Thinking critically on critical thinking: why scientists’ skills need to spread

why is critical thinking so important for the progress of science

Lecturer in Psychology, University of Tasmania

Disclosure statement

Rachel Grieve does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

University of Tasmania provides funding as a member of The Conversation AU.

View all partners

why is critical thinking so important for the progress of science

MATHS AND SCIENCE EDUCATION: We’ve asked our authors about the state of maths and science education in Australia and its future direction. Today, Rachel Grieve discusses why we need to spread science-specific skills into the wider curriculum.

When we think of science and maths, stereotypical visions of lab coats, test-tubes, and formulae often spring to mind.

But more important than these stereotypes are the methods that underpin the work scientists do – namely generating and systematically testing hypotheses. A key part of this is critical thinking.

It’s a skill that often feels in short supply these days, but you don’t necessarily need to study science or maths in order gain it. It’s time to take critical thinking out of the realm of maths and science and broaden it into students’ general education.

What is critical thinking?

Critical thinking is a reflective and analytical style of thinking, with its basis in logic, rationality, and synthesis. It means delving deeper and asking questions like: why is that so? Where is the evidence? How good is that evidence? Is this a good argument? Is it biased? Is it verifiable? What are the alternative explanations?

Critical thinking moves us beyond mere description and into the realms of scientific inference and reasoning. This is what enables discoveries to be made and innovations to be fostered.

For many scientists, critical thinking becomes (seemingly) intuitive, but like any skill set, critical thinking needs to be taught and cultivated. Unfortunately, educators are unable to deposit this information directly into their students’ heads. While the theory of critical thinking can be taught, critical thinking itself needs to be experienced first-hand.

So what does this mean for educators trying to incorporate critical thinking within their curricula? We can teach students the theoretical elements of critical thinking. Take for example working through [statistical problems](http://wdeneys.org/data/COGNIT_1695.pdf](http://wdeneys.org/data/COGNIT_1695.pdf) like this one:

In a 1,000-person study, four people said their favourite series was Star Trek and 996 said Days of Our Lives. Jeremy is a randomly chosen participant in this study, is 26, and is doing graduate studies in physics. He stays at home most of the time and likes to play videogames. What is most likely? a. Jeremy’s favourite series is Star Trek b. Jeremy’s favourite series is Days of Our Lives

Some critical thought applied to this problem allows us to know that Jeremy is most likely to prefer Days of Our Lives.

Can you teach it?

It’s well established that statistical training is associated with improved decision-making. But the idea of “teaching” critical thinking is itself an oxymoron: critical thinking can really only be learned through practice. Thus, it is not surprising that student engagement with the critical thinking process itself is what pays the dividends for students.

As such, educators try to connect students with the subject matter outside the lecture theatre or classroom. For example, problem based learning is now widely used in the health sciences, whereby students must figure out the key issues related to a case and direct their own learning to solve that problem. Problem based learning has clear parallels with real life practice for health professionals.

Critical thinking goes beyond what might be on the final exam and life-long learning becomes the key. This is a good thing, as practice helps to improve our ability to think critically over time .

Just for scientists?

For those engaging with science, learning the skills needed to be a critical consumer of information is invaluable. But should these skills remain in the domain of scientists? Clearly not: for those engaging with life, being a critical consumer of information is also invaluable, allowing informed judgement.

Being able to actively consider and evaluate information, identify biases, examine the logic of arguments, and tolerate ambiguity until the evidence is in would allow many people from all backgrounds to make better decisions. While these decisions can be trivial (does that miracle anti-wrinkle cream really do what it claims?), in many cases, reasoning and decision-making can have a substantial impact, with some decisions have life-altering effects. A timely case-in-point is immunisation.

Pushing critical thinking from the realms of science and maths into the broader curriculum may lead to far-reaching outcomes. With increasing access to information on the internet, giving individuals the skills to critically think about that information may have widespread benefit, both personally and socially.

The value of science education might not always be in the facts, but in the thinking.

This is the sixth part of our series Maths and Science Education .

  • Maths and science education

why is critical thinking so important for the progress of science

Head of School, School of Arts & Social Sciences, Monash University Malaysia

why is critical thinking so important for the progress of science

Chief Operating Officer (COO)

why is critical thinking so important for the progress of science

Clinical Teaching Fellow

why is critical thinking so important for the progress of science

Data Manager

why is critical thinking so important for the progress of science

Director, Social Policy

Critical Thinking in Science: Fostering Scientific Reasoning Skills in Students

ALI Staff | Published  July 13, 2023 | Updated December 14, 2023

Thinking like a scientist is a central goal of all science curricula.

As students learn facts, methodologies, and methods, what matters most is that all their learning happens through the lens of scientific reasoning what matters most is that it’s all through the lens of scientific reasoning.

That way, when it comes time for them to take on a little science themselves, either in the lab or by theoretically thinking through a solution, they understand how to do it in the right context.

One component of this type of thinking is being critical. Based on facts and evidence, critical thinking in science isn’t exactly the same as critical thinking in other subjects.

Students have to doubt the information they’re given until they can prove it’s right.

They have to truly understand what’s true and what’s hearsay. It’s complex, but with the right tools and plenty of practice, students can get it right.

What is critical thinking?

This particular style of thinking stands out because it requires reflection and analysis. Based on what's logical and rational, thinking critically is all about digging deep and going beyond the surface of a question to establish the quality of the question itself.

It ensures students put their brains to work when confronted with a question rather than taking every piece of information they’re given at face value.

It’s engaged, higher-level thinking that will serve them well in school and throughout their lives.

Why is critical thinking important?

Critical thinking is important when it comes to making good decisions.

It gives us the tools to think through a choice rather than quickly picking an option — and probably guessing wrong. Think of it as the all-important ‘why.’

Why is that true? Why is that right? Why is this the only option?

Finding answers to questions like these requires critical thinking. They require you to really analyze both the question itself and the possible solutions to establish validity.

Will that choice work for me? Does this feel right based on the evidence?

How does critical thinking in science impact students?

Critical thinking is essential in science.

It’s what naturally takes students in the direction of scientific reasoning since evidence is a key component of this style of thought.

It’s not just about whether evidence is available to support a particular answer but how valid that evidence is.

It’s about whether the information the student has fits together to create a strong argument and how to use verifiable facts to get a proper response.

Critical thinking in science helps students:

  • Actively evaluate information
  • Identify bias
  • Separate the logic within arguments
  • Analyze evidence

4 Ways to promote critical thinking

Figuring out how to develop critical thinking skills in science means looking at multiple strategies and deciding what will work best at your school and in your class.

Based on your student population, their needs and abilities, not every option will be a home run.

These particular examples are all based on the idea that for students to really learn how to think critically, they have to practice doing it. 

Each focuses on engaging students with science in a way that will motivate them to work independently as they hone their scientific reasoning skills.

Project-Based Learning

Project-based learning centers on critical thinking.

Teachers can shape a project around the thinking style to give students practice with evaluating evidence or other critical thinking skills.

Critical thinking also happens during collaboration, evidence-based thought, and reflection.

For example, setting students up for a research project is not only a great way to get them to think critically, but it also helps motivate them to learn.

Allowing them to pick the topic (that isn’t easy to look up online), develop their own research questions, and establish a process to collect data to find an answer lets students personally connect to science while using critical thinking at each stage of the assignment.

They’ll have to evaluate the quality of the research they find and make evidence-based decisions.

Self-Reflection

Adding a question or two to any lab practicum or activity requiring students to pause and reflect on what they did or learned also helps them practice critical thinking.

At this point in an assignment, they’ll pause and assess independently. 

You can ask students to reflect on the conclusions they came up with for a completed activity, which really makes them think about whether there's any bias in their answer.

Addressing Assumptions

One way critical thinking aligns so perfectly with scientific reasoning is that it encourages students to challenge all assumptions. 

Evidence is king in the science classroom, but even when students work with hard facts, there comes the risk of a little assumptive thinking.

Working with students to identify assumptions in existing research or asking them to address an issue where they suspend their own judgment and simply look at established facts polishes their that critical eye.

They’re getting practice without tossing out opinions, unproven hypotheses, and speculation in exchange for real data and real results, just like a scientist has to do.

Lab Activities With Trial-And-Error

Another component of critical thinking (as well as thinking like a scientist) is figuring out what to do when you get something wrong.

Backtracking can mean you have to rethink a process, redesign an experiment, or reevaluate data because the outcomes don’t make sense, but it’s okay.

The ability to get something wrong and recover is not only a valuable life skill, but it’s where most scientific breakthroughs start. Reminding students of this is always a valuable lesson.

Labs that include comparative activities are one way to increase critical thinking skills, especially when introducing new evidence that might cause students to change their conclusions once the lab has begun.

For example, you provide students with two distinct data sets and ask them to compare them.

With only two choices, there are a finite amount of conclusions to draw, but then what happens when you bring in a third data set? Will it void certain conclusions? Will it allow students to make new conclusions, ones even more deeply rooted in evidence?

Thinking like a scientist

When students get the opportunity to think critically, they’re learning to trust the data over their ‘gut,’ to approach problems systematically and make informed decisions using ‘good’ evidence.

When practiced enough, this ability will engage students in science in a whole new way, providing them with opportunities to dig deeper and learn more.

It can help enrich science and motivate students to approach the subject just like a professional would.

New call-to-action

Share this post!

Related articles.

Top 6 Instructional Strategies for Math

Top 6 Instructional Strategies for Math

Effective math strategies deepen students' understanding and enthusiasm for mathematics. These strategies not only...

Is Math A Language: Exploring the Relationship of Language and Math

Is Math A Language: Exploring the Relationship of Language and Math

Perhaps you’ve heard someone make the claim that “math is a language.”

Maybe you’ve made that statement yourself...

The Top 7 Elements of a Highly Effective Math Class

The Top 7 Elements of a Highly Effective Math Class

Effective math instruction is key to helping students understand and enjoy math. It's not just about numbers; it's...

STAY INFORMED ON THE LATEST IN STEM. SUBSCRIBE TODAY!

Which stem subjects are of interest to you.

in the light of the science!

  • Planet Earth
  • Strange News

Why Is Critical Thinking Important In Science

Table of Contents:

The Importance of Critical Thinking Skills in Research . Why is critical thinking important? Research integrity is challenged by research anxiety among many other factors. So how do we preserve the credibility of research? It is important for researchers to understand the importance of critical thinking in research.

When asked to clarify what critical thinking means to them, employers will use such phrases as “the ability to think independently,” or “the ability to think on their feet,” or “to show some initiative and resolve a problem without direct supervision. ” These are all valuable skills, but how do you teach them?

Video advice: What is Critical Thinking?

Critical Thinking encompasses six vital skills: problem solving, analysis, creative thinking, interpretation, evaluation, and reasoning.

Why Is Critical Thinking Important In Science

A Slow Decline – Today, your role as the researcher appears to take a back seat to the perceived value of the topic and the extent to which the results of the study will be cited around the world. Due to financial pressures and a growing tendency of risk aversion, studies are increasingly going down the path of applied research rather than basic or pure research. The potential for breakthroughs is being deliberately limited to incremental contributions from researchers who are forced to worry more about job security and pleasing their paymasters than about making a significant contribution to their field.

The Importance Of Critical Thinking, and how to improve it – Why is critical thinking important? Here’s why you should constantly improve your critical thinking skills to ensure success in your endeavors.

Employers value employees who are critical thinkers, ask questions, offer creative ideas, and are always ready to offer innovation against the competition. No matter what your position or role in a company may be, critical thinking will always give you the power to stand out and make a difference.

  • Promotes Curiosity
  • Allows For Creativity
  • Enhances Problem Solving Skills
  • An Activity For The Mind
  • Creates Independence
  • Crucial Life Skill
  • How To Improve Your Critical Thinking
  • Impress Your Employer
  • Careers That Require Critical Thinking
  • What Are Your Goals?

The Importance of Critical Thinking in Science

Free Essay: Critical thinking is a very important concept in regards to science, especially since science and the concepts therein have been fluctuating from…

Critical thinking is an extremely important concept when it comes to science, especially since science and also the concepts within happen to be fluctuating from the moment of the origins. As mentioned in Kirst-Ashman’s book Critical thinking may be the careful scrutiny of what’s mentioned as true or what seems to be real and also the resulting expression of the opinion or conclusion according to that scrutiny, and (2) the creative formulation of the opinion or conclusion when given an issue, problem or issue, (Kist-Ashman, 2011, p. 33). Critical thinking enables for individual assessments of topics and could be put on any question posed in almost any situation. It enables for people to consider on their own and evaluate situations by themselves to determine…show more content…This is the reason why the Cake theory does well to describe behavior in the manner it will. One critique of the theory (as well as Holland) may be the studies have the inability to look for a strong correlation between congruence (amount of fit between an individual’s personality type as well as their current or prospective work atmosphere) and outcomes, (Spokane, Meir, Catalano, p.

Critical Thinking Skill

D.F. Halpern, in International Encyclopedia of the Social & Behavioral Sciences, 2022.

  • Background project 2
  • A generic model of information literacy and cultural heritage for lifelong learning
  • Components (carrier, content and context)
  • Core processes and tasks
  • Concluding comments
  • Context, constructionism and practice

Critical Thinking, Cognitive Psychology ofD. F. Halpern, in International Encyclopedia of the Social & Behavioral Sciences, 20015. 2 Skills ComponentCritical thinking skills are sometimes referred to as ‘higher order skills’ to differentiate them from ‘simpler’ (i. e., lower order) skills, such as rote memorization or routinization. Critical thinking skills require judgment, reflection, analysis, synthesis, and attention to context. The complexity in thinking critically often comes from the multidimensional nature of the problem or the need to make a decision or solve a problem when the information that is available is incomplete, probabilistic, or not completely credible. A short taxonomy of critical thinking skills includes the verbal reasoning skills needed to defend against common persuasive techniques, argument analysis skills that include determining the strength of conclusions based on reasons and evidence, skills used in scientific thinking, the use of likelihood and uncertainty to make probabilistic decisions, and the ability to generate multiple alternatives and goals in problem solving and decision making situations.

Critical Thinking in Science and Technology: Importance, Rationale, and Strategies

Critical thinking in science involves putting students in the place of scientists. Learn how group inquiry and science labs can foster scientific reasoning.

Holmes, N.G., Keep, B., & Wieman, C.E. . Developing scientific making decisions by structuring and supporting student agency. Physical Review Physics Education Research, 16(1), 010109. An investigation study minimally altering traditional lab methods to incorporate more critical thinking. The drag example was obtained from this piece.

  • Goals for Teaching Critical Thinking Through Scientific Inquiry
  • How to Teaching Critical Thinking in Science Via Inquiry
  • Further Tips and Challenges
  • Lesson Plan Outline
  • How to Make Science Labs Run Smoothly

II. Rethinking Science Labs

Critical thinking in science is important largely because a lot of students have developed expectations about science that can prove to be counter-productive. After various experiences — both in school and out — students often perceive science to be primarily about learning “authoritative” content knowledge: this is how the solar system works; that is how diffusion works; this is the right answer and that is not. This perception allows little room for critical thinking in science, in spite of the fact that argument, reasoning, and critical thinking lie at the very core of scientific practice.

