements in \text{A} or not in \text{B} out of a total of 16 elements.

Therefore \text{P}(\text{A} \cup \text{B}^{\prime}) = \frac{13}{16}.

11. ξ = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}

A = \{ multiples of 2 \}

By putting this information onto the following Venn diagram, list all the elements of B.

15 Venn Diagram Questions Question 11 Image 1

We can start by placing the elements in \text{A} \cap \text{B} , which is the intersection.

15 Venn Diagram Questions Question 11 Image 2

We can then add any other multiples of 2 to set \text{A}.

15 Venn Diagram Questions Question 11 Image 3

Next, we can add any unused elements from \text{A} \cup \text{B} to \text{B}.

15 Venn Diagram Questions Question 11 Image 4

Finally, any other elements can be added to the outside of the Venn diagram.

15 Venn Diagram Questions Question 11 Image 3

The elements of \text{B} are \{1, 2, 3, 4, 6, 12\}.

Middle ability high school Venn diagram questions

12. Some people were asked whether they like strawberry ice cream or chocolate ice cream. 82% said they like strawberry ice cream and 70% said they like chocolate ice cream. 4% said they like neither.

By putting this information onto a Venn diagram, find the percentage of people who like both strawberry and chocolate ice cream.

15 Venn Diagram Questions Question 12 Image 1

Here, the percentages add up to 156\%. This is 56\% too much. In this total, those who like chocolate and strawberry have been counted twice and so 56\% is equal to the number who like both chocolate and strawberry. We can place 56\% in the intersection, \text{C} \cap \text{S}

We know that the total percentage who like chocolate is 70\%, so 70-56 = 14\%-14\% like just chocolate. Similarly, 82\% like strawberry, so 82-56 = 26\%-26\% like just strawberry.

15 Venn Diagram Questions Question 12 Image 2

13. The Venn diagram below shows some information about the height and gender of 40 students.

15 Venn Diagram Questions Question 13 Image 1

A student is chosen at random. Find the probability that the student is female given that they are over 1.2 m .

We are told the student is over 1.2m. There are 20 students who are over 1.2m and 9 of them are female. Therefore the probability that the student is female given they are over 1.2m is   \frac{9}{20}.

15 Venn Diagram Questions Question 13 Image 2

14. The Venn diagram below shows information about the number of students who study history and geography.

H = history

G = geography

problem solving involving sets using venn diagram

Work out the probability that a student chosen at random studies only history.

We are told that there are 100 students in total. Therefore:

x = 12 or x = -3 (not valid) If x = 12, then the number of students who study only history is 12, and the number who study only geography is 24. The probability that a student chosen at random studies only history is \frac{12}{100}.

15. 50 people were asked whether they like camping, holiday home or hotel holidays.

18\% of people said they like all three. 7 like camping and holiday homes but not hotels. 11 like camping and hotels. \frac{13}{25} like camping.

Of the 27 who like holiday homes, all but 1 like at least one other type of holiday. 7 people do not like any of these types of holiday.

By representing this information on a Venn diagram, find the probability that a person chosen at random likes hotels given that they like holiday homes.

15 Venn Diagram Questions Question 15 Image 1

Put this information onto a Venn diagram.

15 Venn Diagram Questions Question 15 Image 2

We are told that the person likes holiday homes. There are 27 people who like holiday homes. 19 of these also like hotels. Therefore, the probability that the person likes hotels given that they like holiday homes is \frac{19}{27}.

Looking for more Venn diagram math questions for middle and high school students ?

  • Probability questions
  • Ratio questions
  • Algebra questions
  • Trigonometry questions
  • Long division questions
  • Pythagorean theorem questions

Do you have students who need extra support in math? Give your students more opportunities to consolidate learning and practice skills through personalized math tutoring with their own dedicated online math tutor. Each student receives differentiated instruction designed to close their individual learning gaps, and scaffolded learning ensures every student learns at the right pace. Lessons are aligned with your state’s standards and assessments, plus you’ll receive regular reports every step of the way. Personalized one-on-one math tutoring programs are available for: – 2nd grade tutoring – 3rd grade tutoring – 4th grade tutoring – 5th grade tutoring – 6th grade tutoring – 7th grade tutoring – 8th grade tutoring Why not learn more about how it works ?

The content in this article was originally written by secondary teacher Beki Christian and has since been revised and adapted for US schools by elementary math teacher Katie Keeton.

Related articles

15 Probability Questions And Practice Problems for Middle and High School: Harder Exam Style Questions Included

15 Probability Questions And Practice Problems for Middle and High School: Harder Exam Style Questions Included

9 Algebra Questions And Practice Problems To Do With Your Middle Schoolers

9 Algebra Questions And Practice Problems To Do With Your Middle Schoolers

15 Trigonometry Questions And Practice Problems To Do With High Schoolers

15 Trigonometry Questions And Practice Problems To Do With High Schoolers

Ratio Questions And Practice Problems: Differentiated Practice Questions Included

Ratio Questions And Practice Problems: Differentiated Practice Questions Included

Solving Inequalities Questions [FREE]

Downloadable skills and applied questions about solving inequalities.

Includes 10 skills questions, 5 applied questions and an answer key. Print and share with your classes to support their learning.

Privacy Overview

Venn Diagram Examples, Problems and Solutions

On this page:

  • What is Venn diagram? Definition and meaning.
  • Venn diagram formula with an explanation.
  • Examples of 2 and 3 sets Venn diagrams: practice problems with solutions, questions, and answers.
  • Simple 4 circles Venn diagram with word problems.
  • Compare and contrast Venn diagram example.

Let’s define it:

A Venn Diagram is an illustration that shows logical relationships between two or more sets (grouping items). Venn diagram uses circles (both overlapping and nonoverlapping) or other shapes.

Commonly, Venn diagrams show how given items are similar and different.

Despite Venn diagram with 2 or 3 circles are the most common type, there are also many diagrams with a larger number of circles (5,6,7,8,10…). Theoretically, they can have unlimited circles.

Venn Diagram General Formula

n(A ∪ B) = n(A) + n(B) – n(A ∩ B)

Don’t worry, there is no need to remember this formula, once you grasp the meaning. Let’s see the explanation with an example.

This is a very simple Venn diagram example that shows the relationship between two overlapping sets X, Y.

X – the number of items that belong to set A Y – the number of items that belong to set B Z – the number of items that belong to set A and B both

From the above Venn diagram, it is quite clear that

n(A) = x + z n(B) = y + z n(A ∩ B) = z n(A ∪ B) = x +y+ z.

Now, let’s move forward and think about Venn Diagrams with 3 circles.

Following the same logic, we can write the formula for 3 circles Venn diagram :

n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(C ∩ A) + n(A ∩ B ∩ C)

Venn Diagram Examples (Problems with Solutions)

As we already know how the Venn diagram works, we are going to give some practical examples (problems with solutions) from the real life.

2 Circle Venn Diagram Examples (word problems):

Suppose that in a town, 800 people are selected by random types of sampling methods . 280 go to work by car only, 220 go to work by bicycle only and 140 use both ways – sometimes go with a car and sometimes with a bicycle.

Here are some important questions we will find the answers:

  • How many people go to work by car only?
  • How many people go to work by bicycle only?
  • How many people go by neither car nor bicycle?
  • How many people use at least one of both transportation types?
  • How many people use only one of car or bicycle?

The following Venn diagram represents the data above:

Now, we are going to answer our questions:

  • Number of people who go to work by car only = 280
  • Number of people who go to work by bicycle only = 220
  • Number of people who go by neither car nor bicycle = 160
  • Number of people who use at least one of both transportation types = n(only car) + n(only bicycle) + n(both car and bicycle) = 280 + 220 + 140 = 640
  • Number of people who use only one of car or bicycle = 280 + 220 = 500

Note: The number of people who go by neither car nor bicycle (160) is illustrated outside of the circles. It is a common practice the number of items that belong to none of the studied sets, to be illustrated outside of the diagram circles.

We will deep further with a more complicated triple Venn diagram example.

3 Circle Venn Diagram Examples:

For the purposes of a marketing research , a survey of 1000 women is conducted in a town. The results show that 52 % liked watching comedies, 45% liked watching fantasy movies and 60% liked watching romantic movies. In addition, 25% liked watching comedy and fantasy both, 28% liked watching romantic and fantasy both and 30% liked watching comedy and romantic movies both. 6% liked watching none of these movie genres.

Here are our questions we should find the answer:

  • How many women like watching all the three movie genres?
  • Find the number of women who like watching only one of the three genres.
  • Find the number of women who like watching at least two of the given genres.

