U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Neurol Res Pract

Logo of neurrp

How to use and assess qualitative research methods

Loraine busetto.

1 Department of Neurology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany

Wolfgang Wick

2 Clinical Cooperation Unit Neuro-Oncology, German Cancer Research Center, Heidelberg, Germany

Christoph Gumbinger

Associated data.

Not applicable.

This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions, and focussing on intervention improvement. The most common methods of data collection are document study, (non-) participant observations, semi-structured interviews and focus groups. For data analysis, field-notes and audio-recordings are transcribed into protocols and transcripts, and coded using qualitative data management software. Criteria such as checklists, reflexivity, sampling strategies, piloting, co-coding, member-checking and stakeholder involvement can be used to enhance and assess the quality of the research conducted. Using qualitative in addition to quantitative designs will equip us with better tools to address a greater range of research problems, and to fill in blind spots in current neurological research and practice.

The aim of this paper is to provide an overview of qualitative research methods, including hands-on information on how they can be used, reported and assessed. This article is intended for beginning qualitative researchers in the health sciences as well as experienced quantitative researchers who wish to broaden their understanding of qualitative research.

What is qualitative research?

Qualitative research is defined as “the study of the nature of phenomena”, including “their quality, different manifestations, the context in which they appear or the perspectives from which they can be perceived” , but excluding “their range, frequency and place in an objectively determined chain of cause and effect” [ 1 ]. This formal definition can be complemented with a more pragmatic rule of thumb: qualitative research generally includes data in form of words rather than numbers [ 2 ].

Why conduct qualitative research?

Because some research questions cannot be answered using (only) quantitative methods. For example, one Australian study addressed the issue of why patients from Aboriginal communities often present late or not at all to specialist services offered by tertiary care hospitals. Using qualitative interviews with patients and staff, it found one of the most significant access barriers to be transportation problems, including some towns and communities simply not having a bus service to the hospital [ 3 ]. A quantitative study could have measured the number of patients over time or even looked at possible explanatory factors – but only those previously known or suspected to be of relevance. To discover reasons for observed patterns, especially the invisible or surprising ones, qualitative designs are needed.

While qualitative research is common in other fields, it is still relatively underrepresented in health services research. The latter field is more traditionally rooted in the evidence-based-medicine paradigm, as seen in " research that involves testing the effectiveness of various strategies to achieve changes in clinical practice, preferably applying randomised controlled trial study designs (...) " [ 4 ]. This focus on quantitative research and specifically randomised controlled trials (RCT) is visible in the idea of a hierarchy of research evidence which assumes that some research designs are objectively better than others, and that choosing a "lesser" design is only acceptable when the better ones are not practically or ethically feasible [ 5 , 6 ]. Others, however, argue that an objective hierarchy does not exist, and that, instead, the research design and methods should be chosen to fit the specific research question at hand – "questions before methods" [ 2 , 7 – 9 ]. This means that even when an RCT is possible, some research problems require a different design that is better suited to addressing them. Arguing in JAMA, Berwick uses the example of rapid response teams in hospitals, which he describes as " a complex, multicomponent intervention – essentially a process of social change" susceptible to a range of different context factors including leadership or organisation history. According to him, "[in] such complex terrain, the RCT is an impoverished way to learn. Critics who use it as a truth standard in this context are incorrect" [ 8 ] . Instead of limiting oneself to RCTs, Berwick recommends embracing a wider range of methods , including qualitative ones, which for "these specific applications, (...) are not compromises in learning how to improve; they are superior" [ 8 ].

Research problems that can be approached particularly well using qualitative methods include assessing complex multi-component interventions or systems (of change), addressing questions beyond “what works”, towards “what works for whom when, how and why”, and focussing on intervention improvement rather than accreditation [ 7 , 9 – 12 ]. Using qualitative methods can also help shed light on the “softer” side of medical treatment. For example, while quantitative trials can measure the costs and benefits of neuro-oncological treatment in terms of survival rates or adverse effects, qualitative research can help provide a better understanding of patient or caregiver stress, visibility of illness or out-of-pocket expenses.

How to conduct qualitative research?

Given that qualitative research is characterised by flexibility, openness and responsivity to context, the steps of data collection and analysis are not as separate and consecutive as they tend to be in quantitative research [ 13 , 14 ]. As Fossey puts it : “sampling, data collection, analysis and interpretation are related to each other in a cyclical (iterative) manner, rather than following one after another in a stepwise approach” [ 15 ]. The researcher can make educated decisions with regard to the choice of method, how they are implemented, and to which and how many units they are applied [ 13 ]. As shown in Fig.  1 , this can involve several back-and-forth steps between data collection and analysis where new insights and experiences can lead to adaption and expansion of the original plan. Some insights may also necessitate a revision of the research question and/or the research design as a whole. The process ends when saturation is achieved, i.e. when no relevant new information can be found (see also below: sampling and saturation). For reasons of transparency, it is essential for all decisions as well as the underlying reasoning to be well-documented.