Redefining Critical Thinking: Teaching Students to Think like Scientists

From primary to post-secondary school, critical thinking (CT) is an oft cited focus or key competency (e.g., Alberta Education, 2022; Australian Curriculum Assessment and Reporting Authority, n.d.; California Department of Education, 2022; DeAngelo et al., 2022). Unfortunately, the definition of CT has become so broad that it can encompass nearly anything and everything (e.g., Johnson & Hamby, 2022; Hatcher, 2022). From discussion of Foucault, critique and the self (Foucault, 1984) to Lawson’s (1999) definition of CT as the ability to evaluate claims using psychological science, the term critical thinking has come to refer to an ever-widening range of skills and abilities. We propose that educators need to clearly define CT, and that in addition to teaching CT, a strong focus should be placed on teaching students how to think like scientists. Scientific thinking is the ability to generate, test, and evaluate claims, data, and theories (e.g., Koerber et al., 2022; Bullock, Sodian, & Koerber, 2022). Simply stated, the basic tenets of scientific thinking provide students with the tools to distinguish good information from bad. Students have access to nearly limitless information, and the skills to understand what is misinformation or a questionable scientific claim is crucially important (Smith, 2022), and these skills may not necessarily be included in the general teaching of critical thinking (Wright, 2022). This is an issue of more than semantics. While some definit…

Video advice: 5 tips to improve your critical thinking – Samantha Agoos

View full lesson: http://ed.ted.com/lessons/5-tips-to-improve-your-critical-thinking-samantha-agoos

Why Is Critical Thinking Important In Science

Bullock, M., Sodian, B., and Koerber, S. . “Doing experiments and understanding science: development of scientific reasoning from childhood to adulthood,” in Human Development from Early Childhood to Early Adulthood: Findings from a 20 Year Longitudinal Study, eds W. Schneider and M. Bullock (New York, NY: Psychology Press), 173–197.

From primary to post-secondary school, critical thinking (CT) is an oft cited focus or key competency (e. g., DeAngelo et al., 2009; California Department of Education, 2014; Alberta Education, 2015; Australian Curriculum Assessment and Reporting Authority, n.d. ). Unfortunately, the definition of CT has become so broad that it can encompass nearly anything and everything (e. g., Hatcher, 2000; Johnson and Hamby, 2015). From discussion of Foucault, critique and the self (Foucault, 1984) to Lawson’s (1999) definition of CT as the ability to evaluate claims using psychological science, the term critical thinking has come to refer to an ever-widening range of skills and abilities. We propose that educators need to clearly define CT, and that in addition to teaching CT, a strong focus should be placed on teaching students how to think like scientists. Scientific thinking is the ability to generate, test, and evaluate claims, data, and theories (e. g., Bullock et al., 2009; Koerber et al., 2015).

From as far back as the 1980s, many researchers have cited the importance of critical thinking in the citizens of modern societies. Given this importance, the merits of including critical thinking as a major objective at various levels of the education system and in different subject areas of the sc…

Complete Chapter List – AbstractFrom as far back as the 1980s, many researchers have cited the importance of critical thinking in the citizens of modern societies. Given this importance, the merits of including critical thinking as a major objective at various levels of the education system and in different subject areas of the school curriculum have been extensively argued. This chapter focuses on science and technology curricula and rationalizes the need for changes both in the development as well as the implementation of the curriculum to facilitate the promotion of critical thinking skills in students. There is also an extensive discussion of particular instructional approaches and strategies needed to facilitate this. TopIntroductionThis chapter will trace the development of critical thinking perspectives as occurring in tandem with the development of scientific inquiry from the time of the ancient Greek philosophers. Arguments will be raised that the development of human civilizations required critical thinking even from the earliest human beings.

Thinking critically on critical thinking: why scientists’ skills need to spread

MATHS AND SCIENCE EDUCATION: We’ve asked our authors about the state of maths and science education in Australia and its future direction. Today, Rachel Grieve discusses why we need to spread science-specific…

For a lot of scientists, critical thinking becomes (apparently) intuitive, but like every set of skills, critical thinking must be trained and cultivated. Regrettably, educators are not able to deposit these details straight into their students’ heads. As the theory of critical thinking could be trained, critical thinking itself must be experienced first-hands.

What is critical thinking?

Being able to actively consider and evaluate information, identify biases, examine the logic of arguments, and tolerate ambiguity until the evidence is in would allow many people from all backgrounds to make better decisions. While these decisions can be trivial (does that miracle anti-wrinkle cream really do what it claims?), in many cases, reasoning and decision-making can have a substantial impact, with some decisions have life-altering effects. A timely case-in-point is immunisation.

Science, Critical Thinking, and Curiosity: the Trifecta For Our Children’s Future

Because of these shifts, it’s no longer good enough to read an article in the paper and understand what it says. Now we need to be able to read an article in the paper, have an opinion on it, form questions about it, and research additional articles to confirm if what you are reading is indeed true or if knowledge has changed.

Humans are naturally curious. Throughout time, we’ve desired to comprehend the world we reside in and also have used various methods to do this. Science has shown to be the easiest way. Through scientific approaches and demanding thinking, humans have explored and learned what things are constructed with, the way they work, and the things they’re doing. Technologies have applied that understanding to produce “things” which make our existence better in most areas: work (software and computing), home (appliances), personal (cellular devices, games and entertainment technologies).

Can Bioethical Issues and Questioning Strategies Increase Scientific Understandings? on JSTOR

UCalgary offers students a high-quality educational experience that prepares them for success in life, as well as research that addresses society’s most persistent challenges. Our creation and transfer of knowledge contributes every day to our country’s global competitive advantage and makes the world a better place.

Many United States school districts and publish-secondary educational institutions are acknowledging the significance of being a critical thinker. Future citizens will have to be to informed consumers of technology, science, sociology, and ethics, to mention a couple of. In the end, the earth has become vastly more difficult, necessitating such skills as reasonableness and logical thinking. By engaging students in a crucial amount of time in their developmental process, we are able to lay the building blocks permanently critical thinkers. The objective of this paper would be to examine the significance of critical thinking in science education, both in the secondary and publish-secondary levels. Evidence regarding its appropriateness is going to be attracted from critical thinking and science education literature, in addition to previous studies using bioethical decision-making and generic question stem strategies with junior high school and college students. De nombreux secteurs scolaires et institutions universitaires publish-secondaires nord amricains sont en train de reconnatre l’importance de devenir united nations penseur averti.

Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers

Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students’ …

  • Critical Thinking
  • Scientific Reasoning
  • Scientific Reasoning in Students’ Thesis Writing
  • Study Sample
  • Scientific Reasoning in Writing
  • Statistical Analyses

CBE Life Sci Educ. 2018 Spring; 17(1): ar4. John Coley, Monitoring EditorAbstractDeveloping critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students’ development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference, while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc. ) are not significantly related to critical-thinking skills.

Critical thinking in STEM (science, technology, engineering, and mathematics)

El propósito de este estudio es determinar el lugar del pensamiento crítico en la formación de futuros maestros. Para llevar a cabo el estudio, se organizó u…

Within the next question (Could it be fair to state the project activity develops critical thinking?) respondents haveto express their opinion on the amount of participation of critical thinking in project activities. Although theimportance of this kind of thinking within the project is apparent, you should discover whether future educators know about it.

What is critical thinking? One of the earliest definitions is “critical thinking abilities required to analyze, process, and evaluate arguments” (Schlecht: 1989, pp. 131-140). There are “higher-order thinking” and “critical thinking”. There is a difference between low-level mental activities such as “memories” or “high-level” mental activities. Therefore, we can conclude that critical thinking is high-level thinking and has the following features: analysis, evaluation, rationality, and reflection. It is self-correcting and context-sensitive, and it allows judgments about the world (Nystrom: 2000, pp. 8-33; Jeevanantham: 2005, pp. 118-129).

Related Articles:

  • Is Critical Thinking An Art Or A Science
  • Why Design Thinking Is Important For Innovation
  • Why Is Logic Called The Science Of Thinking
  • Why Is Chemistry The Most Important Science
  • Why Is Forensic Science Important
  • Why Is It Important To Ask Questions In Science

why is critical thinking so important for the progress of science

Science Journalist

Science atlas, our goal is to spark the curiosity that exists in all of us. We invite readers to visit us daily, explore topics of interest, and gain new perspectives along the way.

You may also like

What Does The Word Molecule Mean In Science

What Does The Word Molecule Mean In Science

What Are Some Science Current Events

What Are Some Science Current Events

Can A Solar Flare Destroy Earth

Can A Solar Flare Destroy Earth

Add comment, cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Recent discoveries

What Time Asteroid Passing Earth

What Time Asteroid Passing Earth

What Caused The First Mass Extinction On Earth

What Caused The First Mass Extinction On Earth

How To Become A Researcher In Biology

How To Become A Researcher In Biology

How Much Is It To Compete In First Robotics

How Much Is It To Compete In First Robotics

  • Animals 3041
  • Astronomy 8
  • Biology 2281
  • Chemistry 482
  • Culture 1333
  • Health 8466
  • History 2152
  • Physics 913
  • Planet Earth 3239
  • Science 2158
  • Strange News 1230
  • Technology 3625

Random fact

Don’t Touch the Apes! Florida Macaques Carry Virus Lethal to Humans

Don’t Touch the Apes! Florida Macaques Carry Virus Lethal to Humans

why is critical thinking so important for the progress of science

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • CBE Life Sci Educ
  • v.17(1); Spring 2018

Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers

Jason e. dowd.

† Department of Biology, Duke University, Durham, NC 27708

Robert J. Thompson, Jr.

‡ Department of Psychology and Neuroscience, Duke University, Durham, NC 27708

Leslie A. Schiff

§ Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455

Julie A. Reynolds

Associated data.

This study empirically examines the relationship between students’ critical-thinking skills and scientific reasoning as reflected in undergraduate thesis writing in biology. Writing offers a unique window into studying this relationship, and the findings raise potential implications for instruction.

Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students’ development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference , while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students’ writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference ) can actually improve students’ scientific reasoning in their writing.

INTRODUCTION

Critical-thinking and scientific reasoning skills are core learning objectives of science education for all students, regardless of whether or not they intend to pursue a career in science or engineering. Consistent with the view of learning as construction of understanding and meaning ( National Research Council, 2000 ), the pedagogical practice of writing has been found to be effective not only in fostering the development of students’ conceptual and procedural knowledge ( Gerdeman et al. , 2007 ) and communication skills ( Clase et al. , 2010 ), but also scientific reasoning ( Reynolds et al. , 2012 ) and critical-thinking skills ( Quitadamo and Kurtz, 2007 ).

Critical thinking and scientific reasoning are similar but different constructs that include various types of higher-order cognitive processes, metacognitive strategies, and dispositions involved in making meaning of information. Critical thinking is generally understood as the broader construct ( Holyoak and Morrison, 2005 ), comprising an array of cognitive processes and dispostions that are drawn upon differentially in everyday life and across domains of inquiry such as the natural sciences, social sciences, and humanities. Scientific reasoning, then, may be interpreted as the subset of critical-thinking skills (cognitive and metacognitive processes and dispositions) that 1) are involved in making meaning of information in scientific domains and 2) support the epistemological commitment to scientific methodology and paradigm(s).

Although there has been an enduring focus in higher education on promoting critical thinking and reasoning as general or “transferable” skills, research evidence provides increasing support for the view that reasoning and critical thinking are also situational or domain specific ( Beyer et al. , 2013 ). Some researchers, such as Lawson (2010) , present frameworks in which science reasoning is characterized explicitly in terms of critical-thinking skills. There are, however, limited coherent frameworks and empirical evidence regarding either the general or domain-specific interrelationships of scientific reasoning, as it is most broadly defined, and critical-thinking skills.

The Vision and Change in Undergraduate Biology Education Initiative provides a framework for thinking about these constructs and their interrelationship in the context of the core competencies and disciplinary practice they describe ( American Association for the Advancement of Science, 2011 ). These learning objectives aim for undergraduates to “understand the process of science, the interdisciplinary nature of the new biology and how science is closely integrated within society; be competent in communication and collaboration; have quantitative competency and a basic ability to interpret data; and have some experience with modeling, simulation and computational and systems level approaches as well as with using large databases” ( Woodin et al. , 2010 , pp. 71–72). This framework makes clear that science reasoning and critical-thinking skills play key roles in major learning outcomes; for example, “understanding the process of science” requires students to engage in (and be metacognitive about) scientific reasoning, and having the “ability to interpret data” requires critical-thinking skills. To help students better achieve these core competencies, we must better understand the interrelationships of their composite parts. Thus, the next step is to determine which specific critical-thinking skills are drawn upon when students engage in science reasoning in general and with regard to the particular scientific domain being studied. Such a determination could be applied to improve science education for both majors and nonmajors through pedagogical approaches that foster critical-thinking skills that are most relevant to science reasoning.

Writing affords one of the most effective means for making thinking visible ( Reynolds et al. , 2012 ) and learning how to “think like” and “write like” disciplinary experts ( Meizlish et al. , 2013 ). As a result, student writing affords the opportunities to both foster and examine the interrelationship of scientific reasoning and critical-thinking skills within and across disciplinary contexts. The purpose of this study was to better understand the relationship between students’ critical-thinking skills and scientific reasoning skills as reflected in the genre of undergraduate thesis writing in biology departments at two research universities, the University of Minnesota and Duke University.

In the following subsections, we discuss in greater detail the constructs of scientific reasoning and critical thinking, as well as the assessment of scientific reasoning in students’ thesis writing. In subsequent sections, we discuss our study design, findings, and the implications for enhancing educational practices.

Critical Thinking

The advances in cognitive science in the 21st century have increased our understanding of the mental processes involved in thinking and reasoning, as well as memory, learning, and problem solving. Critical thinking is understood to include both a cognitive dimension and a disposition dimension (e.g., reflective thinking) and is defined as “purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considera­tions upon which that judgment is based” ( Facione, 1990, p. 3 ). Although various other definitions of critical thinking have been proposed, researchers have generally coalesced on this consensus: expert view ( Blattner and Frazier, 2002 ; Condon and Kelly-Riley, 2004 ; Bissell and Lemons, 2006 ; Quitadamo and Kurtz, 2007 ) and the corresponding measures of critical-­thinking skills ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ).

Both the cognitive skills and dispositional components of critical thinking have been recognized as important to science education ( Quitadamo and Kurtz, 2007 ). Empirical research demonstrates that specific pedagogical practices in science courses are effective in fostering students’ critical-thinking skills. Quitadamo and Kurtz (2007) found that students who engaged in a laboratory writing component in the context of a general education biology course significantly improved their overall critical-thinking skills (and their analytical and inference skills, in particular), whereas students engaged in a traditional quiz-based laboratory did not improve their critical-thinking skills. In related work, Quitadamo et al. (2008) found that a community-based inquiry experience, involving inquiry, writing, research, and analysis, was associated with improved critical thinking in a biology course for nonmajors, compared with traditionally taught sections. In both studies, students who exhibited stronger presemester critical-thinking skills exhibited stronger gains, suggesting that “students who have not been explicitly taught how to think critically may not reach the same potential as peers who have been taught these skills” ( Quitadamo and Kurtz, 2007 , p. 151).

Recently, Stephenson and Sadler-McKnight (2016) found that first-year general chemistry students who engaged in a science writing heuristic laboratory, which is an inquiry-based, writing-to-learn approach to instruction ( Hand and Keys, 1999 ), had significantly greater gains in total critical-thinking scores than students who received traditional laboratory instruction. Each of the four components—inquiry, writing, collaboration, and reflection—have been linked to critical thinking ( Stephenson and Sadler-McKnight, 2016 ). Like the other studies, this work highlights the value of targeting critical-thinking skills and the effectiveness of an inquiry-based, writing-to-learn approach to enhance critical thinking. Across studies, authors advocate adopting critical thinking as the course framework ( Pukkila, 2004 ) and developing explicit examples of how critical thinking relates to the scientific method ( Miri et al. , 2007 ).

In these examples, the important connection between writing and critical thinking is highlighted by the fact that each intervention involves the incorporation of writing into science, technology, engineering, and mathematics education (either alone or in combination with other pedagogical practices). However, critical-thinking skills are not always the primary learning outcome; in some contexts, scientific reasoning is the primary outcome that is assessed.