Let’s represent the data above in a more digestible way using the Venn diagram formula elements:

  • n(C) = percentage of women who like watching comedy = 52%
  • n(F ) = percentage of women who like watching fantasy = 45%
  • n(R) = percentage of women who like watching romantic movies= 60%
  • n(C∩F) = 25%; n(F∩R) = 28%; n(C∩R) = 30%
  • Since 6% like watching none of the given genres so, n (C ∪ F ∪ R) = 94%.

Now, we are going to apply the Venn diagram formula for 3 circles. 

94% = 52% + 45% + 60% – 25% – 28% – 30% + n (C ∩ F ∩ R)

Solving this simple math equation, lead us to:

n (C ∩ F ∩ R)  = 20%

It is a great time to make our Venn diagram related to the above situation (problem):

See, the Venn diagram makes our situation much more clear!

From the Venn diagram example, we can answer our questions with ease.

  • The number of women who like watching all the three genres = 20% of 1000 = 200.
  • Number of women who like watching only one of the three genres = (17% + 12% + 22%) of 1000 = 510
  • The number of women who like watching at least two of the given genres = (number of women who like watching only two of the genres) +(number of women who like watching all the three genres) = (10 + 5 + 8 + 20)% i.e. 43% of 1000 = 430.

As we mentioned above 2 and 3 circle diagrams are much more common for problem-solving in many areas such as business, statistics, data science and etc. However, 4 circle Venn diagram also has its place.

4 Circles Venn Diagram Example:

A set of students were asked to tell which sports they played in school.

The options are: Football, Hockey, Basketball, and Netball.

Here is the list of the results:

FootballRobert, James, John, Mary, Jennifer, William
HockeyRobert, William, Linda, Elizabeth, James
BasketballWilliam, Jayne, Linda, Daniel, Mary
NetballJessica, William, Linda, Elizabeth, Anthony, Mary
NoneDorothy

The next step is to draw a Venn diagram to show the data sets we have.

It is very clear who plays which sports. As you see the diagram also include the student who does not play any sports (Dorothy) by putting her name outside of the 4 circles.

From the above Venn diagram examples, it is obvious that this graphical tool can help you a lot in representing a variety of data sets. Venn diagram also is among the most popular types of graphs for identifying similarities and differences .

Compare and Contrast Venn Diagram Example:

The following compare and contrast example of Venn diagram compares the features of birds and bats:

Tools for creating Venn diagrams

It is quite easy to create Venn diagrams, especially when you have the right tool. Nowadays, one of the most popular way to create them is with the help of paid or free graphing software tools such as:

You can use Microsoft products such as:

Some free mind mapping tools are also a good solution. Finally, you can simply use a sheet of paper or a whiteboard.

Conclusion:

A Venn diagram is a simple but powerful way to represent the relationships between datasets. It makes understanding math, different types of data analysis , set theory and business information easier and more fun for you.

Besides of using Venn diagram examples for problem-solving and comparing, you can use them to present passion, talent, feelings, funny moments and etc.

Be it data science or real-world situations, Venn diagrams are a great weapon in your hand to deal with almost any kind of information.

If you need more chart examples, our posts fishbone diagram examples and what does scatter plot show might be of help.

About The Author

problem solving involving sets using venn diagram

Silvia Valcheva

Silvia Valcheva is a digital marketer with over a decade of experience creating content for the tech industry. She has a strong passion for writing about emerging software and technologies such as big data, AI (Artificial Intelligence), IoT (Internet of Things), process automation, etc.

' src=

Well explained I hope more on this one

' src=

WELL STRUCTURED CONTENT AND ENLIGHTNING AS WELL

Leave a Reply Cancel Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed .

  • + ACCUPLACER Mathematics
  • + ACT Mathematics
  • + AFOQT Mathematics
  • + ALEKS Tests
  • + ASVAB Mathematics
  • + ATI TEAS Math Tests
  • + Common Core Math
  • + DAT Math Tests
  • + FSA Tests
  • + FTCE Math
  • + GED Mathematics
  • + Georgia Milestones Assessment
  • + GRE Quantitative Reasoning
  • + HiSET Math Exam
  • + HSPT Math
  • + ISEE Mathematics
  • + PARCC Tests
  • + Praxis Math
  • + PSAT Math Tests
  • + PSSA Tests
  • + SAT Math Tests
  • + SBAC Tests
  • + SIFT Math
  • + SSAT Math Tests
  • + STAAR Tests
  • + TABE Tests
  • + TASC Math
  • + TSI Mathematics
  • + ACT Math Worksheets
  • + Accuplacer Math Worksheets
  • + AFOQT Math Worksheets
  • + ALEKS Math Worksheets
  • + ASVAB Math Worksheets
  • + ATI TEAS 6 Math Worksheets
  • + FTCE General Math Worksheets
  • + GED Math Worksheets
  • + 3rd Grade Mathematics Worksheets
  • + 4th Grade Mathematics Worksheets
  • + 5th Grade Mathematics Worksheets
  • + 6th Grade Math Worksheets
  • + 7th Grade Mathematics Worksheets
  • + 8th Grade Mathematics Worksheets
  • + 9th Grade Math Worksheets
  • + HiSET Math Worksheets
  • + HSPT Math Worksheets
  • + ISEE Middle-Level Math Worksheets
  • + PERT Math Worksheets
  • + Praxis Math Worksheets
  • + PSAT Math Worksheets
  • + SAT Math Worksheets
  • + SIFT Math Worksheets
  • + SSAT Middle Level Math Worksheets
  • + 7th Grade STAAR Math Worksheets
  • + 8th Grade STAAR Math Worksheets
  • + THEA Math Worksheets
  • + TABE Math Worksheets
  • + TASC Math Worksheets
  • + TSI Math Worksheets
  • + AFOQT Math Course
  • + ALEKS Math Course
  • + ASVAB Math Course
  • + ATI TEAS 6 Math Course
  • + CHSPE Math Course
  • + FTCE General Knowledge Course
  • + GED Math Course
  • + HiSET Math Course
  • + HSPT Math Course
  • + ISEE Upper Level Math Course
  • + SHSAT Math Course
  • + SSAT Upper-Level Math Course
  • + PERT Math Course
  • + Praxis Core Math Course
  • + SIFT Math Course
  • + 8th Grade STAAR Math Course
  • + TABE Math Course
  • + TASC Math Course
  • + TSI Math Course
  • + Number Properties Puzzles
  • + Algebra Puzzles
  • + Geometry Puzzles
  • + Intelligent Math Puzzles
  • + Ratio, Proportion & Percentages Puzzles
  • + Other Math Puzzles

How to Solve Problems Using Venn Diagrams

Venn diagrams are visual tools often used to organize and understand sets and the relationships between them. They're named after John Venn, a British philosopher, and logician who introduced them in the 1880s. Venn diagrams are frequently used in various fields, including mathematics, statistics, logic, computer science, etc. They're handy for solving problems involving sets and subsets, intersections, unions, and complements.

How to Solve Problems Using Venn Diagrams

A Step-by-step Guide to Solving Problems Using Venn Diagrams

Here’s a step-by-step guide on how to solve problems using Venn diagrams:

Step 1: Understand the Problem

As with any problem-solving method, the first step is to understand the problem. What sets are involved? How are they related? What are you being asked to find?

Step 2: Draw the Diagram

Draw a rectangle to represent the universal set, which includes all possible elements. Each set within the universal set is represented by a circle. If there are two sets, draw two overlapping circles. If there are three sets, draw three overlapping circles, and so forth. Each section in the overlapping circles represents different intersections of the sets.

Step 3: Label the Diagram

Each circle (set) should be labeled appropriately. If you’re dealing with sets of different types of fruits, for example, one might be labeled “Apples” and another “Oranges”.

Step 4: Fill in the Values

Start filling in the values from the innermost part of the diagram (where all sets overlap) to the outer parts. This helps to avoid double-counting elements that belong to more than one set. Information provided in the problem usually tells you how many elements are in each set or section.

Step 5: Solve the Problem

Now, you can use the diagram to answer the question. This might involve counting the number of elements in a particular set or section of the diagram, or it might involve noticing patterns or relationships between the sets.

Step 6: Check Your Answer

Make sure your answer makes sense in the context of the problem and that you’ve accounted for all elements in the diagram.

by: Effortless Math Team about 1 year ago (category: Articles )

Effortless Math Team

Related to this article, more math articles.