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig1_HTML.jpg

Iterative research process

While it is not always explicitly addressed, qualitative methods reflect a different underlying research paradigm than quantitative research (e.g. constructivism or interpretivism as opposed to positivism). The choice of methods can be based on the respective underlying substantive theory or theoretical framework used by the researcher [ 2 ].

Data collection

The methods of qualitative data collection most commonly used in health research are document study, observations, semi-structured interviews and focus groups [ 1 , 14 , 16 , 17 ].

Document study

Document study (also called document analysis) refers to the review by the researcher of written materials [ 14 ]. These can include personal and non-personal documents such as archives, annual reports, guidelines, policy documents, diaries or letters.

Observations

Observations are particularly useful to gain insights into a certain setting and actual behaviour – as opposed to reported behaviour or opinions [ 13 ]. Qualitative observations can be either participant or non-participant in nature. In participant observations, the observer is part of the observed setting, for example a nurse working in an intensive care unit [ 18 ]. In non-participant observations, the observer is “on the outside looking in”, i.e. present in but not part of the situation, trying not to influence the setting by their presence. Observations can be planned (e.g. for 3 h during the day or night shift) or ad hoc (e.g. as soon as a stroke patient arrives at the emergency room). During the observation, the observer takes notes on everything or certain pre-determined parts of what is happening around them, for example focusing on physician-patient interactions or communication between different professional groups. Written notes can be taken during or after the observations, depending on feasibility (which is usually lower during participant observations) and acceptability (e.g. when the observer is perceived to be judging the observed). Afterwards, these field notes are transcribed into observation protocols. If more than one observer was involved, field notes are taken independently, but notes can be consolidated into one protocol after discussions. Advantages of conducting observations include minimising the distance between the researcher and the researched, the potential discovery of topics that the researcher did not realise were relevant and gaining deeper insights into the real-world dimensions of the research problem at hand [ 18 ].

Semi-structured interviews

Hijmans & Kuyper describe qualitative interviews as “an exchange with an informal character, a conversation with a goal” [ 19 ]. Interviews are used to gain insights into a person’s subjective experiences, opinions and motivations – as opposed to facts or behaviours [ 13 ]. Interviews can be distinguished by the degree to which they are structured (i.e. a questionnaire), open (e.g. free conversation or autobiographical interviews) or semi-structured [ 2 , 13 ]. Semi-structured interviews are characterized by open-ended questions and the use of an interview guide (or topic guide/list) in which the broad areas of interest, sometimes including sub-questions, are defined [ 19 ]. The pre-defined topics in the interview guide can be derived from the literature, previous research or a preliminary method of data collection, e.g. document study or observations. The topic list is usually adapted and improved at the start of the data collection process as the interviewer learns more about the field [ 20 ]. Across interviews the focus on the different (blocks of) questions may differ and some questions may be skipped altogether (e.g. if the interviewee is not able or willing to answer the questions or for concerns about the total length of the interview) [ 20 ]. Qualitative interviews are usually not conducted in written format as it impedes on the interactive component of the method [ 20 ]. In comparison to written surveys, qualitative interviews have the advantage of being interactive and allowing for unexpected topics to emerge and to be taken up by the researcher. This can also help overcome a provider or researcher-centred bias often found in written surveys, which by nature, can only measure what is already known or expected to be of relevance to the researcher. Interviews can be audio- or video-taped; but sometimes it is only feasible or acceptable for the interviewer to take written notes [ 14 , 16 , 20 ].

Focus groups

Focus groups are group interviews to explore participants’ expertise and experiences, including explorations of how and why people behave in certain ways [ 1 ]. Focus groups usually consist of 6–8 people and are led by an experienced moderator following a topic guide or “script” [ 21 ]. They can involve an observer who takes note of the non-verbal aspects of the situation, possibly using an observation guide [ 21 ]. Depending on researchers’ and participants’ preferences, the discussions can be audio- or video-taped and transcribed afterwards [ 21 ]. Focus groups are useful for bringing together homogeneous (to a lesser extent heterogeneous) groups of participants with relevant expertise and experience on a given topic on which they can share detailed information [ 21 ]. Focus groups are a relatively easy, fast and inexpensive method to gain access to information on interactions in a given group, i.e. “the sharing and comparing” among participants [ 21 ]. Disadvantages include less control over the process and a lesser extent to which each individual may participate. Moreover, focus group moderators need experience, as do those tasked with the analysis of the resulting data. Focus groups can be less appropriate for discussing sensitive topics that participants might be reluctant to disclose in a group setting [ 13 ]. Moreover, attention must be paid to the emergence of “groupthink” as well as possible power dynamics within the group, e.g. when patients are awed or intimidated by health professionals.