Scientific Reasoning

Scientific reasoning is a complex process that is broadly defined as “the skills involved in inquiry, experimentation, evidence evaluation, and inference that are done in the service of conceptual change or scientific understanding” ( Zimmerman, 2007 , p. 172). Scientific reasoning is understood to include both conceptual knowledge and the cognitive processes involved with generation of hypotheses (i.e., inductive processes involved in the generation of hypotheses and the deductive processes used in the testing of hypotheses), experimentation strategies, and evidence evaluation strategies. These dimensions are interrelated, in that “experimentation and inference strategies are selected based on prior conceptual knowledge of the domain” ( Zimmerman, 2000 , p. 139). Furthermore, conceptual and procedural knowledge and cognitive process dimensions can be general and domain specific (or discipline specific).

With regard to conceptual knowledge, attention has been focused on the acquisition of core methodological concepts fundamental to scientists’ causal reasoning and metacognitive distancing (or decontextualized thinking), which is the ability to reason independently of prior knowledge or beliefs ( Greenhoot et al. , 2004 ). The latter involves what Kuhn and Dean (2004) refer to as the coordination of theory and evidence, which requires that one question existing theories (i.e., prior knowledge and beliefs), seek contradictory evidence, eliminate alternative explanations, and revise one’s prior beliefs in the face of contradictory evidence. Kuhn and colleagues (2008) further elaborate that scientific thinking requires “a mature understanding of the epistemological foundations of science, recognizing scientific knowledge as constructed by humans rather than simply discovered in the world,” and “the ability to engage in skilled argumentation in the scientific domain, with an appreciation of argumentation as entailing the coordination of theory and evidence” ( Kuhn et al. , 2008 , p. 435). “This approach to scientific reasoning not only highlights the skills of generating and evaluating evidence-based inferences, but also encompasses epistemological appreciation of the functions of evidence and theory” ( Ding et al. , 2016 , p. 616). Evaluating evidence-based inferences involves epistemic cognition, which Moshman (2015) defines as the subset of metacognition that is concerned with justification, truth, and associated forms of reasoning. Epistemic cognition is both general and domain specific (or discipline specific; Moshman, 2015 ).

There is empirical support for the contributions of both prior knowledge and an understanding of the epistemological foundations of science to scientific reasoning. In a study of undergraduate science students, advanced scientific reasoning was most often accompanied by accurate prior knowledge as well as sophisticated epistemological commitments; additionally, for students who had comparable levels of prior knowledge, skillful reasoning was associated with a strong epistemological commitment to the consistency of theory with evidence ( Zeineddin and Abd-El-Khalick, 2010 ). These findings highlight the importance of the need for instructional activities that intentionally help learners develop sophisticated epistemological commitments focused on the nature of knowledge and the role of evidence in supporting knowledge claims ( Zeineddin and Abd-El-Khalick, 2010 ).

Scientific Reasoning in Students’ Thesis Writing

Pedagogical approaches that incorporate writing have also focused on enhancing scientific reasoning. Many rubrics have been developed to assess aspects of scientific reasoning in written artifacts. For example, Timmerman and colleagues (2011) , in the course of describing their own rubric for assessing scientific reasoning, highlight several examples of scientific reasoning assessment criteria ( Haaga, 1993 ; Tariq et al. , 1998 ; Topping et al. , 2000 ; Kelly and Takao, 2002 ; Halonen et al. , 2003 ; Willison and O’Regan, 2007 ).

At both the University of Minnesota and Duke University, we have focused on the genre of the undergraduate honors thesis as the rhetorical context in which to study and improve students’ scientific reasoning and writing. We view the process of writing an undergraduate honors thesis as a form of professional development in the sciences (i.e., a way of engaging students in the practices of a community of discourse). We have found that structured courses designed to scaffold the thesis-­writing process and promote metacognition can improve writing and reasoning skills in biology, chemistry, and economics ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In the context of this prior work, we have defined scientific reasoning in writing as the emergent, underlying construct measured across distinct aspects of students’ written discussion of independent research in their undergraduate theses.

The Biology Thesis Assessment Protocol (BioTAP) was developed at Duke University as a tool for systematically guiding students and faculty through a “draft–feedback–revision” writing process, modeled after professional scientific peer-review processes ( Reynolds et al. , 2009 ). BioTAP includes activities and worksheets that allow students to engage in critical peer review and provides detailed descriptions, presented as rubrics, of the questions (i.e., dimensions, shown in Table 1 ) upon which such review should focus. Nine rubric dimensions focus on communication to the broader scientific community, and four rubric dimensions focus on the accuracy and appropriateness of the research. These rubric dimensions provide criteria by which the thesis is assessed, and therefore allow BioTAP to be used as an assessment tool as well as a teaching resource ( Reynolds et al. , 2009 ). Full details are available at www.science-writing.org/biotap.html .

Theses assessment protocol dimensions

In previous work, we have used BioTAP to quantitatively assess students’ undergraduate honors theses and explore the relationship between thesis-writing courses (or specific interventions within the courses) and the strength of students’ science reasoning in writing across different science disciplines: biology ( Reynolds and Thompson, 2011 ); chemistry ( Dowd et al. , 2015b ); and economics ( Dowd et al. , 2015a ). We have focused exclusively on the nine dimensions related to reasoning and writing (questions 1–9), as the other four dimensions (questions 10–13) require topic-specific expertise and are intended to be used by the student’s thesis supervisor.

Beyond considering individual dimensions, we have investigated whether meaningful constructs underlie students’ thesis scores. We conducted exploratory factor analysis of students’ theses in biology, economics, and chemistry and found one dominant underlying factor in each discipline; we termed the factor “scientific reasoning in writing” ( Dowd et al. , 2015a , b , 2016 ). That is, each of the nine dimensions could be understood as reflecting, in different ways and to different degrees, the construct of scientific reasoning in writing. The findings indicated evidence of both general and discipline-specific components to scientific reasoning in writing that relate to epistemic beliefs and paradigms, in keeping with broader ideas about science reasoning discussed earlier. Specifically, scientific reasoning in writing is more strongly associated with formulating a compelling argument for the significance of the research in the context of current literature in biology, making meaning regarding the implications of the findings in chemistry, and providing an organizational framework for interpreting the thesis in economics. We suggested that instruction, whether occurring in writing studios or in writing courses to facilitate thesis preparation, should attend to both components.

Research Question and Study Design

The genre of thesis writing combines the pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-­McKnight, 2016 ). However, there is no empirical evidence regarding the general or domain-specific interrelationships of scientific reasoning and critical-thinking skills, particularly in the rhetorical context of the undergraduate thesis. The BioTAP studies discussed earlier indicate that the rubric-based assessment produces evidence of scientific reasoning in the undergraduate thesis, but it was not designed to foster or measure critical thinking. The current study was undertaken to address the research question: How are students’ critical-thinking skills related to scientific reasoning as reflected in the genre of undergraduate thesis writing in biology? Determining these interrelationships could guide efforts to enhance students’ scientific reasoning and writing skills through focusing instruction on specific critical-thinking skills as well as disciplinary conventions.

To address this research question, we focused on undergraduate thesis writers in biology courses at two institutions, Duke University and the University of Minnesota, and examined the extent to which students’ scientific reasoning in writing, assessed in the undergraduate thesis using BioTAP, corresponds to students’ critical-thinking skills, assessed using the California Critical Thinking Skills Test (CCTST; August, 2016 ).

Study Sample

The study sample was composed of students enrolled in courses designed to scaffold the thesis-writing process in the Department of Biology at Duke University and the College of Biological Sciences at the University of Minnesota. Both courses complement students’ individual work with research advisors. The course is required for thesis writers at the University of Minnesota and optional for writers at Duke University. Not all students are required to complete a thesis, though it is required for students to graduate with honors; at the University of Minnesota, such students are enrolled in an honors program within the college. In total, 28 students were enrolled in the course at Duke University and 44 students were enrolled in the course at the University of Minnesota. Of those students, two students did not consent to participate in the study; additionally, five students did not validly complete the CCTST (i.e., attempted fewer than 60% of items or completed the test in less than 15 minutes). Thus, our overall rate of valid participation is 90%, with 27 students from Duke University and 38 students from the University of Minnesota. We found no statistically significant differences in thesis assessment between students with valid CCTST scores and invalid CCTST scores. Therefore, we focus on the 65 students who consented to participate and for whom we have complete and valid data in most of this study. Additionally, in asking students for their consent to participate, we allowed them to choose whether to provide or decline access to academic and demographic background data. Of the 65 students who consented to participate, 52 students granted access to such data. Therefore, for additional analyses involving academic and background data, we focus on the 52 students who consented. We note that the 13 students who participated but declined to share additional data performed slightly lower on the CCTST than the 52 others (perhaps suggesting that they differ by other measures, but we cannot determine this with certainty). Among the 52 students, 60% identified as female and 10% identified as being from underrepresented ethnicities.

In both courses, students completed the CCTST online, either in class or on their own, late in the Spring 2016 semester. This is the same assessment that was used in prior studies of critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). It is “an objective measure of the core reasoning skills needed for reflective decision making concerning what to believe or what to do” ( Insight Assessment, 2016a ). In the test, students are asked to read and consider information as they answer multiple-choice questions. The questions are intended to be appropriate for all users, so there is no expectation of prior disciplinary knowledge in biology (or any other subject). Although actual test items are protected, sample items are available on the Insight Assessment website ( Insight Assessment, 2016b ). We have included one sample item in the Supplemental Material.

The CCTST is based on a consensus definition of critical thinking, measures cognitive and metacognitive skills associated with critical thinking, and has been evaluated for validity and reliability at the college level ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ). In addition to providing overall critical-thinking score, the CCTST assesses seven dimensions of critical thinking: analysis, interpretation, inference, evaluation, explanation, induction, and deduction. Scores on each dimension are calculated based on students’ performance on items related to that dimension. Analysis focuses on identifying assumptions, reasons, and claims and examining how they interact to form arguments. Interpretation, related to analysis, focuses on determining the precise meaning and significance of information. Inference focuses on drawing conclusions from reasons and evidence. Evaluation focuses on assessing the credibility of sources of information and claims they make. Explanation, related to evaluation, focuses on describing the evidence, assumptions, or rationale for beliefs and conclusions. Induction focuses on drawing inferences about what is probably true based on evidence. Deduction focuses on drawing conclusions about what must be true when the context completely determines the outcome. These are not independent dimensions; the fact that they are related supports their collective interpretation as critical thinking. Together, the CCTST dimensions provide a basis for evaluating students’ overall strength in using reasoning to form reflective judgments about what to believe or what to do ( August, 2016 ). Each of the seven dimensions and the overall CCTST score are measured on a scale of 0–100, where higher scores indicate superior performance. Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and below) skills.

Scientific Reasoning in Writing

At the end of the semester, students’ final, submitted undergraduate theses were assessed using BioTAP, which consists of nine rubric dimensions that focus on communication to the broader scientific community and four additional dimensions that focus on the exhibition of topic-specific expertise ( Reynolds et al. , 2009 ). These dimensions, framed as questions, are displayed in Table 1 .

Student theses were assessed on questions 1–9 of BioTAP using the same procedures described in previous studies ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In this study, six raters were trained in the valid, reliable use of BioTAP rubrics. Each dimension was rated on a five-point scale: 1 indicates the dimension is missing, incomplete, or below acceptable standards; 3 indicates that the dimension is adequate but not exhibiting mastery; and 5 indicates that the dimension is excellent and exhibits mastery (intermediate ratings of 2 and 4 are appropriate when different parts of the thesis make a single category challenging). After training, two raters independently assessed each thesis and then discussed their independent ratings with one another to form a consensus rating. The consensus score is not an average score, but rather an agreed-upon, discussion-based score. On a five-point scale, raters independently assessed dimensions to be within 1 point of each other 82.4% of the time before discussion and formed consensus ratings 100% of the time after discussion.

In this study, we consider both categorical (mastery/nonmastery, where a score of 5 corresponds to mastery) and numerical treatments of individual BioTAP scores to better relate the manifestation of critical thinking in BioTAP assessment to all of the prior studies. For comprehensive/cumulative measures of BioTAP, we focus on the partial sum of questions 1–5, as these questions relate to higher-order scientific reasoning (whereas questions 6–9 relate to mid- and lower-order writing mechanics [ Reynolds et al. , 2009 ]), and the factor scores (i.e., numerical representations of the extent to which each student exhibits the underlying factor), which are calculated from the factor loadings published by Dowd et al. (2016) . We do not focus on questions 6–9 individually in statistical analyses, because we do not expect critical-thinking skills to relate to mid- and lower-order writing skills.

The final, submitted thesis reflects the student’s writing, the student’s scientific reasoning, the quality of feedback provided to the student by peers and mentors, and the student’s ability to incorporate that feedback into his or her work. Therefore, our assessment is not the same as an assessment of unpolished, unrevised samples of students’ written work. While one might imagine that such an unpolished sample may be more strongly correlated with critical-thinking skills measured by the CCTST, we argue that the complete, submitted thesis, assessed using BioTAP, is ultimately a more appropriate reflection of how students exhibit science reasoning in the scientific community.

Statistical Analyses

We took several steps to analyze the collected data. First, to provide context for subsequent interpretations, we generated descriptive statistics for the CCTST scores of the participants based on the norms for undergraduate CCTST test takers. To determine the strength of relationships among CCTST dimensions (including overall score) and the BioTAP dimensions, partial-sum score (questions 1–5), and factor score, we calculated Pearson’s correlations for each pair of measures. To examine whether falling on one side of the nonmastery/mastery threshold (as opposed to a linear scale of performance) was related to critical thinking, we grouped BioTAP dimensions into categories (mastery/nonmastery) and conducted Student’s t tests to compare the means scores of the two groups on each of the seven dimensions and overall score of the CCTST. Finally, for the strongest relationship that emerged, we included additional academic and background variables as covariates in multiple linear-regression analysis to explore questions about how much observed relationships between critical-thinking skills and science reasoning in writing might be explained by variation in these other factors.

Although BioTAP scores represent discreet, ordinal bins, the five-point scale is intended to capture an underlying continuous construct (from inadequate to exhibiting mastery). It has been argued that five categories is an appropriate cutoff for treating ordinal variables as pseudo-continuous ( Rhemtulla et al. , 2012 )—and therefore using continuous-variable statistical methods (e.g., Pearson’s correlations)—as long as the underlying assumption that ordinal scores are linearly distributed is valid. Although we have no way to statistically test this assumption, we interpret adequate scores to be approximately halfway between inadequate and mastery scores, resulting in a linear scale. In part because this assumption is subject to disagreement, we also consider and interpret a categorical (mastery/nonmastery) treatment of BioTAP variables.

We corrected for multiple comparisons using the Holm-Bonferroni method ( Holm, 1979 ). At the most general level, where we consider the single, comprehensive measures for BioTAP (partial-sum and factor score) and the CCTST (overall score), there is no need to correct for multiple comparisons, because the multiple, individual dimensions are collapsed into single dimensions. When we considered individual CCTST dimensions in relation to comprehensive measures for BioTAP, we accounted for seven comparisons; similarly, when we considered individual dimensions of BioTAP in relation to overall CCTST score, we accounted for five comparisons. When all seven CCTST and five BioTAP dimensions were examined individually and without prior knowledge, we accounted for 35 comparisons; such a rigorous threshold is likely to reject weak and moderate relationships, but it is appropriate if there are no specific pre-existing hypotheses. All p values are presented in tables for complete transparency, and we carefully consider the implications of our interpretation of these data in the Discussion section.

CCTST scores for students in this sample ranged from the 39th to 99th percentile of the general population of undergraduate CCTST test takers (mean percentile = 84.3, median = 85th percentile; Table 2 ); these percentiles reflect overall scores that range from moderate to superior. Scores on individual dimensions and overall scores were sufficiently normal and far enough from the ceiling of the scale to justify subsequent statistical analyses.