  • From Tables and Graphs to Equations: How to Master Proportional Relationships
  • TSI Math Formulas
  • 10 Most Common PSAT 10 Math Questions
  • The Ultimate SIFT Math Formula Cheat Sheet
  • How to Understand ‘If-Then’ Conditional Statements: A Comprehensive Guide
  • Intelligent Math Puzzle – Challenge 89
  • The Ultimate 6th Grade PSSA Math Course (+FREE Worksheets)
  • How to Add Polynomials to Find Perimeter
  • 6th Grade NJSLA Math Worksheets: FREE & Printable
  • Top 10 Free Websites for TASC Math Preparation

What people say about "How to Solve Problems Using Venn Diagrams - Effortless Math: We Help Students Learn to LOVE Mathematics"?

No one replied yet.

Leave a Reply Cancel reply

You must be logged in to post a comment.

Mastering Grade 6 Math Word Problems The Ultimate Guide to Tackling 6th Grade Math Word Problems

Mastering grade 5 math word problems the ultimate guide to tackling 5th grade math word problems, mastering grade 7 math word problems the ultimate guide to tackling 7th grade math word problems, mastering grade 2 math word problems the ultimate guide to tackling 2nd grade math word problems, mastering grade 8 math word problems the ultimate guide to tackling 8th grade math word problems, mastering grade 4 math word problems the ultimate guide to tackling 4th grade math word problems, mastering grade 3 math word problems the ultimate guide to tackling 3rd grade math word problems.

  • ATI TEAS 6 Math
  • ISEE Upper Level Math
  • SSAT Upper-Level Math
  • Praxis Core Math
  • 8th Grade STAAR Math

Limited time only!

Save Over 45 %

It was $89.99 now it is $49.99

Login and use all of our services.

Effortless Math services are waiting for you. login faster!

Register Fast!

Password will be generated automatically and sent to your email.

After registration you can change your password if you want.

  • Math Worksheets
  • Math Courses
  • Math Topics
  • Math Puzzles
  • Math eBooks
  • GED Math Books
  • HiSET Math Books
  • ACT Math Books
  • ISEE Math Books
  • ACCUPLACER Books
  • Premium Membership
  • Youtube Videos

Effortless Math provides unofficial test prep products for a variety of tests and exams. All trademarks are property of their respective trademark owners.

  • Bulk Orders
  • Refund Policy

Venn Diagram Word Problems

Related Pages Venn Diagrams Intersection Of Two Sets Intersection Of Three Sets More Lessons On Sets More GCSE/IGCSE Maths Lessons

In these lessons, we will learn how to solve word problems using Venn Diagrams that involve two sets or three sets. Examples and step-by-step solutions are included in the video lessons.

What Are Venn Diagrams?

Venn diagrams are the principal way of showing sets in a diagrammatic form. The method consists primarily of entering the elements of a set into a circle or ovals.

Before we look at word problems, see the following diagrams to recall how to use Venn Diagrams to represent Union, Intersection and Complement.

Venn Diagram

How To Solve Problems Using Venn Diagrams?

This video solves two problems using Venn Diagrams. One with two sets and one with three sets.

Problem 1: 150 college freshmen were interviewed. 85 were registered for a Math class, 70 were registered for an English class, 50 were registered for both Math and English.

a) How many signed up only for a Math Class? b) How many signed up only for an English Class? c) How many signed up for Math or English? d) How many signed up neither for Math nor English?

Problem 2: 100 students were interviewed. 28 took PE, 31 took BIO, 42 took ENG, 9 took PE and BIO, 10 took PE and ENG, 6 took BIO and ENG, 4 took all three subjects.

a) How many students took none of the three subjects? b) How many students took PE but not BIO or ENG? c) How many students took BIO and PE but not ENG?

How And When To Use Venn Diagrams To Solve Word Problems?

Problem: At a breakfast buffet, 93 people chose coffee and 47 people chose juice. 25 people chose both coffee and juice. If each person chose at least one of these beverages, how many people visited the buffet?

How To Use Venn Diagrams To Help Solve Counting Word Problems?

Problem: In a class of 30 students, 19 are studying French, 12 are studying Spanish and 7 are studying both French and Spanish. How many students are not taking any foreign languages?

Probability, Venn Diagrams And Conditional Probability

This video shows how to construct a simple Venn diagram and then calculate a simple conditional probability.

Problem: In a class, P(male)= 0.3, P(brown hair) = 0.5, P (male and brown hair) = 0.2 Find (i) P(female) (ii) P(male| brown hair) (iii) P(female| not brown hair)

Venn Diagrams With Three Categories

Example: A group of 62 students were surveyed, and it was found that each of the students surveyed liked at least one of the following three fruits: apricots, bananas, and cantaloupes.

34 liked apricots. 30 liked bananas. 33 liked cantaloupes. 11 liked apricots and bananas. 15 liked bananas and cantaloupes. 17 liked apricots and cantaloupes. 19 liked exactly two of the following fruits: apricots, bananas, and cantaloupes.

a. How many students liked apricots, but not bananas or cantaloupes? b. How many students liked cantaloupes, but not bananas or apricots? c. How many students liked all of the following three fruits: apricots, bananas, and cantaloupes? d. How many students liked apricots and cantaloupes, but not bananas?

Venn Diagram Word Problem

Here is an example on how to solve a Venn diagram word problem that involves three intersecting sets.

Problem: 90 students went to a school carnival. 3 had a hamburger, soft drink and ice-cream. 24 had hamburgers. 5 had a hamburger and a soft drink. 33 had soft drinks. 10 had a soft drink and ice-cream. 38 had ice-cream. 8 had a hamburger and ice-cream. How many had nothing? (Errata in video: 90 - (14 + 2 + 3 + 5 + 21 + 7 + 23) = 90 - 75 = 15)

Venn Diagrams With Two Categories

This video introduces 2-circle Venn diagrams, and using subtraction as a counting technique.

How To Use 3-Circle Venn Diagrams As A Counting Technique?

Learn about Venn diagrams with two subsets using regions.

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

Sets and Venn Diagrams

A set is a collection of things.

For example, the items you wear is a set: these include hat, shirt, jacket, pants, and so on.

You write sets inside curly brackets like this:

{hat, shirt, jacket, pants, ...}

You can also have sets of numbers:

  • Set of whole numbers : {0, 1, 2, 3, ...}
  • Set of prime numbers : {2, 3, 5, 7, 11, 13, 17, ...}

Ten Best Friends

You could have a set made up of your ten best friends:

  • {alex, blair, casey, drew, erin, francis, glen, hunter, ira, jade}

Each friend is an "element" (or "member") of the set. It is normal to use lowercase letters for them.

soccer teams

Now let's say that alex, casey, drew and hunter play Soccer :

Soccer = {alex, casey, drew, hunter}

(It says the Set "Soccer" is made up of the elements alex, casey, drew and hunter.)

tennis

And casey, drew and jade play Tennis :

Tennis = {casey, drew, jade}

We can put their names in two separate circles:

You can now list your friends that play Soccer OR Tennis .

This is called a "Union" of sets and has the special symbol ∪ :

Soccer ∪ Tennis = {alex, casey, drew, hunter, jade}

Not everyone is in that set ... only your friends that play Soccer or Tennis (or both).

In other words we combine the elements of the two sets.

We can show that in a "Venn Diagram":

A Venn Diagram is clever because it shows lots of information:

  • Do you see that alex, casey, drew and hunter are in the "Soccer" set?
  • And that casey, drew and jade are in the "Tennis" set?
  • And here is the clever thing: casey and drew are in BOTH sets!

All that in one small diagram.

Intersection

"Intersection" is when you must be in BOTH sets.

In our case that means they play both Soccer AND Tennis ... which is casey and drew.

The special symbol for Intersection is an upside down "U" like this: ∩

And this is how we write it:

Soccer ∩ Tennis = {casey, drew}

In a Venn Diagram:

Which Way Does That "U" Go?

union symbol looks like cup

Think of them as "cups": ∪ holds more water than ∩ , right?

So Union ∪ is the one with more elements than Intersection ∩

You can also "subtract" one set from another.

For example, taking Soccer and subtracting Tennis means people that play Soccer but NOT Tennis ... which is alex and hunter.

Soccer − Tennis = {alex, hunter}

Summary So Far

  • ∪ is Union: is in either set or both sets
  • ∩ is Intersection: only in both sets
  • − is Difference: in one set but not the other

You can also use Venn Diagrams for 3 sets.