Descriptive statistics of CCTST dimensions a

MinimumMeanMedianMaximum
Analysis7088.690100
Interpretation7489.787100
Inference7887.989100
Evaluation6383.684100
Explanation6184.487100
Induction7487.48797
Deduction7186.48797
Overall73868597

a Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and lower) skills.

The Pearson’s correlations between students’ cumulative scores on BioTAP (the factor score based on loadings published by Dowd et al. , 2016 , and the partial sum of scores on questions 1–5) and students’ overall scores on the CCTST are presented in Table 3 . We found that the partial-sum measure of BioTAP was significantly related to the overall measure of critical thinking ( r = 0.27, p = 0.03), while the BioTAP factor score was marginally related to overall CCTST ( r = 0.24, p = 0.05). When we looked at relationships between comprehensive BioTAP measures and scores for individual dimensions of the CCTST ( Table 3 ), we found significant positive correlations between the both BioTAP partial-sum and factor scores and CCTST inference ( r = 0.45, p < 0.001, and r = 0.41, p < 0.001, respectively). Although some other relationships have p values below 0.05 (e.g., the correlations between BioTAP partial-sum scores and CCTST induction and interpretation scores), they are not significant when we correct for multiple comparisons.

Correlations between dimensions of CCTST and dimensions of BioTAP a

a In each cell, the top number is the correlation, and the bottom, italicized number is the associated p value. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

b This is the partial sum of BioTAP scores on questions 1–5.

c This is the factor score calculated from factor loadings published by Dowd et al. (2016) .

When we expanded comparisons to include all 35 potential correlations among individual BioTAP and CCTST dimensions—and, accordingly, corrected for 35 comparisons—we did not find any additional statistically significant relationships. The Pearson’s correlations between students’ scores on each dimension of BioTAP and students’ scores on each dimension of the CCTST range from −0.11 to 0.35 ( Table 3 ); although the relationship between discussion of implications (BioTAP question 5) and inference appears to be relatively large ( r = 0.35), it is not significant ( p = 0.005; the Holm-Bonferroni cutoff is 0.00143). We found no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions (unpublished data), regardless of whether we correct for multiple comparisons.

The results of Student’s t tests comparing scores on each dimension of the CCTST of students who exhibit mastery with those of students who do not exhibit mastery on each dimension of BioTAP are presented in Table 4 . Focusing first on the overall CCTST scores, we found that the difference between those who exhibit mastery and those who do not in discussing implications of results (BioTAP question 5) is statistically significant ( t = 2.73, p = 0.008, d = 0.71). When we expanded t tests to include all 35 comparisons—and, like above, corrected for 35 comparisons—we found a significant difference in inference scores between students who exhibit mastery on question 5 and students who do not ( t = 3.41, p = 0.0012, d = 0.88), as well as a marginally significant difference in these students’ induction scores ( t = 3.26, p = 0.0018, d = 0.84; the Holm-Bonferroni cutoff is p = 0.00147). Cohen’s d effect sizes, which reveal the strength of the differences for statistically significant relationships, range from 0.71 to 0.88.

The t statistics and effect sizes of differences in ­dimensions of CCTST across dimensions of BioTAP a

a In each cell, the top number is the t statistic for each comparison, and the middle, italicized number is the associated p value. The bottom number is the effect size. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

Finally, we more closely examined the strongest relationship that we observed, which was between the CCTST dimension of inference and the BioTAP partial-sum composite score (shown in Table 3 ), using multiple regression analysis ( Table 5 ). Focusing on the 52 students for whom we have background information, we looked at the simple relationship between BioTAP and inference (model 1), a robust background model including multiple covariates that one might expect to explain some part of the variation in BioTAP (model 2), and a combined model including all variables (model 3). As model 3 shows, the covariates explain very little variation in BioTAP scores, and the relationship between inference and BioTAP persists even in the presence of all of the covariates.

Partial sum (questions 1–5) of BioTAP scores ( n = 52)

VariableModel 1Model 2Model 3
CCTST inference0.536***0.491**
Grade point average0.1760.092
Independent study courses−0.0870.001
Writing-intensive courses0.1310.021
Institution0.3290.115
Male0.0850.041
Underrepresented group−0.114−0.060
Adjusted 0.273−0. 0220.195

** p < 0.01.

*** p < 0.001.

The aim of this study was to examine the extent to which the various components of scientific reasoning—manifested in writing in the genre of undergraduate thesis and assessed using BioTAP—draw on general and specific critical-thinking skills (assessed using CCTST) and to consider the implications for educational practices. Although science reasoning involves critical-thinking skills, it also relates to conceptual knowledge and the epistemological foundations of science disciplines ( Kuhn et al. , 2008 ). Moreover, science reasoning in writing , captured in students’ undergraduate theses, reflects habits, conventions, and the incorporation of feedback that may alter evidence of individuals’ critical-thinking skills. Our findings, however, provide empirical evidence that cumulative measures of science reasoning in writing are nonetheless related to students’ overall critical-thinking skills ( Table 3 ). The particularly significant roles of inference skills ( Table 3 ) and the discussion of implications of results (BioTAP question 5; Table 4 ) provide a basis for more specific ideas about how these constructs relate to one another and what educational interventions may have the most success in fostering these skills.

Our results build on previous findings. The genre of thesis writing combines pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). Quitadamo and Kurtz (2007) reported that students who engaged in a laboratory writing component in a general education biology course significantly improved their inference and analysis skills, and Quitadamo and colleagues (2008) found that participation in a community-based inquiry biology course (that included a writing component) was associated with significant gains in students’ inference and evaluation skills. The shared focus on inference is noteworthy, because these prior studies actually differ from the current study; the former considered critical-­thinking skills as the primary learning outcome of writing-­focused interventions, whereas the latter focused on emergent links between two learning outcomes (science reasoning in writing and critical thinking). In other words, inference skills are impacted by writing as well as manifested in writing.

Inference focuses on drawing conclusions from argument and evidence. According to the consensus definition of critical thinking, the specific skill of inference includes several processes: querying evidence, conjecturing alternatives, and drawing conclusions. All of these activities are central to the independent research at the core of writing an undergraduate thesis. Indeed, a critical part of what we call “science reasoning in writing” might be characterized as a measure of students’ ability to infer and make meaning of information and findings. Because the cumulative BioTAP measures distill underlying similarities and, to an extent, suppress unique aspects of individual dimensions, we argue that it is appropriate to relate inference to scientific reasoning in writing . Even when we control for other potentially relevant background characteristics, the relationship is strong ( Table 5 ).

In taking the complementary view and focusing on BioTAP, when we compared students who exhibit mastery with those who do not, we found that the specific dimension of “discussing the implications of results” (question 5) differentiates students’ performance on several critical-thinking skills. To achieve mastery on this dimension, students must make connections between their results and other published studies and discuss the future directions of the research; in short, they must demonstrate an understanding of the bigger picture. The specific relationship between question 5 and inference is the strongest observed among all individual comparisons. Altogether, perhaps more than any other BioTAP dimension, this aspect of students’ writing provides a clear view of the role of students’ critical-thinking skills (particularly inference and, marginally, induction) in science reasoning.

While inference and discussion of implications emerge as particularly strongly related dimensions in this work, we note that the strongest contribution to “science reasoning in writing in biology,” as determined through exploratory factor analysis, is “argument for the significance of research” (BioTAP question 2, not question 5; Dowd et al. , 2016 ). Question 2 is not clearly related to critical-thinking skills. These findings are not contradictory, but rather suggest that the epistemological and disciplinary-specific aspects of science reasoning that emerge in writing through BioTAP are not completely aligned with aspects related to critical thinking. In other words, science reasoning in writing is not simply a proxy for those critical-thinking skills that play a role in science reasoning.

In a similar vein, the content-related, epistemological aspects of science reasoning, as well as the conventions associated with writing the undergraduate thesis (including feedback from peers and revision), may explain the lack of significant relationships between some science reasoning dimensions and some critical-thinking skills that might otherwise seem counterintuitive (e.g., BioTAP question 2, which relates to making an argument, and the critical-thinking skill of argument). It is possible that an individual’s critical-thinking skills may explain some variation in a particular BioTAP dimension, but other aspects of science reasoning and practice exert much stronger influence. Although these relationships do not emerge in our analyses, the lack of significant correlation does not mean that there is definitively no correlation. Correcting for multiple comparisons suppresses type 1 error at the expense of exacerbating type 2 error, which, combined with the limited sample size, constrains statistical power and makes weak relationships more difficult to detect. Ultimately, though, the relationships that do emerge highlight places where individuals’ distinct critical-thinking skills emerge most coherently in thesis assessment, which is why we are particularly interested in unpacking those relationships.

We recognize that, because only honors students submit theses at these institutions, this study sample is composed of a selective subset of the larger population of biology majors. Although this is an inherent limitation of focusing on thesis writing, links between our findings and results of other studies (with different populations) suggest that observed relationships may occur more broadly. The goal of improved science reasoning and critical thinking is shared among all biology majors, particularly those engaged in capstone research experiences. So while the implications of this work most directly apply to honors thesis writers, we provisionally suggest that all students could benefit from further study of them.

There are several important implications of this study for science education practices. Students’ inference skills relate to the understanding and effective application of scientific content. The fact that we find no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions suggests that such mid- to lower-order elements of BioTAP ( Reynolds et al. , 2009 ), which tend to be more structural in nature, do not focus on aspects of the finished thesis that draw strongly on critical thinking. In keeping with prior analyses ( Reynolds and Thompson, 2011 ; Dowd et al. , 2016 ), these findings further reinforce the notion that disciplinary instructors, who are most capable of teaching and assessing scientific reasoning and perhaps least interested in the more mechanical aspects of writing, may nonetheless be best suited to effectively model and assess students’ writing.

The goal of the thesis writing course at both Duke University and the University of Minnesota is not merely to improve thesis scores but to move students’ writing into the category of mastery across BioTAP dimensions. Recognizing that students with differing critical-thinking skills (particularly inference) are more or less likely to achieve mastery in the undergraduate thesis (particularly in discussing implications [question 5]) is important for developing and testing targeted pedagogical interventions to improve learning outcomes for all students.

The competencies characterized by the Vision and Change in Undergraduate Biology Education Initiative provide a general framework for recognizing that science reasoning and critical-thinking skills play key roles in major learning outcomes of science education. Our findings highlight places where science reasoning–related competencies (like “understanding the process of science”) connect to critical-thinking skills and places where critical thinking–related competencies might be manifested in scientific products (such as the ability to discuss implications in scientific writing). We encourage broader efforts to build empirical connections between competencies and pedagogical practices to further improve science education.

One specific implication of this work for science education is to focus on providing opportunities for students to develop their critical-thinking skills (particularly inference). Of course, as this correlational study is not designed to test causality, we do not claim that enhancing students’ inference skills will improve science reasoning in writing. However, as prior work shows that science writing activities influence students’ inference skills ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ), there is reason to test such a hypothesis. Nevertheless, the focus must extend beyond inference as an isolated skill; rather, it is important to relate inference to the foundations of the scientific method ( Miri et al. , 2007 ) in terms of the epistemological appreciation of the functions and coordination of evidence ( Kuhn and Dean, 2004 ; Zeineddin and Abd-El-Khalick, 2010 ; Ding et al. , 2016 ) and disciplinary paradigms of truth and justification ( Moshman, 2015 ).

Although this study is limited to the domain of biology at two institutions with a relatively small number of students, the findings represent a foundational step in the direction of achieving success with more integrated learning outcomes. Hopefully, it will spur greater interest in empirically grounding discussions of the constructs of scientific reasoning and critical-thinking skills.

This study contributes to the efforts to improve science education, for both majors and nonmajors, through an empirically driven analysis of the relationships between scientific reasoning reflected in the genre of thesis writing and critical-thinking skills. This work is rooted in the usefulness of BioTAP as a method 1) to facilitate communication and learning and 2) to assess disciplinary-specific and general dimensions of science reasoning. The findings support the important role of the critical-thinking skill of inference in scientific reasoning in writing, while also highlighting ways in which other aspects of science reasoning (epistemological considerations, writing conventions, etc.) are not significantly related to critical thinking. Future research into the impact of interventions focused on specific critical-thinking skills (i.e., inference) for improved science reasoning in writing will build on this work and its implications for science education.

Supplementary Material

Acknowledgments.

We acknowledge the contributions of Kelaine Haas and Alexander Motten to the implementation and collection of data. We also thank Mine Çetinkaya-­Rundel for her insights regarding our statistical analyses. This research was funded by National Science Foundation award DUE-1525602.