Let us say the third set is "Volleyball", which drew, glen and jade play:

Volleyball = {drew, glen, jade}

But let's be more "mathematical" and use a Capital Letter for each set:

  • S means the set of Soccer players
  • T means the set of Tennis players
  • V means the set of Volleyball players

The Venn Diagram is now like this:

Union of 3 Sets: S ∪ T ∪ V

You can see (for example) that:

  • drew plays Soccer, Tennis and Volleyball
  • jade plays Tennis and Volleyball
  • alex and hunter play Soccer, but don't play Tennis or Volleyball
  • no-one plays only Tennis

We can now have some fun with Unions and Intersections ...

S = {alex, casey, drew, hunter}

T ∪ V = {casey, drew, jade, glen}

S ∩ V = {drew}

And how about this ...

  • take the previous set S ∩ V
  • then subtract T :

(S ∩ V) − T = {}

Hey, there is nothing there!

That is OK, it is just the "Empty Set". It is still a set, so we use the curly brackets with nothing inside: {}

The Empty Set has no elements: {}

Universal Set

The Universal Set is the set that has everything. Well, not exactly everything. Everything that we are interested in now.

Sadly, the symbol is the letter "U" ... which is easy to confuse with the ∪ for Union. You just have to be careful, OK?

In our case the Universal Set is our Ten Best Friends.

U = {alex, blair, casey, drew, erin, francis, glen, hunter, ira, jade}

We can show the Universal Set in a Venn Diagram by putting a box around the whole thing:

Now you can see ALL your ten best friends, neatly sorted into what sport they play (or not!).

And then we can do interesting things like take the whole set and subtract the ones who play Soccer :

We write it this way:

U − S = {blair, erin, francis, glen, ira, jade}

Which says "The Universal Set minus the Soccer Set is the Set {blair, erin, francis, glen, ira, jade}"

In other words "everyone who does not play Soccer".

And there is a special way of saying "everything that is not ", and it is called "complement" .

We show it by writing a little "C" like this:

Which means "everything that is NOT in S", like this:

S c = {blair, erin, francis, glen, ira, jade} (exactly the same as the U − S example from above)

  • A c is the Complement of A: everything that is not in A
  • Empty Set: the set with no elements. Shown by {}
  • Universal Set: all things we are interested in

Venn Diagram Questions

Class Registration Banner

Venn diagram questions with solutions are given here for students to practice various questions based on Venn diagrams. These questions are beneficial for both school examinations and competitive exams. Practising these questions will develop a skill to solve any problem on Venn diagrams quickly.

Venn diagrams were first introduced by John Venn to represent various propositions in a diagrammatic way. Venn diagrams are used for representing relationships between given sets. For example, natural numbers and whole numbers are subsets of integers represented by the Venn diagram:

Using Venn diagrams, we can easily understand whether given sets are subsets of each other or disjoint sets or have something in common.

  • Intersection of Sets
  • Union of Sets
  • Complement of Set
  • Set Operations

Following are some set operations and their meaning useful while solving problems on the Venn diagram:

A ⊂ B

Set A is a proper subset of B, or A is in B.

A ⋃ B

Set of all those elements which to A to B

A ∩ B

Set of all those elements which belong to both A B

A or A’

Set of all those elements which are A

A – B

Set of all those elements to A

A ⊝ B

Symmetric difference: Set of all those elements which to A B, but .

Some important formulae:

= ; is universal set = A ; is universal set = – A ) = A = φ

Venn Diagram Questions with Solution

Let us practice some questions based on Venn diagrams.

Question 1: If A and B are two sets such that number of elements in A is 24, number of elements in B is 22 and number of elements in both A and B is 8, find:

(i) n(A ∪ B)

(ii) n(A – B)

(ii) n(B – A)

Given, n(A) = 24, n(B) = 22 and n(A ∩ B) = 8

The Venn diagram for the given information is:

(i) n(A ∪ B) = n(A) + n(B) – n(A ∩ B) = 24 + 22 – 8 = 38.

(ii) n(A – B) = n(A) – n(A ∩ B) = 24 – 8 = 16.

(iii) n(B – A) = n(B) – n(A ∩ B) = 22 – 8 = 14.

Question 2: According to the survey made among 200 students, 140 students like cold drinks, 120 students like milkshakes and 80 like both. How many students like atleast one of the drinks?

Number of students like cold drinks = n(A) = 140

Number of students like milkshake = n(B) = 120

Number of students like both = n(A ∩ B) = 80

Number of students like atleast one of the drinks = n(A ∪ B) = n(A) + n(B) – n(A ∩ B)

= 140 + 120 – 80

Question 3: In a group of 500 people, 350 people can speak English, and 400 people can speak Hindi. Find how many people can speak both languages?

Let H be the set of people who can speak Hindi and E be the set of people who can speak English. Then,

n(H ∪ E) = 500

We have to find n(H ∩ E).

Now, n(H ∪ E) = n(H) + n(E) – n(H ∩ E)

⇒ 500 = 400 + 350 – n(H ∩ E)

⇒ n(H ∩ E) = 750 – 500 = 250.

∴ 250 people can speak both languages.

Questions 4: The following Venn diagram shows games played by the number of students in a class:

How many students like only cricket and only football?

As per the given Venn diagram,

Number of students only like cricket = 7

Number of students only like football = 14

∴ Number of students like only cricket and only football = 7 + 14 = 21.

Question 5: In a class of 40 students, 20 have chosen Mathematics, 15 have chosen mathematics but not biology. If every student has chosen either mathematics or biology or both, find the number of students who chose both mathematics and biology and the number of students chose biology but not mathematics.

Let, M ≡ Set of students who chose mathematics

B ≡ Set of students who chose biology

n(M ∪ B) = 40

n(B) = n(M ∪ B) – n(M)

⇒ n(B) = 40 – 20 = 20

n(M – B) = 15

n(M) = n(M – B) + n(M ∩ B)

⇒ 20 = 15 + n(M ∩ B)

⇒ n(M ∩ B) = 20 – 15 = 5

n(B – M) = n(B) – n(M ∩ B)

⇒ n(B – M) = 20 – 5 = 15

Question 6: Represent The following as Venn diagram:

(i) A’ ∩ (B ∪ C)

(ii) A’ ∩ (C – B)

Question 7: In a survey among 140 students, 60 likes to play videogames, 70 likes to play indoor games, 75 likes to play outdoor games, 30 play indoor and outdoor games, 18 like to play video games and outdoor games, 42 play video games and indoor games and 8 likes to play all types of games. Use the Venn diagram to find

(i) students who play only outdoor games

(ii) students who play video games and indoor games, but not outdoor games.

Let V ≡ Play video games

I ≡ Play indoor games

O ≡ Play outdoor games

n(V) = 60, n(I) = 70, n(O) = 75

n(I ∩ O) = 30, n(V ∩ O) = 18, n(V ∩ I) = 42

n(V ∩ I ∩ O) = 8

Hence, by Venn diagram

Number of students only like to play only outdoor games = 35

Number of students like to play video games and indoor games but not outdoor games = 34

Note : Always begin to fill the Venn diagram from the innermost part.

Question 8: Using the Venn diagrams, verify (P ∩ Q) ∪ R = (P ∪ R) ∩ (Q ∪ R).

The shaded portion represents (P ∩ Q) ∪ R in the Venn diagram.

Comparing both the shaded portion in both the Venn diagram, we get (P ∩ Q) ∪ R = (P ∪ R) ∩ (Q ∪ R).

Question 9: Prove using the Venn diagram: (B – A) ∪ (A ∩ B) = B.

From the Venn diagram, it is clear that (B – A) ∪ (A ∩ B) = B

Question 10: In a survey, it is found that 21 people read English newspaper, 26 people read Hindi newspaper, and 29 people read regional language newspaper. If 14 people read both English and Hindi newspapers; 15 people read both Hindi and regional language newspapers; 12 people read both English and regional language newspaper and 8 read all types of newspapers, find:

(i) How many people were surveyed?

(ii) How many people read only regional language newspapers?

Let A ≡ People who read English newspapers.

B ≡ People who read Hindi newspapers.

C ≡ People who read Hindi newspapers.

n(A) = 21, n(B) = 26, n(C) = 29

n(A ∩ B) = 14, n(B ∩ C) = 15, n(A ∩ C) = 12

n(A ∩ B ∩ C) = 8

(i) Number of people surveyed = n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) = 21 + 26 + 29 – 14 – 15 – 12 + 8 = 43

(ii) By the Venn diagram, number of people who only read regional language newspapers = 10.

Video Lesson on Introduction to Sets

problem solving involving sets using venn diagram

Practice Questions on Venn Diagrams

1. Verify using the Venn diagram:

(i) A – B = A ∩ B C

(ii) (A ∩ B) C = A C ∪ B C

2. For given two sets P and Q, n(P – Q) = 24, n(Q – P) = 19 and n(P ∩ Q) = 11, find:

(iii) n (P ∪ Q)

3. In a group of 65 people, 40 like tea and 10 like both tea and coffee. Find

(i) how many like coffee only and not tea?

(ii) how many like coffee?

4. In a sports tournament, 38 medals were awarded for 500 m sprint, 15 medals were awarded for Javelin throw, and 20 medals were awarded for a long jump. If these medals were awarded to 58 participants and among them only three medals in all three sports, how many received exactly two medals?

Keep visiting BYJU’S to get more such Maths lessons in a simple, concise and easy to understand way. Also, register at BYJU’S – The Learning App to get complete assistance for Maths preparation with video lessons, notes, tips and other study materials.

MATHS Related Links

problem solving involving sets using venn diagram

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Venn Diagram Examples for Problem Solving

Updated on: 13 September 2022

What is a Venn Diagram?

Venn diagrams define all the possible relationships between collections of sets. The most basic Venn diagrams simply consist of multiple circular boundaries describing the range of sets.

The most basic Venn diagrams - Venn Diagram Examples for Problem Solving

The overlapping areas between the two boundaries describe the elements which are common between the two, while the areas that aren’t overlapping house the elements that are different. Venn diagrams are used often in math that people tend to assume they are used only to solve math problems. But as the 3 circle Venn diagram below shows it can be used to solve many other problems.

3 circle Venn diagram is a good example of solving problems with Venn diagrams - Venn Diagram Examples for Problem Solving

Though the above diagram may look complicated, it is actually very easy to understand. Although Venn diagrams can look complex when solving business processes understanding of the meaning of the boundaries and what they stand for can simplify the process to a great extent. Let us have a look at a few examples which demonstrate how Venn diagrams can make problem solving much easier.

Example 1: Company’s Hiring Process

The first Venn diagram example demonstrates a company’s employee shortlisting process. The Human Resources department looks for several factors when short-listing candidates for a position, such as experience, professional skills and leadership competence. Now, all of these qualities are different from each other, and may or may not be present in some candidates. However, the best candidates would be those that would have all of these qualities combined.

Using Venn diagrams to find the right candidate - Venn Diagram Examples for Problem Solving

The candidate who has all three qualities is the perfect match for your organization. So by using simple Venn Diagrams like the one above, a company can easily demonstrate its hiring processes and make the selection process much easier.

A colorful and precise Venn diagram like the above can be easily created using our Venn diagram software and we have professionally designed Venn diagram templates for you to get started fast too.

Example 2: Investing in a Location

The second Venn diagram example takes things a step further and takes a look at how a company can use a Venn diagram to decide a suitable office location. The decision will be based on economic, social and environmental factors.

Venn diagram to select office location - Venn Diagram Examples for Problem Solving

In a perfect scenario you’ll find a location that has all the above factors in equal measure. But if you fail to find such a location then you can decide which factor is most important to you. Whatever the priority because you already have listed down the locations making the decision becomes easier.

Example 3: Choosing a Dream Job

The last example will reflect on how one of the life’s most complicated questions can be easily answered using a Venn diagram. Choosing a dream job is something that has stumped most college graduates, but with a single Venn diagram, this thought process can be simplified to a great extent.

First, single out the factors which matter in choosing a dream job, such as things that you love to do, things you’re good at, and finally, earning potential. Though most of us dream of being a celebrity and coming on TV, not everyone is gifted with acting skills, and that career path may not be the most viable. Instead, choosing something that you are good at, that you love to do along with something that has a good earning potential would be the most practical choice.

Venn diagram to find the dream job - Venn Diagram Examples for Problem Solving

A job which includes all of these three criteria would, therefore, be the dream job for someone. The three criteria need not necessarily be the same, and can be changed according to the individual’s requirements.

So you see, even the most complicated processes can be simplified by using these simple Venn diagrams.

Join over thousands of organizations that use Creately to brainstorm, plan, analyze, and execute their projects successfully.

problem solving involving sets using venn diagram

More Related Articles

problem solving involving sets using venn diagram

Great article, and all true, but.. I hate venn diagrams! I don’t know why, they’ve just never seemed to work for me. Frustrating!

Hey thanks for writing. It helped me in many ways Thanks again 🙂

Hi Nishadha,

Nice article! I love Venn Diagrams because nothing comes to close to expressing the logical relationships between different sets of elements that well. With Microsoft Word 2003 you can create fantastic looking and colorful Venn Diagrams on the fly, with as many elements and colors as you need.

Hi Worli, Yes, Venn diagrams are a good way to solve problems, it’s a shame that it’s sort of restricted to the mathematics subject. MS Word do provides some nice options to create Venn diagrams, although it’s not the cheapest thing around.

Leave a comment Cancel reply

Please enter an answer in digits: ten + 7 =

Download our all-new eBook for tips on 50 powerful Business Diagrams for Strategic Planning.

WORD PROBLEMS ON SETS AND VENN DIAGRAMS

Basic stuff.

To understand, how to solve Venn diagram word problems with 3 circles, we have to know the following basic stuff.  

u ----> union (or)

n ----> intersection (and)

Addition Theorem on Sets

Theorem 1 :

n(AuB) = n(A) + n(B) - n(AnB)

Theorem 2 :

=n(A) + n(B) + n(C) - n(AnB) - n(BnC) - n(AnC) + n(AnBnC)

Explanation :

Let us come to know about the following terms in details.

n(AuB) = Total number of elements related to any of the two events A & B.

n(AuBuC) = Total number of elements related to any of the three events A, B & C.

n(A) = Total number of elements related to A

n(B) = Total number of elements related to B

n(C) = Total number of elements related to C

For  three events A, B & C, we have

n(A) - [n(AnB) + n(AnC) - n(AnBnC)] :

Total number of elements related to A only

n(B) - [n(AnB) + n(BnC) - n(AnBnC)] :

Total number of elements related to B only

n(C) - [n(BnC) + n(AnC) + n(AnBnC)] :

Total number of elements related to C only

Total number of elements related to both A & B

n(AnB) - n(AnBnC) :

Total number of elements related to both (A & B) only

Total number of elements related to both B & C

n(BnC) - n(AnBnC) :

Total number of elements related to both (B & C) only

Total number of elements related to both A & C

n(AnC) - n(AnBnC) :

Total number of elements related to both (A & C) only

For  two events A & B, we have

n(A) - n(AnB) :

n(B) - n(AnB) :

Solved Problems

Problem 1 :

In a survey of university students, 64 had taken mathematics course, 94 had taken chemistry course, 58 had taken physics course, 28 had taken mathematics and physics, 26 had taken mathematics and chemistry, 22 had taken chemistry and physics course, and 14 had taken all the three courses. Find how many had taken one course only.

Let M, C, P represent sets of students who had taken mathematics, chemistry and physics respectively.

From the given information, we have

n(M) = 64, n(C) = 94, n(P) = 58,

n(MnP) = 28, n(MnC) = 26, n(CnP) = 22

n(MnCnP) = 14

From the basic stuff, we have

Number of students who had taken only Math

= n(M) - [n(MnP) + n(MnC) - n(MnCnP)]

= 64 - [28 + 26 - 14]

Number of students who had taken only Chemistry :

= n(C) - [n(MnC) + n(CnP) - n(MnCnP)]

= 94 - [26+22-14]

Number of students who had taken only Physics :

= n(P) - [n(MnP) + n(CnP) - n(MnCnP)]

= 58 - [28 + 22 - 14]

Total n umber of students who had taken only one course :

= 24 + 60 + 22

Hence, the total number of students who had taken only one course is 106.

Alternative Method (Using venn diagram) :

Venn diagram related to the information given in the question:

problem solving involving sets using venn diagram

From the venn diagram above, we have

Number of students who had taken only math = 24

Number of students who had taken only chemistry = 60

Number of students who had taken only physics = 22

Total  Number of students who had taken only one course :

Problem 2 :

In a group of students, 65 play foot ball, 45 play hockey, 42 play cricket, 20 play foot ball and hockey, 25 play foot ball and cricket, 15 play hockey and cricket and 8 play all the three games. Find the total number of students in the group  (Assume that each student in the group plays at least one game).