  • American Association for the Advancement of Science. (2011). Vision and change in undergraduate biology education: A call to action . Washington, DC: Retrieved September 26, 2017, from https://visionandchange.org/files/2013/11/aaas-VISchange-web1113.pdf . [ Google Scholar ]
  • August D. (2016). California Critical Thinking Skills Test user manual and resource guide . San Jose: Insight Assessment/California Academic Press. [ Google Scholar ]
  • Beyer C. H., Taylor E., Gillmore G. M. (2013). Inside the undergraduate teaching experience: The University of Washington’s growth in faculty teaching study . Albany, NY: SUNY Press. [ Google Scholar ]
  • Bissell A. N., Lemons P. P. (2006). A new method for assessing critical thinking in the classroom . BioScience , ( 1 ), 66–72. https://doi.org/10.1641/0006-3568(2006)056[0066:ANMFAC]2.0.CO;2 . [ Google Scholar ]
  • Blattner N. H., Frazier C. L. (2002). Developing a performance-based assessment of students’ critical thinking skills . Assessing Writing , ( 1 ), 47–64. [ Google Scholar ]
  • Clase K. L., Gundlach E., Pelaez N. J. (2010). Calibrated peer review for computer-assisted learning of biological research competencies . Biochemistry and Molecular Biology Education , ( 5 ), 290–295. [ PubMed ] [ Google Scholar ]
  • Condon W., Kelly-Riley D. (2004). Assessing and teaching what we value: The relationship between college-level writing and critical thinking abilities . Assessing Writing , ( 1 ), 56–75. https://doi.org/10.1016/j.asw.2004.01.003 . [ Google Scholar ]
  • Ding L., Wei X., Liu X. (2016). Variations in university students’ scientific reasoning skills across majors, years, and types of institutions . Research in Science Education , ( 5 ), 613–632. https://doi.org/10.1007/s11165-015-9473-y . [ Google Scholar ]
  • Dowd J. E., Connolly M. P., Thompson R. J., Jr., Reynolds J. A. (2015a). Improved reasoning in undergraduate writing through structured workshops . Journal of Economic Education , ( 1 ), 14–27. https://doi.org/10.1080/00220485.2014.978924 . [ Google Scholar ]
  • Dowd J. E., Roy C. P., Thompson R. J., Jr., Reynolds J. A. (2015b). “On course” for supporting expanded participation and improving scientific reasoning in undergraduate thesis writing . Journal of Chemical Education , ( 1 ), 39–45. https://doi.org/10.1021/ed500298r . [ Google Scholar ]
  • Dowd J. E., Thompson R. J., Jr., Reynolds J. A. (2016). Quantitative genre analysis of undergraduate theses: Uncovering different ways of writing and thinking in science disciplines . WAC Journal , , 36–51. [ Google Scholar ]
  • Facione P. A. (1990). Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations . Newark, DE: American Philosophical Association; Retrieved September 26, 2017, from https://philpapers.org/archive/FACCTA.pdf . [ Google Scholar ]
  • Gerdeman R. D., Russell A. A., Worden K. J., Gerdeman R. D., Russell A. A., Worden K. J. (2007). Web-based student writing and reviewing in a large biology lecture course . Journal of College Science Teaching , ( 5 ), 46–52. [ Google Scholar ]
  • Greenhoot A. F., Semb G., Colombo J., Schreiber T. (2004). Prior beliefs and methodological concepts in scientific reasoning . Applied Cognitive Psychology , ( 2 ), 203–221. https://doi.org/10.1002/acp.959 . [ Google Scholar ]
  • Haaga D. A. F. (1993). Peer review of term papers in graduate psychology courses . Teaching of Psychology , ( 1 ), 28–32. https://doi.org/10.1207/s15328023top2001_5 . [ Google Scholar ]
  • Halonen J. S., Bosack T., Clay S., McCarthy M., Dunn D. S., Hill G. W., Whitlock K. (2003). A rubric for learning, teaching, and assessing scientific inquiry in psychology . Teaching of Psychology , ( 3 ), 196–208. https://doi.org/10.1207/S15328023TOP3003_01 . [ Google Scholar ]
  • Hand B., Keys C. W. (1999). Inquiry investigation . Science Teacher , ( 4 ), 27–29. [ Google Scholar ]
  • Holm S. (1979). A simple sequentially rejective multiple test procedure . Scandinavian Journal of Statistics , ( 2 ), 65–70. [ Google Scholar ]
  • Holyoak K. J., Morrison R. G. (2005). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press. [ Google Scholar ]
  • Insight Assessment. (2016a). California Critical Thinking Skills Test (CCTST) Retrieved September 26, 2017, from www.insightassessment.com/Products/Products-Summary/Critical-Thinking-Skills-Tests/California-Critical-Thinking-Skills-Test-CCTST .
  • Insight Assessment. (2016b). Sample thinking skills questions. Retrieved September 26, 2017, from www.insightassessment.com/Resources/Teaching-Training-and-Learning-Tools/node_1487 .
  • Kelly G. J., Takao A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing . Science Education , ( 3 ), 314–342. https://doi.org/10.1002/sce.10024 . [ Google Scholar ]
  • Kuhn D., Dean D., Jr. (2004). Connecting scientific reasoning and causal inference . Journal of Cognition and Development , ( 2 ), 261–288. https://doi.org/10.1207/s15327647jcd0502_5 . [ Google Scholar ]
  • Kuhn D., Iordanou K., Pease M., Wirkala C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? . Cognitive Development , ( 4 ), 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006 . [ Google Scholar ]
  • Lawson A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery . Science Education , ( 2 ), 336–364. https://doi.org/­10.1002/sce.20357 . [ Google Scholar ]
  • Meizlish D., LaVaque-Manty D., Silver N., Kaplan M. (2013). Think like/write like: Metacognitive strategies to foster students’ development as disciplinary thinkers and writers . In Thompson R. J. (Ed.), Changing the conversation about higher education (pp. 53–73). Lanham, MD: Rowman & Littlefield. [ Google Scholar ]
  • Miri B., David B.-C., Uri Z. (2007). Purposely teaching for the promotion of higher-order thinking skills: A case of critical thinking . Research in Science Education , ( 4 ), 353–369. https://doi.org/10.1007/s11165-006-9029-2 . [ Google Scholar ]
  • Moshman D. (2015). Epistemic cognition and development: The psychology of justification and truth . New York: Psychology Press. [ Google Scholar ]
  • National Research Council. (2000). How people learn: Brain, mind, experience, and school . Expanded ed. Washington, DC: National Academies Press. [ Google Scholar ]
  • Pukkila P. J. (2004). Introducing student inquiry in large introductory genetics classes . Genetics , ( 1 ), 11–18. https://doi.org/10.1534/genetics.166.1.11 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Quitadamo I. J., Faiola C. L., Johnson J. E., Kurtz M. J. (2008). Community-based inquiry improves critical thinking in general education biology . CBE—Life Sciences Education , ( 3 ), 327–337. https://doi.org/10.1187/cbe.07-11-0097 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Quitadamo I. J., Kurtz M. J. (2007). Learning to improve: Using writing to increase critical thinking performance in general education biology . CBE—Life Sciences Education , ( 2 ), 140–154. https://doi.org/10.1187/cbe.06-11-0203 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds J. A., Smith R., Moskovitz C., Sayle A. (2009). BioTAP: A systematic approach to teaching scientific writing and evaluating undergraduate theses . BioScience , ( 10 ), 896–903. https://doi.org/10.1525/bio.2009.59.10.11 . [ Google Scholar ]
  • Reynolds J. A., Thaiss C., Katkin W., Thompson R. J. (2012). Writing-to-learn in undergraduate science education: A community-based, conceptually driven approach . CBE—Life Sciences Education , ( 1 ), 17–25. https://doi.org/10.1187/cbe.11-08-0064 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds J. A., Thompson R. J. (2011). Want to improve undergraduate thesis writing? Engage students and their faculty readers in scientific peer review . CBE—Life Sciences Education , ( 2 ), 209–215. https://doi.org/­10.1187/cbe.10-10-0127 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rhemtulla M., Brosseau-Liard P. E., Savalei V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions . Psychological Methods , ( 3 ), 354–373. https://doi.org/­10.1037/a0029315 . [ PubMed ] [ Google Scholar ]
  • Stephenson N. S., Sadler-McKnight N. P. (2016). Developing critical thinking skills using the science writing heuristic in the chemistry laboratory . Chemistry Education Research and Practice , ( 1 ), 72–79. https://doi.org/­10.1039/C5RP00102A . [ Google Scholar ]
  • Tariq V. N., Stefani L. A. J., Butcher A. C., Heylings D. J. A. (1998). Developing a new approach to the assessment of project work . Assessment and Evaluation in Higher Education , ( 3 ), 221–240. https://doi.org/­10.1080/0260293980230301 . [ Google Scholar ]
  • Timmerman B. E. C., Strickland D. C., Johnson R. L., Payne J. R. (2011). Development of a “universal” rubric for assessing undergraduates’ scientific reasoning skills using scientific writing . Assessment and Evaluation in Higher Education , ( 5 ), 509–547. https://doi.org/10.1080/­02602930903540991 . [ Google Scholar ]
  • Topping K. J., Smith E. F., Swanson I., Elliot A. (2000). Formative peer assessment of academic writing between postgraduate students . Assessment and Evaluation in Higher Education , ( 2 ), 149–169. https://doi.org/10.1080/713611428 . [ Google Scholar ]
  • Willison J., O’Regan K. (2007). Commonly known, commonly not known, totally unknown: A framework for students becoming researchers . Higher Education Research and Development , ( 4 ), 393–409. https://doi.org/10.1080/07294360701658609 . [ Google Scholar ]
  • Woodin T., Carter V. C., Fletcher L. (2010). Vision and Change in Biology Undergraduate Education: A Call for Action—Initial responses . CBE—Life Sciences Education , ( 2 ), 71–73. https://doi.org/10.1187/cbe.10-03-0044 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Zeineddin A., Abd-El-Khalick F. (2010). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science students . Journal of Research in Science Teaching , ( 9 ), 1064–1093. https://doi.org/10.1002/tea.20368 . [ Google Scholar ]
  • Zimmerman C. (2000). The development of scientific reasoning skills . Developmental Review , ( 1 ), 99–149. https://doi.org/10.1006/drev.1999.0497 . [ Google Scholar ]
  • Zimmerman C. (2007). The development of scientific thinking skills in elementary and middle school . Developmental Review , ( 2 ), 172–223. https://doi.org/10.1016/j.dr.2006.12.001 . [ Google Scholar ]

why is critical thinking so important for the progress of science

3. Critical Thinking in Science: How to Foster Scientific Reasoning Skills

Critical thinking in science is important largely because a lot of students have developed expectations about science that can prove to be counter-productive. 

After various experiences — both in school and out — students often perceive science to be primarily about learning “authoritative” content knowledge: this is how the solar system works; that is how diffusion works; this is the right answer and that is not. 

This perception allows little room for critical thinking in science, in spite of the fact that argument, reasoning, and critical thinking lie at the very core of scientific practice.

Argument, reasoning, and critical thinking lie at the very core of scientific practice.

why is critical thinking so important for the progress of science

In this article, we outline two of the best approaches to be most effective in fostering scientific reasoning. Both try to put students in a scientist’s frame of mind more than is typical in science education:

  • First, we look at  small-group inquiry , where students formulate questions and investigate them in small groups. This approach is geared more toward younger students but has applications at higher levels too.
  • We also look  science   labs . Too often, science labs too often involve students simply following recipes or replicating standard results. Here, we offer tips to turn labs into spaces for independent inquiry and scientific reasoning.

why is critical thinking so important for the progress of science

I. Critical Thinking in Science and Scientific Inquiry

Even very young students can “think scientifically” under the right instructional support. A series of experiments , for instance, established that preschoolers can make statistically valid inferences about unknown variables. Through observation they are also capable of distinguishing actions that cause certain outcomes from actions that don’t. These innate capacities, however, have to be developed for students to grow up into rigorous scientific critical thinkers. 

Even very young students can “think scientifically” under the right instructional support.

Although there are many techniques to get young children involved in scientific inquiry — encouraging them to ask and answer “why” questions, for instance — teachers can provide structured scientific inquiry experiences that are deeper than students can experience on their own. 

Goals for Teaching Critical Thinking Through Scientific Inquiry

When it comes to teaching critical thinking via science, the learning goals may vary, but students should learn that:

  • Failure to agree is okay, as long as you have reasons for why you disagree about something.
  • The logic of scientific inquiry is iterative. Scientists always have to consider how they might improve your methods next time. This includes addressing sources of uncertainty.
  • Claims to knowledge usually require multiple lines of evidence and a “match” or “fit” between our explanations and the evidence we have.
  • Collaboration, argument, and discussion are central features of scientific reasoning.
  • Visualization, analysis, and presentation are central features of scientific reasoning.
  • Overarching concepts in scientific practice — such as uncertainty, measurement, and meaningful experimental contrasts — manifest themselves somewhat differently in different scientific domains.

How to Teaching Critical Thinking in Science Via Inquiry

Sometimes we think of science education as being either a “direct” approach, where we tell students about a concept, or an “inquiry-based” approach, where students explore a concept themselves.  

But, especially, at the earliest grades, integrating both approaches can inform students of their options (i.e., generate and extend their ideas), while also letting students make decisions about what to do.

Like a lot of projects targeting critical thinking, limited classroom time is a challenge. Although the latest content standards, such as the Next Generation Science Standards , emphasize teaching scientific practices, many standardized tests still emphasize assessing scientific content knowledge.

The concept of uncertainty comes up in every scientific domain.

Creating a lesson that targets the right content is also an important aspect of developing authentic scientific experiences. It’s now more  widely acknowledged  that effective science instruction involves the interaction between domain-specific knowledge and domain-general knowledge, and that linking an inquiry experience to appropriate target content is vital.

For instance, the concept of uncertainty  comes up  in every scientific domain. But the sources of uncertainty coming from any given measurement vary tremendously by discipline. It requires content knowledge to know how to wisely apply the concept of uncertainty.

Tips and Challenges for teaching critical thinking in science

Teachers need to grapple with student misconceptions. Student intuition about how the world works — the way living things grow and behave, the way that objects fall and interact — often conflicts with scientific explanations. As part of the inquiry experience, teachers can help students to articulate these intuitions and revise them through argument and evidence.

Group composition is another challenge. Teachers will want to avoid situations where one member of the group will simply “take charge” of the decision-making, while other member(s) disengage. In some cases, grouping students by current ability level can make the group work more productive. 

Another approach is to establish group norms that help prevent unproductive group interactions. A third tactic is to have each group member learn an essential piece of the puzzle prior to the group work, so that each member is bringing something valuable to the table (which other group members don’t yet know).

It’s critical to ask students about how certain they are in their observations and explanations and what they could do better next time. When disagreements arise about what to do next or how to interpret evidence, the instructor should model good scientific practice by, for instance, getting students to think about what kind of evidence would help resolve the disagreement or whether there’s a compromise that might satisfy both groups.

The subjects of the inquiry experience and the tools at students’ disposal will depend upon the class and the grade level. Older students may be asked to create mathematical models, more sophisticated visualizations, and give fuller presentations of their results.

Lesson Plan Outline

This lesson plan takes a small-group inquiry approach to critical thinking in science. It asks students to collaboratively explore a scientific question, or perhaps a series of related questions, within a scientific domain.

Suppose students are exploring insect behavior. Groups may decide what questions to ask about insect behavior; how to observe, define, and record insect behavior; how to design an experiment that generates evidence related to their research questions; and how to interpret and present their results.

An in-depth inquiry experience usually takes place over the course of several classroom sessions, and includes classroom-wide instruction, small-group work, and potentially some individual work as well.

Students, especially younger students, will typically need some background knowledge that can inform more independent decision-making. So providing classroom-wide instruction and discussion before individual group work is a good idea.

For instance, Kathleen Metz had students observe insect behavior, explore the anatomy of insects, draw habitat maps, and collaboratively formulate (and categorize) research questions before students began to work more independently.

The subjects of a science inquiry experience can vary tremendously: local weather patterns, plant growth, pollution, bridge-building. The point is to engage students in multiple aspects of scientific practice: observing, formulating research questions, making predictions, gathering data, analyzing and interpreting data, refining and iterating the process.

As student groups take responsibility for their own investigation, teachers act as facilitators. They can circulate around the room, providing advice and guidance to individual groups. If classroom-wide misconceptions arise, they can pause group work to address those misconceptions directly and re-orient the class toward a more productive way of thinking.

Throughout the process, teachers can also ask questions like:

  • What are your assumptions about what’s going on? How can you check your assumptions?
  • Suppose that your results show X, what would you conclude?
  • If you had to do the process over again, what would you change? Why?

why is critical thinking so important for the progress of science

II. Rethinking Science Labs

Beyond changing how students approach scientific inquiry, we also need to rethink science labs. After all, science lab activities are ubiquitous in science classrooms and they are a great opportunity to teach critical thinking skills.

Often, however, science labs are merely recipes that students follow to verify standard values (such as the force of acceleration due to gravity) or relationships between variables (such as the relationship between force, mass, and acceleration) known to the students beforehand. 

This approach does not usually involve critical thinking: students are not making many decisions during the process, and they do not reflect on what they’ve done except to see whether their experimental data matches the expected values.

With some small tweaks, however, science labs can involve more critical thinking. Science lab activities that give students not only the opportunity to design, analyze, and interpret the experiment, but re -design, re -analyze, and re -interpret the experiment provides ample opportunity for grappling with evidence and evidence-model relationships, particularly if students don’t know what answer they should be expecting beforehand.

Such activities improve scientific reasoning skills, such as: 

  • Evaluating quantitative data
  • Plausible scientific explanations for observed patterns

And also broader critical thinking skills, like:

  • Comparing models to data, and comparing models to each other
  • Thinking about what kind of evidence supports one model or another
  • Being open to changing your beliefs based on evidence

Traditional science lab experiences bear little resemblance to actual scientific practice. Actual practice  involves  decision-making under uncertainty, trial-and-error, tweaking experimental methods over time, testing instruments, and resolving conflicts among different kinds of evidence. Traditional in-school science labs rarely involve these things.

Traditional science lab experiences bear little resemblance to actual scientific practice.

When teachers use science labs as opportunities to engage students in the kinds of dilemmas that scientists actually face during research, students make more decisions and exhibit more sophisticated reasoning.

In the lesson plan below, students are asked to evaluate two models of drag forces on a falling object. One model assumes that drag increases linearly with the velocity of the falling object. Another model assumes that drag increases quadratically (e.g., with the square of the velocity).  Students use a motion detector and computer software to create a plot of the position of a disposable paper coffee filter as it falls to the ground. Among other variables, students can vary the number of coffee filters they drop at once, the height at which they drop them, how they drop  them, and how they clean their data. This is an approach to scaffolding critical thinking: a way to get students to ask the right kinds of questions and think in the way that scientists tend to think.

Design an experiment to test which model best characterizes the motion of the coffee filters. 

Things to think about in your design:

  • What are the relevant variables to control and which ones do you need to explore?
  • What are some logistical issues associated with the data collection that may cause unnecessary variability (either random or systematic) or mistakes?
  • How can you control or measure these?
  • What ways can you graph your data and which ones will help you figure out which model better describes your data?