Let F, H and C represent the set of students who play foot ball, hockey and cricket respectively.

n(F) = 65, n(H) = 45, n(C) = 42,

n(FnH) = 20, n(FnC) = 25, n(HnC) = 15

n(FnHnC) = 8

Total number of students in the group is  n(FuHuC).

n(FuHuC) is equal to

= n(F) + n(H) + n(C) - n(FnH) - n(FnC) - n(HnC) + n(FnHnC)

n(FuHuC) = 65 + 45 + 42 -20 - 25 - 15 + 8

n(FuHuC) = 100

Hence, the total number of students in the group is 100.

Alternative Method (Using Venn diagram) :

Venn diagram related to the information given in the question :

venndiagram1.png

Total number of students in the group :

= 28 + 12 + 18 + 7 + 10 + 17 + 8

So, the total number of students in the group is 100.

Problem 3 :

In a college, 60 students enrolled in chemistry,40 in physics, 30 in biology, 15 in chemistry and physics,10 in physics and biology, 5 in biology and chemistry. No one enrolled in all the three. Find how many are enrolled in at least one of the subjects.

Let C, P and B represents the subjects Chemistry, Physics  and Biology respectively.

Number of students enrolled in Chemistry :

Number of students enrolled in Physics :

Number of students enrolled in Biology :

Number of students enrolled in Chemistry and Physics :

n(CnP) = 15

Number of students enrolled in Physics and Biology :

n(PnB) = 10

Number of students enrolled in Biology and Chemistry :

No one enrolled in all the three.  So, we have

n(CnPnB) = 0

The above information can be put in a Venn diagram as shown below.

problem solving involving sets using venn diagram

From, the above Venn diagram, number of students enrolled in at least one of the subjects :

= 40 + 15 + 15 + 15 + 5 + 10 + 0

So, the number of students  enrolled in at least one of the subjects is 100.

Problem 4 :

In a town 85% of the people speak Tamil, 40% speak English and 20% speak Hindi. Also 32% speak Tamil and English, 13% speak Tamil and Hindi and 10% speak English and Hindi, find the percentage of people who can speak all the three languages.

Let T, E and H represent the people who speak Tamil, English and Hindi respectively.

Percentage of people who speak Tamil :

Percentage of people who speak English :

Percentage of people who speak Hindi :

n(H)  =  20

Percentage of people who speak English and Tamil :

n(TnE) = 32

Percentage of people who speak Tamil and Hindi :

n(TnH) = 13

Percentage of people who speak English and Hindi :

n(EnH) = 10

Let x be the percentage of people who speak all the three language.

problem solving involving sets using venn diagram

From the above Venn diagram, we can have 

100 = 40 + x + 32 – x + x + 13 – x + 10 – x – 2 + x – 3 + x

100 = 40 + 32 + 13 + 10 – 2 – 3 + x 

100 = 95 – 5 + x

100 = 90 + x

x = 100 - 90

x = 10% 

So, the percentage of people who speak all the three languages is 10%.

Problem 5 :

An advertising agency finds that, of its 170 clients, 115 use Television, 110 use Radio and 130 use Magazines. Also 85 use Television and Magazines, 75 use Television and Radio, 95 use Radio and Magazines, 70 use all the three. Draw Venn diagram to represent these data. Find 

(i) how many use only Radio?

(ii) how many use only Television?

(iii) how many use Television and Magazine but not radio?

Let T, R and M represent the people who use Television, Radio and Magazines respectively.

Number of people who use Television :

Number of people who use Radio :

Number of people who use Magazine :

Number of people who use Television and Magazines

n (TnM) = 85

Number of people who use Television and Radio :

n(TnR) = 75

Number of people who use Radio and Magazine :

n(RnM) = 95

Number of people who use all the three :

n(TnRnM) = 70

problem solving involving sets using venn diagram

From the above Venn diagram, we have

(i) Number of people who use only Radio is 10.

(ii) Number of people who use only Television is 25.

(iii) Number of people who use Television and Magazine but not radio is 15.

Problem 6 :

In a class of 60 students, 40 students like math, 36 like science, 24 like both the subjects. Find the number of students who like

(i) Math only, (ii) Science only  (iii) Either Math or Science (iv) Neither Math nor science.

Let M and S represent the set of students who like math and science respectively.

From the information given in the question, we have

n(M) = 40, n(S) = 36, n(MnS) = 24

Answer (i) :

Number  of students who like math only :

= n(M) - n(MnS)

Answer (ii) :

Number  of students who like science only :

= n(S) - n(MnS)

=   12

Answer (iii) :

Number  of students who like either math or science :

= n(M or S) 

= n(MuS) 

= n(M) + n(S) - n(MnS)

= 40 + 36 - 24

Answer (iv) :

Total n umber  students who like Math or Science subjects :

n(MuS) = 52

Number  of students who like neither math nor science

Problem 7 :

At a certain conference of 100 people there are 29 Indian women and 23 Indian men. Out of these Indian people 4 are doctors and 24 are either men or doctors. There are no foreign doctors. Find the number of women doctors attending the conference.

Let M and D represent the set of Indian men and Doctors respectively.

n(M) = 23, n(D) = 4, n(MuD) = 24

n(MuD) = n(M) + n(D) - n(MnD)

24 = 23 + 4 - n(MnD)

n(MnD) = 3 

n(Indian Men and Doctors) = 3

So, out of the 4 Indian doctors,  there are 3 men.

And the remaining 1 is Indian women doctor.

So, the number women doctors attending the conference is 1.

Kindly mail your feedback to   [email protected]

We always appreciate your feedback.

© All rights reserved. onlinemath4all.com

  • Sat Math Practice
  • SAT Math Worksheets
  • PEMDAS Rule
  • BODMAS rule
  • GEMDAS Order of Operations
  • Math Calculators
  • Transformations of Functions
  • Order of rotational symmetry
  • Lines of symmetry
  • Compound Angles
  • Quantitative Aptitude Tricks
  • Trigonometric ratio table
  • Word Problems
  • Times Table Shortcuts
  • 10th CBSE solution
  • PSAT Math Preparation
  • Privacy Policy
  • Laws of Exponents

Recent Articles

Best way to learn mathematics.

Jun 28, 24 02:39 AM

SAT Math Preparation Videos (Part - 3)

Jun 28, 24 02:00 AM

Problems on Solving Logarithmic Equations

Jun 24, 24 05:48 PM

Corbettmaths

Venn Diagrams Practice Questions

Click here for questions, click here for answers, gcse revision cards.

problem solving involving sets using venn diagram

5-a-day Workbooks

problem solving involving sets using venn diagram

Primary Study Cards

problem solving involving sets using venn diagram

Privacy Policy

Terms and Conditions

Corbettmaths © 2012 – 2024

  • Pre-algebra lessons
  • Pre-algebra word problems
  • Algebra lessons
  • Algebra word problems
  • Algebra proofs
  • Advanced algebra
  • Geometry lessons
  • Geometry word problems
  • Geometry proofs
  • Trigonometry lessons
  • Consumer math
  • Baseball math
  • Math for nurses
  • Statistics made easy
  • High school physics
  • Basic mathematics store
  • SAT Math Prep
  • Math skills by grade level
  • Ask an expert
  • Other websites
  • K-12 worksheets
  • Worksheets generator
  • Algebra worksheets
  • Geometry worksheets
  • Free math problem solver
  • Pre-algebra calculators
  • Algebra Calculators
  • Geometry Calculators
  • Math puzzles
  • Math tricks
  • Member login

Venn diagram word problems

The Venn diagram word problems in this lesson will show you how to use Venn diagrams with 2 circles to solve problems involving counting. 

Venn diagram with two circles

Venn diagram word problems with two circles

Word problem #1

A survey was conducted in a neighborhood with 128 families. The survey revealed the following information.

  • 106 of the families have a credit card
  • 73 of the families are trying to pay off a car loan
  • 61 of the families have both a credit card and a car loan

Answer the following questions:

1. How many families have only a credit card?

2.  How many families have only a car loan?

3. How many families have neither a credit card nor a car loan?

4. How many families do not have a credit card?

5. How many families do not have a car loan?

6. How many families have a credit card or a car loan?

  • Let C be families with a credit card
  • Let L be families with a car loan
  • Let S be the total number of families

Venn diagram with two circles

The Venn diagram above can be used to answer all these questions. 