Discuss your design with other groups and modify as you see fit.

Initial data collection

Conduct a quick trial-run of your experiment so that you can evaluate your methods.

  • Do your graphs provide evidence of which model is the best?
  • What ways can you improve your methods, data, or graphs to make your case more convincing?
  • Do you need to change how you’re collecting data?
  • Do you need to take data at different regions?
  • Do you just need more data?
  • Do you need to reduce your uncertainty?

After this initial evaluation of your data and methods, conduct the desired improvements, changes, or additions and re-evaluate at the end.

In your lab notes, make sure to keep track of your progress and process as you go. As always, your final product is less important than how you get there.

How to Make Science Labs Run Smoothly

Managing student expectations . As with many other lesson plans that incorporate critical thinking, students are not used to having so much freedom. As with the example lesson plan above, it’s important to scaffold student decision-making by pointing out what decisions have to be made, especially as students are transitioning to this approach.

Supporting student reasoning . Another challenge is to provide guidance to student groups without telling them how to do something. Too much “telling” diminishes student decision-making, but not enough support may leave students simply not knowing what to do. 

There are several key strategies teachers can try out here: 

  • Point out an issue with their data collection process without specifying exactly how to solve it.
  • Ask a lab group how they would improve their approach.
  • Ask two groups with conflicting results to compare their results, methods, and analyses.

Download our Teachers’ Guide

(please click here)

Sources and Resources

Lehrer, R., & Schauble, L. (2007). Scientific thinking and scientific literacy . Handbook of child psychology , Vol. 4. Wiley. A review of research on scientific thinking and experiments on teaching scientific thinking in the classroom.

Metz, K. (2004). Children’s understanding of scientific inquiry: Their conceptualizations of uncertainty in investigations of their own design . Cognition and Instruction 22(2). An example of a scientific inquiry experience for elementary school students.

The Next Generation Science Standards . The latest U.S. science content standards.

Concepts of Evidence A collection of important concepts related to evidence that cut across scientific disciplines.

Scienceblind A book about children’s science misconceptions and how to correct them.

Holmes, N. G., Keep, B., & Wieman, C. E. (2020). Developing scientific decision making by structuring and supporting student agency. Physical Review Physics Education Research , 16 (1), 010109. A research study on minimally altering traditional lab approaches to incorporate more critical thinking. The drag example was taken from this piece.

ISLE , led by E. Etkina.  A platform that helps teachers incorporate more critical thinking in physics labs.

Holmes, N. G., Wieman, C. E., & Bonn, D. A. (2015). Teaching critical thinking . Proceedings of the National Academy of Sciences , 112 (36), 11199-11204. An approach to improving critical thinking and reflection in science labs. Walker, J. P., Sampson, V., Grooms, J., Anderson, B., & Zimmerman, C. O. (2012). Argument-driven inquiry in undergraduate chemistry labs: The impact on students’ conceptual understanding, argument skills, and attitudes toward science . Journal of College Science Teaching , 41 (4), 74-81. A large-scale research study on transforming chemistry labs to be more inquiry-based.

Privacy Overview

Science and the Spectrum of Critical Thinking

  • First Online: 02 January 2023

Cite this chapter

why is critical thinking so important for the progress of science

  • Jeffrey Scheuer 3  

Part of the book series: Integrated Science ((IS,volume 12))

1057 Accesses

1 Citations

Since the nineteenth century, the scientific method has crystallized as the embodiment of scientific inquiry. But this paradigm of rigor is not confined to the natural sciences, and it has contributed to a sense of scientific “exceptionalism,” which obscures the deep connections between scientific and other kinds of thought. The scientific method has also indirectly given rise to the complex and contested idea of “critical thinking.” Both the scientific method and critical thinking are applications of logic and related forms of rationality that date to the Ancient Greeks. The full spectrum of critical/rational thinking includes logic, informal logic, and systemic or analytic thinking. This common core is shared by the natural sciences and other domains of inquiry share, and it is based on following rules, reasons, and intellectual best practices.

Graphical Abstract/Art Performance

why is critical thinking so important for the progress of science

The spectrum of critical thinking.

The term ‘critical thinking ’ is a bit like the Euro: a form of currency that not long ago many were eager to adopt but that has proven troublesome to maintain. And in both cases, the Greeks bear an outsized portion of the blame. Peter Wood [ 1 ]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

why is critical thinking so important for the progress of science

Introduction: What Is Critical Theory?

why is critical thinking so important for the progress of science

Brief Presentation of the Contributions

why is critical thinking so important for the progress of science

The Scientific Method

Wood P (2012) Some critical thoughts. Chronicle of higher education. chronicle.com/blogs/innovations/some-critical-thoughts/31252/ .

Lepore J (2016) After the fact: in the history of truth, a new chapter begins. The New Yorker, 21 Mar 21, pp 91–94

Google Scholar  

Wrightstone JW (1938) Test of critical thinking in the social studies. Bureau of Publications, Teachers College, Columbia University

Novaes CD (2017) What is logic? https://aeon.co/essays/the-rise-and-fall-and-rise-of-logic . Accessed Jan 12, 2017

Williams B (2006) Philosophy as a humanistic discipline

Ferry L (2011) A brief history of thought

Ennis RH (1964) A definition of critical thinking. Read Teach 17(8):599–612

Dobelli R (2013) The art of thinking clearly: better thinking, better decisions. Hachette UK

Phillips DZ (1979) Is moral education really necessary? Br J Educ Stud 27(1):42–56

Article   Google Scholar  

Kuprenas J, Frederick M (2013) 101 things I learned in engineering school

Grudin R (1997) Time and the art of living. Houghton Mifflin Harcourt

Bambrough JR (1965) Aristotle on justice: a paradigm of philosophy. In: Bambrough JR (ed) New essays on plato and Aristotle, pp 162–165

Download references

Author information

Authors and affiliations.

56 West 10th Street, New York, NY, 10011, USA

Jeffrey Scheuer

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Jeffrey Scheuer .

Editor information

Editors and affiliations.

Universal Scientific Education and Research Network (USERN), Stockholm, Sweden

Nima Rezaei

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Scheuer, J. (2023). Science and the Spectrum of Critical Thinking. In: Rezaei, N. (eds) Brain, Decision Making and Mental Health. Integrated Science, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-031-15959-6_3

Download citation

DOI : https://doi.org/10.1007/978-3-031-15959-6_3

Published : 02 January 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-15958-9

Online ISBN : 978-3-031-15959-6

eBook Packages : Behavioral Science and Psychology Behavioral Science and Psychology (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

What Are Critical Thinking Skills and Why Are They Important?

Learn what critical thinking skills are, why they’re important, and how to develop and apply them in your workplace and everyday life.

[Featured Image]:  Project Manager, approaching  and analyzing the latest project with a team member,

We often use critical thinking skills without even realizing it. When you make a decision, such as which cereal to eat for breakfast, you're using critical thinking to determine the best option for you that day.

Critical thinking is like a muscle that can be exercised and built over time. It is a skill that can help propel your career to new heights. You'll be able to solve workplace issues, use trial and error to troubleshoot ideas, and more.

We'll take you through what it is and some examples so you can begin your journey in mastering this skill.

What is critical thinking?

Critical thinking is the ability to interpret, evaluate, and analyze facts and information that are available, to form a judgment or decide if something is right or wrong.

More than just being curious about the world around you, critical thinkers make connections between logical ideas to see the bigger picture. Building your critical thinking skills means being able to advocate your ideas and opinions, present them in a logical fashion, and make decisions for improvement.

Coursera Plus

Build job-ready skills with a Coursera Plus subscription

  • Get access to 7,000+ learning programs from world-class universities and companies, including Google, Yale, Salesforce, and more
  • Try different courses and find your best fit at no additional cost
  • Earn certificates for learning programs you complete
  • A subscription price of $59/month, cancel anytime

Why is critical thinking important?

Critical thinking is useful in many areas of your life, including your career. It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice.

According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]:

Crucial for the economy

Essential for improving language and presentation skills

Very helpful in promoting creativity

Important for self-reflection

The basis of science and democracy 

Critical thinking skills are used every day in a myriad of ways and can be applied to situations such as a CEO approaching a group project or a nurse deciding in which order to treat their patients.

Examples of common critical thinking skills

Critical thinking skills differ from individual to individual and are utilized in various ways. Examples of common critical thinking skills include:

Identification of biases: Identifying biases means knowing there are certain people or things that may have an unfair prejudice or influence on the situation at hand. Pointing out these biases helps to remove them from contention when it comes to solving the problem and allows you to see things from a different perspective.

Research: Researching details and facts allows you to be prepared when presenting your information to people. You’ll know exactly what you’re talking about due to the time you’ve spent with the subject material, and you’ll be well-spoken and know what questions to ask to gain more knowledge. When researching, always use credible sources and factual information.

Open-mindedness: Being open-minded when having a conversation or participating in a group activity is crucial to success. Dismissing someone else’s ideas before you’ve heard them will inhibit you from progressing to a solution, and will often create animosity. If you truly want to solve a problem, you need to be willing to hear everyone’s opinions and ideas if you want them to hear yours.

Analysis: Analyzing your research will lead to you having a better understanding of the things you’ve heard and read. As a true critical thinker, you’ll want to seek out the truth and get to the source of issues. It’s important to avoid taking things at face value and always dig deeper.

Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there’s a problem that needs solving. By determining the issue at hand, you can then analyze it and come up with several potential solutions.

How to develop critical thinking skills

You can develop critical thinking skills every day if you approach problems in a logical manner. Here are a few ways you can start your path to improvement:

1. Ask questions.

Be inquisitive about everything. Maintain a neutral perspective and develop a natural curiosity, so you can ask questions that develop your understanding of the situation or task at hand. The more details, facts, and information you have, the better informed you are to make decisions.

2. Practice active listening.

Utilize active listening techniques, which are founded in empathy, to really listen to what the other person is saying. Critical thinking, in part, is the cognitive process of reading the situation: the words coming out of their mouth, their body language, their reactions to your own words. Then, you might paraphrase to clarify what they're saying, so both of you agree you're on the same page.

3. Develop your logic and reasoning.

This is perhaps a more abstract task that requires practice and long-term development. However, think of a schoolteacher assessing the classroom to determine how to energize the lesson. There's options such as playing a game, watching a video, or challenging the students with a reward system. Using logic, you might decide that the reward system will take up too much time and is not an immediate fix. A video is not exactly relevant at this time. So, the teacher decides to play a simple word association game.

Scenarios like this happen every day, so next time, you can be more aware of what will work and what won't. Over time, developing your logic and reasoning will strengthen your critical thinking skills.

Learn tips and tricks on how to become a better critical thinker and problem solver through online courses from notable educational institutions on Coursera. Start with Introduction to Logic and Critical Thinking from Duke University or Mindware: Critical Thinking for the Information Age from the University of Michigan.

Article sources

University of the People, “ Why is Critical Thinking Important?: A Survival Guide , https://www.uopeople.edu/blog/why-is-critical-thinking-important/.” Accessed May 18, 2023.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

Advertisement

Leader and Life

Critical thinking is needed throughout life, not just in science.

We define scientific literacy too narrowly: the tools of science are applicable to everything from economics to terrorism

9 December 2015

New Scientist Default Image

(Image: Claire Cocano/Picturetank)

HERE’S a game to play next time you catch the news headlines. Count how many would dissolve away or be markedly different if the people writing them had evaluated the evidence more critically. Your count will probably be alarmingly high.

We have a long tradition of allowing civic affairs to be settled by persuasive rhetoric. That is inadequate for our modern society. Science and technology shape our world and, as a society, we need to make well-reasoned and scientifically literate choices about everything from genetic engineering to geoengineering.

“Using rhetoric to settle civic affairs is inadequate for running our modern society”

But many of the tools used to make science-heavy decisions are also needed to properly evaluate a much broader range of subjects: in particular, critical thinking and numerical analysis. A basic grasp of statistics and probability, for instance, is key to judging the risk from terrorism, say, or how to invest your money (see “ How to outsmart your irrational brain “).

But the desired combination of scientific literacy and critical thinking remains rare in public discourse. Perhaps that is because we hope children will learn to evaluate claims rationally if we teach them science. That works for some, but all too often the reaction is: “I’ll never need to use this once I’ve left school.”

That’s being taken up by the Programme for International Student Assessment. The PISA tests, which attempt to compare student performance around the world, are always controversial, but their central concern is sound: “What is important for citizens to know and be able to do?” This year, they are focused on the scientific literacy of 15-year-olds from more than 70 states and regions around the world. But then what exactly is scientific literacy?

PISA’s lengthy definition begins with “an individual’s scientific knowledge and use of that knowledge to identify questions” and ends with “willingness to engage in science-related issues, and with the issues of science, as a reflective citizen”.

We have made progress on the first part of this definition. In 1996, a survey found that more than half of the US population didn’t know Earth orbits the sun; few even knew what that might mean. But more recent polls suggest that US scientific literacy has improved greatly. A Pew survey released in September concluded that “most Americans can answer basic questions about several scientific terms and concepts”: that Earth’s core is its hottest part, for example, or that uranium is needed for nuclear energy and weapons.

But mastery of facts alone is not enough for the internet age. Much of the copious online rhetoric is more viral than factual, so it is just as important that we know how to evaluate sources of information, and how to tell correlation from causation, and opinion from fact – in matters both obviously scientific and otherwise.

This is where we’re falling short of the tail end of PISA’s definition. Kids who don’t see the point of science often lack chances to hone their critical thinking toolkits, particularly their numerical sides. And textbook knowledge doesn’t translate easily to practice: cell biology can seem very remote when deciding who’s really worth listening to about vaccination.

This shortfall is being addressed: in UK schools, for example, the Twenty First Century Science GCSE module covers issues of relevance to everyone, whatever their scientific ambitions (or lack of them). But our societies still have a long way to go when it comes to reading between the headlines – or rewriting them.

This article appeared in print under the headline “Critical thinking”

  • psychology /

Sign up to our weekly newsletter

Receive a weekly dose of discovery in your inbox! We'll also keep you up to date with New Scientist events and special offers.

More from New Scientist

Explore the latest news, articles and features

Tiny brain sensor implanted without surgery dissolves after weeks

Why excessive positivity is bad for your health and mental well-being.

Subscriber-only

Chicks link shapes with 'bouba' and 'kiki' sounds just like humans

These scientific rules of connection can supercharge your social life, popular articles.

Trending New Scientist articles

Nichols College

Critical Thinking & Why It’s So Important

Critical thinking is a cognitive skill with the power to unlock the full potential of your mind. In today’s rapidly evolving society, where information is abundant but discerning its validity is becoming increasingly challenging, the art of critical thinking has never been more crucial.

At Nichols College, we believe that cultivating strong critical thinking abilities is not just a pursuit for the academically inclined, but a fundamental necessity for individuals across all walks of life. Join us as we explore the significance of critical thinking and the remarkable impact it can have on your decision-making, problem-solving, and overall cognitive prowess.

Discover why our Graduate Certificate program in Advanced Critical Thinking and Decision Making is your gateway to becoming a perceptive and adept thinker, ready to tackle the complex challenges of today’s world with confidence and ingenuity.

What is critical thinking?

Critical thinking is a fundamental skill that allows individuals to analyze, evaluate, and interpret information objectively and rationally. It goes beyond merely accepting information at face value; instead, critical thinkers are equipped to delve deeper, question assumptions, and explore various perspectives before arriving at well-informed conclusions. This ability to think critically is highly valued across various domains, including education, business, and everyday life.

Benefits of using critical thinking

The countless advantages of critical thinking extend far beyond the realms of academia. For starters, critical thinking fosters superior decision-making by equipping individuals with the tools to weigh options, assess consequences, and arrive at better choices. Critical thinkers also benefit from heightened self-reflection, gaining a profound understanding of their own biases and areas for improvement.