Tips on how to create the Venn diagram. Always put  first , in the middle or in the intersection, the value that is in both sets. For example, since 61 families have both a credit card and a car loan, put 61 in the intersection before you do anything else. In C only, put 45 since 106 - 61 = 45

In L only, put 12 since 73 - 61 = 12

Outside C and L, put 10 since 128 - 61 - 45 - 12 = 10

The expression, " only a credit card" means that it is only in C. Any number in L cannot be included. 1.  The number of families with only a credit card is 45. Do not add 61 to 45 since 61 is in L.

2.  The number of families with only a car loan is 12. 

3. The number of families with neither a credit card nor a car loan is 10. 10 is not in C nor in L.

4. The number families without a credit card is found by adding everything that is not in C. 12 + 10 = 22

5.  The number families without a car loan is found by adding everything that is not in L. 45 + 10 = 55

6. The number of families with a credit card or a car loan is found by adding anything in C only, in L only and in the intersection of C and L?

45 + 61 + 12 = 118

Word problem #2

A survey conducted in a school with 150 students revealed the following information:

  • 78 students are enrolled in swimming class
  • 85 students are enrolled in basketball class
  • 25 are enrolled in both swimming and basketball class

1.  How many students are enrolled only in swimming class?

2.  How many students are enrolled only in basketball class?

3.  How many students are neither enrolled in swimming class nor basketball class?

4.  How many students are not enrolled in swimming class?

5.  How many students are not enrolled in basketball class?

6. How many students are enrolled in swimming class or basketball class?

  • Let S be students enrolled in swimming class
  • Let B be students enrolled in basketball class
  • Let E be the total number of students

Using the same technique as in problem #1 , we have the following Venn diagram

Venn diagram with two circles

1. The number of students enrolled only in swimming class is 53 2.  The number of students enrolled only in basketball class is 60

3. The number of students who are neither enrolled in swimming class nor basketball class is 12

4. Students not enrolled in swimming class are enrolled in basketball class only or are enrolled in neither of these two activities. In other words, everything that is not in S.

60 + 12 = 72

5.  Students not enrolled in basketball class are enrolled in swimming class only or are  enrolled in neither of these two activities. In other words, everything that is not in B.

53 + 12 = 65

6.  The number of students enrolled in swimming class or basketball class is found by adding anything in S only, in B only and in the intersection of S and B?

53 + 25 + 60 = 138

A tricky Venn diagram word problem with two circles

Word problem #3

In a survey of 100 people, 28 people smoke, 65 people drink, and 30 people do neither. How many people do both?

  • Let K be the number of people who smoke
  • Let D be  the number of people who drink
  • Let E be the total number of people
  • Let x be the number of people who smoke and drink

If we make a Venn diagram, here is what we have so far.

Venn diagram with two circles

We end up with the following equation to solve for x.

(65 - x) + x + (28 - x) + 30 = 100

65 - x + x + 28 - x + 30 - 30 = 100 - 30

65 - x + x + 28 - x  = 70

65 + 0 + 28 - x  = 70

93 - x  = 70

Since 93 - 23 = 70, x  = 23

The number of people who do both is 23.

3-circle Venn diagram

Recent Articles

How to divide any number by 5 in 2 seconds.

Feb 28, 24 11:07 AM

Math Trick to Square Numbers from 50 to 59

Feb 23, 24 04:46 AM

Sum of Consecutive Odd Numbers

Feb 22, 24 10:07 AM

100 Tough Algebra Word Problems. If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

About me :: Privacy policy :: Disclaimer :: Donate   Careers in mathematics  

Copyright © 2008-2021. Basic-mathematics.com. All right reserved

Mathematics 7 Quarter 1 – Module 2: Problems Involving Sets

This module was designed and written with you in mind. It is here to help you master your skills in solving mathematical problems involving sets. The scope of this module permits it to be used in many different learning situations. The language used recognizes the diverse vocabulary level of students. The lessons are arranged to follow the standard sequence of the course. But the order in which you read them can be changed to correspond with the textbook you are now using.

The module is all about Solving Problems Involving Sets.

After going through this module, you are expected to:

1. solve problems involving sets using Venn diagram;

2. apply set operations to solve a variety of word problems.

Can't Find What You'RE Looking For?

We are here to help - please use the search box below.

Leave a Comment Cancel reply

MATH Worksheets 4 Kids

Child Login

  • Kindergarten
  • Number charts
  • Skip Counting
  • Place Value
  • Number Lines
  • Subtraction
  • Multiplication
  • Word Problems
  • Comparing Numbers
  • Ordering Numbers
  • Odd and Even
  • Prime and Composite
  • Roman Numerals
  • Ordinal Numbers
  • In and Out Boxes
  • Number System Conversions
  • More Number Sense Worksheets
  • Size Comparison
  • Measuring Length
  • Metric Unit Conversion
  • Customary Unit Conversion
  • Temperature
  • More Measurement Worksheets
  • Writing Checks
  • Profit and Loss
  • Simple Interest
  • Compound Interest
  • Tally Marks
  • Mean, Median, Mode, Range
  • Mean Absolute Deviation
  • Stem-and-leaf Plot
  • Box-and-whisker Plot
  • Permutation and Combination
  • Probability
  • Venn Diagram
  • More Statistics Worksheets
  • Shapes - 2D
  • Shapes - 3D
  • Lines, Rays and Line Segments
  • Points, Lines and Planes
  • Transformation
  • Quadrilateral
  • Ordered Pairs
  • Midpoint Formula
  • Distance Formula
  • Parallel, Perpendicular and Intersecting Lines
  • Scale Factor
  • Surface Area
  • Pythagorean Theorem
  • More Geometry Worksheets
  • Converting between Fractions and Decimals
  • Significant Figures
  • Convert between Fractions, Decimals, and Percents
  • Proportions
  • Direct and Inverse Variation
  • Order of Operations
  • Squaring Numbers
  • Square Roots
  • Scientific Notations
  • Speed, Distance, and Time
  • Absolute Value
  • More Pre-Algebra Worksheets
  • Translating Algebraic Phrases
  • Evaluating Algebraic Expressions
  • Simplifying Algebraic Expressions
  • Algebraic Identities
  • Quadratic Equations
  • Systems of Equations
  • Polynomials
  • Inequalities
  • Sequence and Series
  • Complex Numbers
  • More Algebra Worksheets
  • Trigonometry
  • Math Workbooks
  • English Language Arts
  • Summer Review Packets
  • Social Studies
  • Holidays and Events
  • Worksheets >
  • Statistics >
  • Venn Diagram >
  • Word Problems: Three sets

Venn Diagram Word Problem Worksheets - Three Sets

This page contains worksheets based on Venn diagram word problems, with Venn diagram containing three circles. The worksheets are broadly classified into two skills - Reading Venn diagram and drawing Venn diagram. The problems involving a universal set are also included. Printable Venn diagram word problem worksheets can be used to evaluate the analytical skills of the students of grade 6 through high school and help them organize the data. Access some of these worksheets for free!

Reading Venn Diagram - Type 1

Reading Venn Diagram - Type 1

These 6th grade pdf worksheets consist of Venn diagrams containing three sets with the elements that are illustrated with pictures. Interpret the Venn diagram and answer the word problems given below.

  • Download the set

Reading Venn Diagram - Type 2

Reading Venn Diagram - Type 2

The elements of the sets are represented as symbols on the three circles of the Venn diagram. Count the symbols and write the answers in the space provided. Each worksheet contains two real-life scenarios.

Standard Word Problems - Without Universal Set

Standard Word Problems - Without Universal Set

These PDF worksheets contain 3-circle Venn diagrams without universal set. Study the Venn diagram and answer the word problems.

Standard Word Problems - With Universal Set

Standard Word Problems - With Universal Set

This section features extensive collection of Venn diagram word problems with a universal set for grade 7 and grade 8 students. Real-life scenarios like doctor appointments, attractions of Niagara Falls and more are used.

Drawing Venn Diagram - Without Universal Set

Drawing Venn Diagram - Without Universal Set

Draw a venn diagram with three intersecting circles and fill in the data from the given descriptions. Also, ask 8th grade and high school students to answer questions based on union, intersection, and complement of three sets.

Draw Venn Diagram - With Universal Set

Draw Venn Diagram - With Universal Set

Six exclusive printable worksheets on Venn diagram word problems are included here. Draw three overlapping circles and fill in the regions using the information provided. Based on your findings, answer the word problems.

Related Worksheets

» Venn Diagram Word Problems - 2 sets

» Pictograph

» Stem-and-leaf Plot

» Tally Marks

Become a Member

Membership Information

Privacy Policy

What's New?

Printing Help

Testimonial

Facebook

Copyright © 2024 - Math Worksheets 4 Kids

This is a members-only feature!

Happy Learning!

IMAGES

  1. Problem Solving of Sets with 2 circles Venn Diagram

    problem solving involving sets using venn diagram

  2. Math 7 Week 2

    problem solving involving sets using venn diagram

  3. Solving Problem using Venn Diagram Part 1

    problem solving involving sets using venn diagram

  4. Problem Solving with Venn Diagrams

    problem solving involving sets using venn diagram

  5. Solved In problems 1

    problem solving involving sets using venn diagram

  6. Solving Problems with Venn Diagrams

    problem solving involving sets using venn diagram

VIDEO

  1. Problems Involving Sets │Using Venn Diagrams │Math 7

  2. Problem Solving using Venn Diagrams (JC HL)

  3. Using Venn Diagram to solve problems involving two sets Lesson 2

  4. Solving Problems Using 2 Set Venn Diagrams

  5. Problem Solving using Venn Diagram (Set Theory)

  6. Solving word problemsbinvolving 3 SETS using VENN DIAGRAM

COMMENTS

  1. 15 Venn Diagram Questions And Practice Problems With Solutions

    High school Venn diagram questions. In high school, students are expected to be able to take information from word problems and put it onto a Venn diagram involving two or three sets. The use of set notation is extended and the probabilities become more complex. In advanced math classes, Venn diagrams are used to calculate conditional probability.

  2. Venn Diagram Examples, Problems and Solutions

    The best way to explain how the Venn diagram works and what its formulas show is to give 2 or 3 circles Venn diagram examples and problems with solutions. Problem-solving using Venn diagram is a widely used approach in many areas such as statistics, data science, business, set theory, math, logic and etc.

  3. PDF Grade 7 Math LESSON 3: PROBLEMS INVOLVING SETS TEACHING GUIDE

    Lesson 3: Problems Involving Sets Time: 1 hour Prerequisite Concepts: Operations on Sets and Venn Diagrams Objectives: In this lesson, you are expected to: 1. Solve word problems involving sets with the use of Venn diagrams 2. Apply set operations to solve a variety of word problems. NOTE TO THE TEACHER This is an important lesson. Do not skip it.

  4. How to Solve Problems Using Venn Diagrams

    They're named after John Venn, a British philosopher, and logician who introduced them in the 1880s. Venn diagrams are frequently used in various fields, including mathematics, statistics, logic, computer science, etc. They're handy for solving problems involving sets and subsets, intersections, unions, and complements.

  5. Venn Diagram Word Problems

    Here is an example on how to solve a Venn diagram word problem that involves three intersecting sets. 90 students went to a school carnival. 3 had a hamburger, soft drink and ice-cream. 24 had hamburgers. 5 had a hamburger and a soft drink. 33 had soft drinks. 10 had a soft drink and ice-cream. 38 had ice-cream. 8 had a hamburger and ice-cream.

  6. PDF Set Theory: Venn Diagrams for Problem Solving

    Create a Venn diagram with two sets. To do this, first draw two intersecting circles inside a rectangle. Be sure to label the circles accordingly. Now, work from the inside out. That is, begin by determining the number of cars in the intersection of the two sets. Since 6 out of the 50 cars needed no repairs, leaving.

  7. Sets and Venn Diagrams

    T means the set of Tennis players. V means the set of Volleyball players. The Venn Diagram is now like this: Union of 3 Sets: S ∪ T ∪ V. You can see (for example) that: drew plays Soccer, Tennis and Volleyball. jade plays Tennis and Volleyball. alex and hunter play Soccer, but don't play Tennis or Volleyball. no-one plays only Tennis.

  8. PDF Quarter 1 Module 2: Problems Involving Sets

    Venn diagram is a principal way of showing sets diagrammatically. This method consists primarily of entering the elements of a set into a circle or circles. It can be used to solve word problems involving union and intersection of sets. In solving set operations using the Venn diagram, the following are the steps to be followed: Step 1.

  9. Dynamically Created Venn Diagram Worksheets

    You may select to use standard sets, complements of sets or both. These Venn Diagram Worksheets will produce 6 shaded Venn Diagrams for the students to name. Set Notation Problems Using Two Sets Worksheets These Venn Diagram Worksheets are great for practicing solving set notation problems of different sets, unions, intersections, and ...

  10. Venn Diagram Questions With Solution

    Venn diagram questions with solutions are given here for students to practice various questions based on Venn diagrams.These questions are beneficial for both school examinations and competitive exams. Practising these questions will develop a skill to solve any problem on Venn diagrams quickly.. Venn diagrams were first introduced by John Venn to represent various propositions in a ...

  11. Venn Diagram Examples for Problem Solving

    A simple Venn diagram example. The overlapping areas between the two boundaries describe the elements which are common between the two, while the areas that aren't overlapping house the elements that are different. Venn diagrams are used often in math that people tend to assume they are used only to solve math problems.

  12. Word Problems on Sets and Venn Diagrams

    To understand, how to solve Venn diagram word problems with 3 circles, we have to know the following basic stuff. ... Let M and S represent the set of students who like math and science respectively. Step 2 : From the information given in the question, we have. n(M) = 40, n(S) = 36, n(MnS) = 24. Step 3 : Answer (i) :

  13. Venn Diagram Word Problems Worksheets: Two Sets

    Venn Diagram Word Problem Worksheets: Two sets. Venn diagram word problems are based on union, intersection, complement and difference of two sets. This batch of printable word problems on Venn diagram with two circles for students of grade 5 through grade 8 is illustrated with images, numbers, words and symbols.

  14. Venn Diagrams Practice Questions

    Previous: Transformations of Graphs Practice Questions Next: Types of Triangles Practice Questions GCSE Revision Cards

  15. Solving Problems Using Venn Diagram || Grade 7 Mathematics Q1

    ‼️FIRST QUARTER‼️🟢 GRADE 7: SOLVING PROBLEMS USING VENN DIAGRAMGRADE 7 PLAYLISTFirst Quarter: https://tinyurl.com/yyzdequa Second Quarter: https://tinyurl.c...

  16. Venn Diagram Word Problems

    The Venn diagram word problems in this lesson will show you how to use Venn diagrams with 2 circles to solve problems involving counting. ... Always put first, in the middle or in the intersection, the value that is in both sets. For ... A tricky Venn diagram word problem with two circles. Word problem #3. In a survey of 100 people, 28 people ...

  17. Mathematics 7 Quarter 1

    But the order in which you read them can be changed to correspond with the textbook you are now using. The module is all about Solving Problems Involving Sets. After going through this module, you are expected to: 1. solve problems involving sets using Venn diagram; 2. apply set operations to solve a variety of word problems. MATH7-ADM-MODULE-2

  18. Venn diagrams

    GCSE; WJEC; Venn diagrams - WJEC Solving problems using Venn diagrams. Venn diagrams are a useful tool in the world of statistics. Once you have got to grips with these, you will be able to ...

  19. Problems Involving Sets [Made EASY!]

    #Sets #SetsOperstions #VennDiagrams #WordProblemsInSets #ProblemsInvolvingSets #ProblemsInSetsAndVennDiagrams#SetsProblemSolving #SetsProblemSolvingWithSolut...

  20. Venn Diagram Word Problems Worksheets: Three Sets

    These 6th grade pdf worksheets consist of Venn diagrams containing three sets with the elements that are illustrated with pictures. Interpret the Venn diagram and answer the word problems given below. Download the set. Reading Venn Diagram - Type 2. The elements of the sets are represented as symbols on the three circles of the Venn diagram.

  21. Solving Problems Using Venn Diagram

    It provides examples of using Venn diagrams to illustrate sets A and B using numbers 0-9. It demonstrates the intersection, union, complement, and universal set. It also defines subset and empty set. Additional examples are given showing Venn diagrams for sets U, A, B and C describing the elements in each set and the shaded region of intersection.

  22. Problems involving sets

    Problems involving sets. 1. Problems Involving Sets Presented by Maryleigh P. Castillo. 2. Objectives At the end of the lesson the students are expected to: 1. apply set operation to solve a variety of word problems. 2. solve word problems involving sets with the use of Venn Diagram. 3.

  23. Solving Problems Involving Sets Using Venn Diagrams G7 SIM

    Solving Problems Involving Sets Using Venn Diagrams G7 SIM - Free download as Powerpoint Presentation (.ppt), PDF File (.pdf), Text File (.txt) or view presentation slides online. Here is a suggested jingle for the steps in solving word problems involving sets using Venn Diagrams: Draw a circle, draw another List the sets, one and then other Place the info, in each section Count them up, find ...