Critical thinkers become well-informed individuals who can navigate the sea of information with discernment, adeptly identifying misinformation and unreliable sources. Furthermore, this invaluable skill enables creative problem-solving, allowing thinkers to craft innovative solutions to intricate challenges. Some of the most important benefits of using critical thinking include:

Better decision making

Critical thinkers excel at weighing pros and cons, considering alternatives, and anticipating potential consequences. This leads to more informed and effective decision-making processes, both in personal and professional realms.

Better self-reflection

By fostering a habit of introspection, critical thinkers become more self-aware, recognizing their own biases and limitations. This heightened self-awareness allows them to continually improve and adapt their thinking patterns.

Being well-informed

Critical thinkers actively seek out diverse sources of information, ensuring they have a comprehensive understanding of complex issues. This empowers them to engage in meaningful discussions and contribute constructively to their communities.

The ability to identify misinformation

In a world filled with misinformation, critical thinkers possess the skills to discern fact from fiction. They scrutinize sources, verify information, and avoid being misled by deceptive content.

Building creative problem solving skills

Critical thinking encourages innovative and outside-the-box problem-solving approaches. By considering multiple angles and challenging conventional ideas, critical thinkers arrive at inventive solutions to complex challenges.

What skills do critical thinkers have?

Critical thinkers possess a remarkable set of skills that elevate their cognitive abilities and enable them to approach complex issues with acuity. Embracing these skills empowers them to tackle challenges, unravel complexities, and make meaningful insights and well-informed decisions. Some of the most valuable skills critical thinkers have include:

Critical thinkers have a natural inclination to ask questions and explore topics in-depth. Their thirst for knowledge drives them to seek out answers and continually expand their understanding.

Proficient in conducting thorough research, critical thinkers gather information from reliable sources and assess its validity. They are skilled at distinguishing credible data from biased or unsubstantiated claims.

Pattern recognition

Critical thinkers recognize recurring patterns and connections between seemingly unrelated pieces of information. This allows them to draw meaningful insights and make well-founded predictions.

Bias identification

Having honed the ability to identify biases, critical thinkers remain open-minded and impartial in their assessments. They acknowledge their own biases and strive to approach each situation objectively.

How to use critical thinking skills in the workplace

In any work environment, critical thinking is a valuable asset that can enhance productivity and foster a more innovative and collaborative workplace. Employees with strong critical thinking skills contribute to problem-solving sessions, provide constructive feedback, and make informed decisions based on thorough analysis. By promoting critical thinking, organizations encourage employees to challenge assumptions, seek out novel solutions, and contribute to the overall growth and success of the company.

Examples of good critical thinking in action

The real-world application of critical thinking can be awe-inspiring, as it empowers individuals to approach various scenarios with astute judgment and creativity. In the business realm and with regard to project management, critical thinkers demonstrate their prowess by:

  • Analyzing Market Trends : A marketing professional employs critical thinking skills to assess market trends, consumer behavior, and competitor strategies before devising a successful marketing campaign that aligns with the target audience’s needs.
  • Problem-Solving in Project Management : A project manager utilizes critical thinking to identify potential roadblocks, consider alternative approaches, and ensure projects are executed efficiently and within budget.

Furthermore, critical thinkers shine in scientific research, meticulously evaluating data, and drawing evidence-based conclusions that contribute to groundbreaking discoveries. In everyday life, they navigate the digital landscape with discernment, identifying misinformation and making informed decisions about their health, finances, and general well-being. These examples illustrate the power of critical thinking to transform not only individual lives but also entire industries, making it an indispensable skill in the pursuit of success and progress.

Get a critical thinking graduate certificate from Nichols College

If you are eager to enhance your problem-solving abilities, decision-making processes, and overall cognitive skills, the Nichols College graduate certificate in critical thinking may be right for you. Designed to equip individuals with the necessary tools to excel in today’s complex world, this program will empower you to think critically, analyze data effectively, and approach challenges with creativity and confidence. Elevate your potential and join Nichols College in cultivating a new generation of sharp-minded leaders, ready to make a positive impact on the world. Enroll in the Advanced Critical Thinking and Decision Making certificate program today and unlock a brighter future for yourself and your community.

why is critical thinking so important for the progress of science

  • Master of Science in Counterterrorism
  • Critical Thinking Certificate
  • Career Paths
  • Financial Aid
  • Request Information

why is critical thinking so important for the progress of science

University of the People Logo

Tips for Online Students , Tips for Students

Why Is Critical Thinking Important? A Survival Guide

Updated: December 7, 2023

Published: April 2, 2020

Why-Is-Critical-Thinking-Important-a-Survival-Guide

Why is critical thinking important? The decisions that you make affect your quality of life. And if you want to ensure that you live your best, most successful and happy life, you’re going to want to make conscious choices. That can be done with a simple thing known as critical thinking. Here’s how to improve your critical thinking skills and make decisions that you won’t regret.

What Is Critical Thinking?

You’ve surely heard of critical thinking, but you might not be entirely sure what it really means, and that’s because there are many definitions. For the most part, however, we think of critical thinking as the process of analyzing facts in order to form a judgment. Basically, it’s thinking about thinking.

How Has The Definition Evolved Over Time?

The first time critical thinking was documented is believed to be in the teachings of Socrates , recorded by Plato. But throughout history, the definition has changed.

Today it is best understood by philosophers and psychologists and it’s believed to be a highly complex concept. Some insightful modern-day critical thinking definitions include :

  • “Reasonable, reflective thinking that is focused on deciding what to believe or do.”
  • “Deciding what’s true and what you should do.”

The Importance Of Critical Thinking

Why is critical thinking important? Good question! Here are a few undeniable reasons why it’s crucial to have these skills.

1. Critical Thinking Is Universal

Critical thinking is a domain-general thinking skill. What does this mean? It means that no matter what path or profession you pursue, these skills will always be relevant and will always be beneficial to your success. They are not specific to any field.

2. Crucial For The Economy

Our future depends on technology, information, and innovation. Critical thinking is needed for our fast-growing economies, to solve problems as quickly and as effectively as possible.

3. Improves Language & Presentation Skills

In order to best express ourselves, we need to know how to think clearly and systematically — meaning practice critical thinking! Critical thinking also means knowing how to break down texts, and in turn, improve our ability to comprehend.

4. Promotes Creativity

By practicing critical thinking, we are allowing ourselves not only to solve problems but also to come up with new and creative ideas to do so. Critical thinking allows us to analyze these ideas and adjust them accordingly.

5. Important For Self-Reflection

Without critical thinking, how can we really live a meaningful life? We need this skill to self-reflect and justify our ways of life and opinions. Critical thinking provides us with the tools to evaluate ourselves in the way that we need to.

Woman deep into thought as she looks out the window, using her critical thinking skills to do some self-reflection.

6. The Basis Of Science & Democracy

In order to have a democracy and to prove scientific facts, we need critical thinking in the world. Theories must be backed up with knowledge. In order for a society to effectively function, its citizens need to establish opinions about what’s right and wrong (by using critical thinking!).

Benefits Of Critical Thinking

We know that critical thinking is good for society as a whole, but what are some benefits of critical thinking on an individual level? Why is critical thinking important for us?

1. Key For Career Success

Critical thinking is crucial for many career paths. Not just for scientists, but lawyers , doctors, reporters, engineers , accountants, and analysts (among many others) all have to use critical thinking in their positions. In fact, according to the World Economic Forum, critical thinking is one of the most desirable skills to have in the workforce, as it helps analyze information, think outside the box, solve problems with innovative solutions, and plan systematically.

2. Better Decision Making

There’s no doubt about it — critical thinkers make the best choices. Critical thinking helps us deal with everyday problems as they come our way, and very often this thought process is even done subconsciously. It helps us think independently and trust our gut feeling.

3. Can Make You Happier!

While this often goes unnoticed, being in touch with yourself and having a deep understanding of why you think the way you think can really make you happier. Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life.

4. Form Well-Informed Opinions

There is no shortage of information coming at us from all angles. And that’s exactly why we need to use our critical thinking skills and decide for ourselves what to believe. Critical thinking allows us to ensure that our opinions are based on the facts, and help us sort through all that extra noise.

5. Better Citizens

One of the most inspiring critical thinking quotes is by former US president Thomas Jefferson: “An educated citizenry is a vital requisite for our survival as a free people.” What Jefferson is stressing to us here is that critical thinkers make better citizens, as they are able to see the entire picture without getting sucked into biases and propaganda.

6. Improves Relationships

While you may be convinced that being a critical thinker is bound to cause you problems in relationships, this really couldn’t be less true! Being a critical thinker can allow you to better understand the perspective of others, and can help you become more open-minded towards different views.

7. Promotes Curiosity

Critical thinkers are constantly curious about all kinds of things in life, and tend to have a wide range of interests. Critical thinking means constantly asking questions and wanting to know more, about why, what, who, where, when, and everything else that can help them make sense of a situation or concept, never taking anything at face value.

8. Allows For Creativity

Critical thinkers are also highly creative thinkers, and see themselves as limitless when it comes to possibilities. They are constantly looking to take things further, which is crucial in the workforce.

9. Enhances Problem Solving Skills

Those with critical thinking skills tend to solve problems as part of their natural instinct. Critical thinkers are patient and committed to solving the problem, similar to Albert Einstein, one of the best critical thinking examples, who said “It’s not that I’m so smart; it’s just that I stay with problems longer.” Critical thinkers’ enhanced problem-solving skills makes them better at their jobs and better at solving the world’s biggest problems. Like Einstein, they have the potential to literally change the world.

10. An Activity For The Mind

Just like our muscles, in order for them to be strong, our mind also needs to be exercised and challenged. It’s safe to say that critical thinking is almost like an activity for the mind — and it needs to be practiced. Critical thinking encourages the development of many crucial skills such as logical thinking, decision making, and open-mindness.

11. Creates Independence

When we think critically, we think on our own as we trust ourselves more. Critical thinking is key to creating independence, and encouraging students to make their own decisions and form their own opinions.

12. Crucial Life Skill

Critical thinking is crucial not just for learning, but for life overall! Education isn’t just a way to prepare ourselves for life, but it’s pretty much life itself. Learning is a lifelong process that we go through each and every day.

How to Think Critically

Now that you know the benefits of thinking critically, how do you actually do it?

How To Improve Your Critical Thinking

  • Define Your Question: When it comes to critical thinking, it’s important to always keep your goal in mind. Know what you’re trying to achieve, and then figure out how to best get there.
  • Gather Reliable Information: Make sure that you’re using sources you can trust — biases aside. That’s how a real critical thinker operates!
  • Ask The Right Questions: We all know the importance of questions, but be sure that you’re asking the right questions that are going to get you to your answer.
  • Look Short & Long Term: When coming up with solutions, think about both the short- and long-term consequences. Both of them are significant in the equation.
  • Explore All Sides: There is never just one simple answer, and nothing is black or white. Explore all options and think outside of the box before you come to any conclusions.

How Is Critical Thinking Developed At School?

Critical thinking is developed in nearly everything we do. However, much of this important skill is encouraged to be practiced at school, and rightfully so! Critical thinking goes beyond just thinking clearly — it’s also about thinking for yourself.

When a teacher asks a question in class, students are given the chance to answer for themselves and think critically about what they learned and what they believe to be accurate. When students work in groups and are forced to engage in discussion, this is also a great chance to expand their thinking and use their critical thinking skills.

How Does Critical Thinking Apply To Your Career?

Once you’ve finished school and entered the workforce, your critical thinking journey only expands and grows from here!

Impress Your Employer

Employers value employees who are critical thinkers, ask questions, offer creative ideas, and are always ready to offer innovation against the competition. No matter what your position or role in a company may be, critical thinking will always give you the power to stand out and make a difference.

Careers That Require Critical Thinking

Some of many examples of careers that require critical thinking include:

  • Human resources specialist
  • Marketing associate
  • Business analyst

Truth be told however, it’s probably harder to come up with a professional field that doesn’t require any critical thinking!

Photo by  Oladimeji Ajegbile  from  Pexels

What is someone with critical thinking skills capable of doing.

Someone with critical thinking skills is able to think rationally and clearly about what they should or not believe. They are capable of engaging in their own thoughts, and doing some reflection in order to come to a well-informed conclusion.

A critical thinker understands the connections between ideas, and is able to construct arguments based on facts, as well as find mistakes in reasoning.

The Process Of Critical Thinking

The process of critical thinking is highly systematic.

What Are Your Goals?

Critical thinking starts by defining your goals, and knowing what you are ultimately trying to achieve.

Once you know what you are trying to conclude, you can foresee your solution to the problem and play it out in your head from all perspectives.

What Does The Future Of Critical Thinking Hold?

The future of critical thinking is the equivalent of the future of jobs. In 2020, critical thinking was ranked as the 2nd top skill (following complex problem solving) by the World Economic Forum .

We are dealing with constant unprecedented changes, and what success is today, might not be considered success tomorrow — making critical thinking a key skill for the future workforce.

Why Is Critical Thinking So Important?

Why is critical thinking important? Critical thinking is more than just important! It’s one of the most crucial cognitive skills one can develop.

By practicing well-thought-out thinking, both your thoughts and decisions can make a positive change in your life, on both a professional and personal level. You can hugely improve your life by working on your critical thinking skills as often as you can.

Related Articles

  • Corpus ID: 73707240

The Role of Critical Thinking in Science Education

  • Luís Fernando Irgang Dos Santos
  • Published 31 July 2017
  • Journal of Education and Practice

61 Citations

Critical thinking in national primary science curricula.

  • Highly Influenced
  • 13 Excerpts

Critical Thinking in Science and Technology

Infusing critical thinking skills in the english as a foreign language classroom: a meaningful experience for teachers and students, innovative teaching strategies to foster critical thinking: a review, using the science writing heuristic to improve critical thinking skills for fifth grade black girls, effect of collaborative inquiry on the understanding of the concept and ability of critical thinking, critical thinking skills development: secondary school science teachers’ perceptions and practices, the effect of the 5e learning cycle model on the critical thinking skills of junior high school students in learning science, an empirical analysis of the relationship between nature of science and critical thinking through science definitions and thinking skills, identification of students’ critical thinking skills topic classification of materials and its changes, 15 references, critical thinking: conceptual clarification and its importance in science education, evaluation of critical thinking and reflective thinking skills among science teacher candidates, critical thinking and science education, the effect of modeling based science education on critical thinking., the effect of the inquiry-based learning approach on student’s critical thinking skills, conflicting agendas: critical thinking versus science education in the international baccalaureate theory of knowledge course.

  • Highly Influential
  • 10 Excerpts

Perspectives of Science Teacher Candidates Regarding Scientific Creativity and Critical Thinking.

On the other side of the barrier is thinking, teaching critical thinking new directions in science education., critical thinking: tools for taking charge of your learning and your life, related papers.

Showing 1 through 3 of 0 Related Papers

Developing Critical Thinking

  • Posted January 10, 2018
  • By Iman Rastegari

Critical Thinking

In a time where deliberately false information is continually introduced into public discourse, and quickly spread through social media shares and likes, it is more important than ever for young people to develop their critical thinking. That skill, says Georgetown professor William T. Gormley, consists of three elements: a capacity to spot weakness in other arguments, a passion for good evidence, and a capacity to reflect on your own views and values with an eye to possibly change them. But are educators making the development of these skills a priority?

"Some teachers embrace critical thinking pedagogy with enthusiasm and they make it a high priority in their classrooms; other teachers do not," says Gormley, author of the recent Harvard Education Press release The Critical Advantage: Developing Critical Thinking Skills in School . "So if you are to assess the extent of critical-thinking instruction in U.S. classrooms, you’d find some very wide variations." Which is unfortunate, he says, since developing critical-thinking skills is vital not only to students' readiness for college and career, but to their civic readiness, as well.

"It's important to recognize that critical thinking is not just something that takes place in the classroom or in the workplace, it's something that takes place — and should take place — in our daily lives," says Gormley.

In this edition of the Harvard EdCast, Gormley looks at the value of teaching critical thinking, and explores how it can be an important solution to some of the problems that we face, including "fake news."

About the Harvard EdCast

The Harvard EdCast is a weekly series of podcasts, available on the Harvard University iT unes U page, that features a 15-20 minute conversation with thought leaders in the field of education from across the country and around the world. Hosted by Matt Weber and co-produced by Jill Anderson, the Harvard EdCast is a space for educational discourse and openness, focusing on the myriad issues and current events related to the field.

EdCast logo

An education podcast that keeps the focus simple: what makes a difference for learners, educators, parents, and communities

Related Articles

HGSE shield on blue background

The Wisdom of Data

Notes from ferguson, the case for homework.

University of Pennsylvania

  • Appointments

Career Fairs

  • Resume Reviews

Penn Career Services

  • Undergraduates
  • PhDs & Postdocs
  • Faculty & Staff
  • Prospective Students
  • Online Students
  • Career Champions
  • I’m Exploring
  • Architecture & Design
  • Education & Academia
  • Engineering
  • Fashion, Retail & Consumer Products
  • Fellowships & Gap Year
  • Fine Arts, Performing Arts, & Music
  • Government, Law & Public Policy
  • Healthcare & Public Health
  • International Relations & NGOs
  • Life & Physical Sciences
  • Marketing, Advertising & Public Relations
  • Media, Journalism & Entertainment
  • Non-Profits
  • Pre-Health, Pre-Law and Pre-Grad
  • Real Estate, Accounting, & Insurance
  • Social Work & Human Services
  • Sports & Hospitality
  • Startups, Entrepreneurship & Freelancing
  • Sustainability, Energy & Conservation
  • Technology, Data & Analytics
  • DACA and Undocumented Students
  • First Generation and Low Income Students
  • International Students
  • LGBTQ+ Students
  • Transfer Students
  • Students of Color
  • Students with Disabilities
  • Explore Careers & Industries
  • Make Connections & Network
  • Search for a Job or Internship
  • Write a Resume/CV
  • Write a Cover Letter
  • Engage with Employers
  • Research Salaries & Negotiate Offers
  • Find Funding
  • Develop Professional and Leadership Skills
  • Apply to Graduate School
  • Apply to Health Professions School
  • Apply to Law School
  • Self-Assessment
  • Experiences
  • Post-Graduate
  • Jobs & Internships
  • Career Fairs
  • For Employers
  • Meet the Team
  • Peer Career Advisors
  • Social Media
  • Career Services Policies
  • Walk-Ins & Pop-Ins
  • Strategic Plan 2022-2025

Critical Thinking: A Simple Guide and Why It’s Important

  • Share This: Share Critical Thinking: A Simple Guide and Why It’s Important on Facebook Share Critical Thinking: A Simple Guide and Why It’s Important on LinkedIn Share Critical Thinking: A Simple Guide and Why It’s Important on X

Critical Thinking: A Simple Guide and Why It’s Important was originally published on Ivy Exec .

Strong critical thinking skills are crucial for career success, regardless of educational background. It embodies the ability to engage in astute and effective decision-making, lending invaluable dimensions to professional growth.

At its essence, critical thinking is the ability to analyze, evaluate, and synthesize information in a logical and reasoned manner. It’s not merely about accumulating knowledge but harnessing it effectively to make informed decisions and solve complex problems. In the dynamic landscape of modern careers, honing this skill is paramount.

The Impact of Critical Thinking on Your Career

☑ problem-solving mastery.

Visualize critical thinking as the Sherlock Holmes of your career journey. It facilitates swift problem resolution akin to a detective unraveling a mystery. By methodically analyzing situations and deconstructing complexities, critical thinkers emerge as adept problem solvers, rendering them invaluable assets in the workplace.

☑ Refined Decision-Making

Navigating dilemmas in your career path resembles traversing uncertain terrain. Critical thinking acts as a dependable GPS, steering you toward informed decisions. It involves weighing options, evaluating potential outcomes, and confidently choosing the most favorable path forward.

☑ Enhanced Teamwork Dynamics

Within collaborative settings, critical thinkers stand out as proactive contributors. They engage in scrutinizing ideas, proposing enhancements, and fostering meaningful contributions. Consequently, the team evolves into a dynamic hub of ideas, with the critical thinker recognized as the architect behind its success.

☑ Communication Prowess

Effective communication is the cornerstone of professional interactions. Critical thinking enriches communication skills, enabling the clear and logical articulation of ideas. Whether in emails, presentations, or casual conversations, individuals adept in critical thinking exude clarity, earning appreciation for their ability to convey thoughts seamlessly.

☑ Adaptability and Resilience

Perceptive individuals adept in critical thinking display resilience in the face of unforeseen challenges. Instead of succumbing to panic, they assess situations, recalibrate their approaches, and persist in moving forward despite adversity.

☑ Fostering Innovation

Innovation is the lifeblood of progressive organizations, and critical thinking serves as its catalyst. Proficient critical thinkers possess the ability to identify overlooked opportunities, propose inventive solutions, and streamline processes, thereby positioning their organizations at the forefront of innovation.

☑ Confidence Amplification

Critical thinkers exude confidence derived from honing their analytical skills. This self-assurance radiates during job interviews, presentations, and daily interactions, catching the attention of superiors and propelling career advancement.

So, how can one cultivate and harness this invaluable skill?

✅ developing curiosity and inquisitiveness:.

Embrace a curious mindset by questioning the status quo and exploring topics beyond your immediate scope. Cultivate an inquisitive approach to everyday situations. Encourage a habit of asking “why” and “how” to deepen understanding. Curiosity fuels the desire to seek information and alternative perspectives.

✅ Practice Reflection and Self-Awareness:

Engage in reflective thinking by assessing your thoughts, actions, and decisions. Regularly introspect to understand your biases, assumptions, and cognitive processes. Cultivate self-awareness to recognize personal prejudices or cognitive biases that might influence your thinking. This allows for a more objective analysis of situations.

✅ Strengthening Analytical Skills:

Practice breaking down complex problems into manageable components. Analyze each part systematically to understand the whole picture. Develop skills in data analysis, statistics, and logical reasoning. This includes understanding correlation versus causation, interpreting graphs, and evaluating statistical significance.

✅ Engaging in Active Listening and Observation:

Actively listen to diverse viewpoints without immediately forming judgments. Allow others to express their ideas fully before responding. Observe situations attentively, noticing details that others might overlook. This habit enhances your ability to analyze problems more comprehensively.

✅ Encouraging Intellectual Humility and Open-Mindedness:

Foster intellectual humility by acknowledging that you don’t know everything. Be open to learning from others, regardless of their position or expertise. Cultivate open-mindedness by actively seeking out perspectives different from your own. Engage in discussions with people holding diverse opinions to broaden your understanding.

✅ Practicing Problem-Solving and Decision-Making:

Engage in regular problem-solving exercises that challenge you to think creatively and analytically. This can include puzzles, riddles, or real-world scenarios. When making decisions, consciously evaluate available information, consider various alternatives, and anticipate potential outcomes before reaching a conclusion.

✅ Continuous Learning and Exposure to Varied Content:

Read extensively across diverse subjects and formats, exposing yourself to different viewpoints, cultures, and ways of thinking. Engage in courses, workshops, or seminars that stimulate critical thinking skills. Seek out opportunities for learning that challenge your existing beliefs.

✅ Engage in Constructive Disagreement and Debate:

Encourage healthy debates and discussions where differing opinions are respectfully debated.

This practice fosters the ability to defend your viewpoints logically while also being open to changing your perspective based on valid arguments. Embrace disagreement as an opportunity to learn rather than a conflict to win. Engaging in constructive debate sharpens your ability to evaluate and counter-arguments effectively.

✅ Utilize Problem-Based Learning and Real-World Applications:

Engage in problem-based learning activities that simulate real-world challenges. Work on projects or scenarios that require critical thinking skills to develop practical problem-solving approaches. Apply critical thinking in real-life situations whenever possible.

This could involve analyzing news articles, evaluating product reviews, or dissecting marketing strategies to understand their underlying rationale.

In conclusion, critical thinking is the linchpin of a successful career journey. It empowers individuals to navigate complexities, make informed decisions, and innovate in their respective domains. Embracing and honing this skill isn’t just an advantage; it’s a necessity in a world where adaptability and sound judgment reign supreme.

So, as you traverse your career path, remember that the ability to think critically is not just an asset but the differentiator that propels you toward excellence.

IMAGES

  1. Importance of Critical Thinking

    why is critical thinking so important for the progress of science

  2. Why is Critical Thinking Important

    why is critical thinking so important for the progress of science

  3. Cultivating Critical Thinking in Science

    why is critical thinking so important for the progress of science

  4. Why critical thinking is important

    why is critical thinking so important for the progress of science

  5. The Importance Of Critical Thinking.

    why is critical thinking so important for the progress of science

  6. Importance of critical thinking: 13 compelling reasons

    why is critical thinking so important for the progress of science

VIDEO

  1. Why critical thinking is so important

  2. Critical Reading and Critical thinking?|Definition| Meaning|Process|Goals

  3. The Essential Guide to Critical Thinking

  4. Why Critical Thinking Is So Important In Today's World @TheIcedCoffeeHour

  5. Critical Thinking is All You Need To Build Business and Life (How To Think Critically)

  6. Why Every Person Needs to Learn Critical Thinking

COMMENTS

  1. Teaching critical thinking in science

    1. Identifying a problem and asking questions about that problem. 2. Selecting information to respond to the problem and evaluating it. 3. Drawing conclusions from the evidence. Critical thinking can be developed through focussed learning activities. Students not only need to receive information but also benefit from being encouraged to think ...

  2. Thinking critically on critical thinking: why scientists' skills need

    Critical thinking moves us beyond mere description and into the realms of scientific inference and reasoning. This is what enables discoveries to be made and innovations to be fostered. For many ...

  3. Critical Thinking in Science: Fostering Scientific Reasoning Skills in

    Critical thinking is essential in science. It's what naturally takes students in the direction of scientific reasoning since evidence is a key component of this style of thought. It's not just about whether evidence is available to support a particular answer but how valid that evidence is. It's about whether the information the student ...

  4. Why Is Critical Thinking Important In Science

    Critical thinking skills require judgment, reflection, analysis, synthesis, and attention to context. The complexity in thinking critically often comes from the multidimensional nature of the problem or the need to make a decision or solve a problem when the information that is available is incomplete, probabilistic, or not completely credible.

  5. Understanding the Complex Relationship between Critical Thinking and

    The findings support the important role of the critical-thinking skill of inference in scientific reasoning in writing, while also highlighting ways in which other aspects of science reasoning (epistemological considerations, writing conventions, etc.) are not significantly related to critical thinking.

  6. Critical Thinking in Science

    Critical thinking in science is important largely because a lot of students have developed expectations about science that can prove to be counter-productive. After various experiences — both in school and out — students often perceive science to be primarily about learning "authoritative" content knowledge: this is how the solar system ...

  7. Scientific Thinking and Critical Thinking in Science Education

    Scientific thinking and critical thinking are two intellectual processes that are considered keys in the basic and comprehensive education of citizens. For this reason, their development is also contemplated as among the main objectives of science education. However, in the literature about the two types of thinking in the context of science education, there are quite frequent allusions to one ...

  8. Fostering Students' Creativity and Critical Thinking in Science

    3.2.1 Creativity and Critical Thinking. Creativity and critical thinking are two distinct but related higher-order cognitive skills. As such, both require significant mental effort and energy; both are cognitively challenging. Creativity aims to create novel, appropriate ideas and products.

  9. Science and the Spectrum of Critical Thinking

    Both the scientific method and critical thinking are applications of logic and related forms of rationality that date to the Ancient Greeks. The full spectrum of critical/rational thinking includes logic, informal logic, and systemic or analytic thinking. This common core is shared by the natural sciences and other domains of inquiry share, and ...

  10. PDF The Role of Critical Thinking in Science Education

    The discrepancies This 1 Why (NOS) in school science Findings Role assertion According is of important Critical deemed is to based Hag Thinking Critical crucial on p some A. Yacoubian thinking linked and in authors the to increasingly context in the context Critical affirmations, (2015), of Science, thinking. are present there of as Science ...

  11. Bridging critical thinking and transformative learning: The role of

    In recent decades, approaches to critical thinking have generally taken a practical turn, pivoting away from more abstract accounts - such as emphasizing the logical relations that hold between statements (Ennis, 1964) - and moving toward an emphasis on belief and action.According to the definition that Robert Ennis (2018) has been advocating for the last few decades, critical thinking is ...

  12. What Are Critical Thinking Skills and Why Are They Important?

    According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills. Very helpful in promoting creativity. Important for self-reflection.

  13. Critical thinking is needed throughout life, not just in science

    But many of the tools used to make science-heavy decisions are also needed to properly evaluate a much broader range of subjects: in particular, critical thinking and numerical analysis. A basic ...

  14. Critical Thinking & Why It's So Important

    Critical thinking is a fundamental skill that allows individuals to analyze, evaluate, and interpret information objectively and rationally. It goes beyond merely accepting information at face value; instead, critical thinkers are equipped to delve deeper, question assumptions, and explore various perspectives before arriving at well-informed ...

  15. Critical Thinking in Science: What Are the Basics?

    Abstract. This paper reviews some of the most critical issues in science in terms of scientific thinking, and. reasoning. Many students arrive at college poorly prepared to function in the typical ...

  16. Science, method and critical thinking

    A fundamental feature of critical thinking is to be able to identify these postulates and then remember that they are provisional in nature. When needed this enables anyone to return to the origins of reasoning and then decide whether it is reasonable to retain the postulates or modify or even abandon them.

  17. Teaching Critical Thinking and Problem-Solving in the Science Classroom

    Use Real-World Problems to Teach Critical Thinking and Problem-Solving in the Science Classroom. Say goodbye to the "sage on a stage" in the front of the science classroom and welcome educators who encourage students to ask questions and discover the answers independently. The inquiry-based educational model challenges learners to think ...

  18. The Importance Of Critical Thinking, and how to improve it

    Critical thinking can help you better understand yourself, and in turn, help you avoid any kind of negative or limiting beliefs, and focus more on your strengths. Being able to share your thoughts can increase your quality of life. 4. Form Well-Informed Opinions.

  19. Why science education is more important than most scientists think

    But the broad field of science does incorporate and emphasize such values and dramatically demonstrates just how important they are for advancing human knowledge and welfare'. Today, unless we can spread both scientific thinking and these critical scientific values much more broadly throughout society, I fear for humanity's survival.

  20. The Role of Critical Thinking in Science Education

    This review aims to respond various questions regarding the role of Critical Thinking in Science Education from aspects concerning the importance or relevance of critical thinking in science education, the situation in the classroom and curriculum, and the conception of critical thinking and fostering in science education. This review is specially addressed to educational contexts (teachers ...

  21. Developing Critical Thinking

    In a time where deliberately false information is continually introduced into public discourse, and quickly spread through social media shares and likes, it is more important than ever for young people to develop their critical thinking. That skill, says Georgetown professor William T. Gormley, consists of three elements: a capacity to spot ...

  22. Thinking about science

    A philosopher reflects on his influential interrogations of free will, consciousness, and artificial intelligence. One could call Daniel Dennett the "scientists' philosopher," as for more than six decades his work has involved close collaborations with scientists. A common theme is woven through his impressive body of work: He begins by ...

  23. Critical Thinking: A Simple Guide and Why It's Important

    Apply critical thinking in real-life situations whenever possible. This could involve analyzing news articles, evaluating product reviews, or dissecting marketing strategies to understand their underlying rationale. In conclusion, critical thinking is the linchpin of a successful career journey.