Choosing the “right” method

As explained above, the school of thought underlying qualitative research assumes no objective hierarchy of evidence and methods. This means that each choice of single or combined methods has to be based on the research question that needs to be answered and a critical assessment with regard to whether or to what extent the chosen method can accomplish this – i.e. the “fit” between question and method [ 14 ]. It is necessary for these decisions to be documented when they are being made, and to be critically discussed when reporting methods and results.

Let us assume that our research aim is to examine the (clinical) processes around acute endovascular treatment (EVT), from the patient’s arrival at the emergency room to recanalization, with the aim to identify possible causes for delay and/or other causes for sub-optimal treatment outcome. As a first step, we could conduct a document study of the relevant standard operating procedures (SOPs) for this phase of care – are they up-to-date and in line with current guidelines? Do they contain any mistakes, irregularities or uncertainties that could cause delays or other problems? Regardless of the answers to these questions, the results have to be interpreted based on what they are: a written outline of what care processes in this hospital should look like. If we want to know what they actually look like in practice, we can conduct observations of the processes described in the SOPs. These results can (and should) be analysed in themselves, but also in comparison to the results of the document analysis, especially as regards relevant discrepancies. Do the SOPs outline specific tests for which no equipment can be observed or tasks to be performed by specialized nurses who are not present during the observation? It might also be possible that the written SOP is outdated, but the actual care provided is in line with current best practice. In order to find out why these discrepancies exist, it can be useful to conduct interviews. Are the physicians simply not aware of the SOPs (because their existence is limited to the hospital’s intranet) or do they actively disagree with them or does the infrastructure make it impossible to provide the care as described? Another rationale for adding interviews is that some situations (or all of their possible variations for different patient groups or the day, night or weekend shift) cannot practically or ethically be observed. In this case, it is possible to ask those involved to report on their actions – being aware that this is not the same as the actual observation. A senior physician’s or hospital manager’s description of certain situations might differ from a nurse’s or junior physician’s one, maybe because they intentionally misrepresent facts or maybe because different aspects of the process are visible or important to them. In some cases, it can also be relevant to consider to whom the interviewee is disclosing this information – someone they trust, someone they are otherwise not connected to, or someone they suspect or are aware of being in a potentially “dangerous” power relationship to them. Lastly, a focus group could be conducted with representatives of the relevant professional groups to explore how and why exactly they provide care around EVT. The discussion might reveal discrepancies (between SOPs and actual care or between different physicians) and motivations to the researchers as well as to the focus group members that they might not have been aware of themselves. For the focus group to deliver relevant information, attention has to be paid to its composition and conduct, for example, to make sure that all participants feel safe to disclose sensitive or potentially problematic information or that the discussion is not dominated by (senior) physicians only. The resulting combination of data collection methods is shown in Fig.  2 .

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig2_HTML.jpg

Possible combination of data collection methods

Attributions for icons: “Book” by Serhii Smirnov, “Interview” by Adrien Coquet, FR, “Magnifying Glass” by anggun, ID, “Business communication” by Vectors Market; all from the Noun Project

The combination of multiple data source as described for this example can be referred to as “triangulation”, in which multiple measurements are carried out from different angles to achieve a more comprehensive understanding of the phenomenon under study [ 22 , 23 ].

Data analysis

To analyse the data collected through observations, interviews and focus groups these need to be transcribed into protocols and transcripts (see Fig.  3 ). Interviews and focus groups can be transcribed verbatim , with or without annotations for behaviour (e.g. laughing, crying, pausing) and with or without phonetic transcription of dialects and filler words, depending on what is expected or known to be relevant for the analysis. In the next step, the protocols and transcripts are coded , that is, marked (or tagged, labelled) with one or more short descriptors of the content of a sentence or paragraph [ 2 , 15 , 23 ]. Jansen describes coding as “connecting the raw data with “theoretical” terms” [ 20 ]. In a more practical sense, coding makes raw data sortable. This makes it possible to extract and examine all segments describing, say, a tele-neurology consultation from multiple data sources (e.g. SOPs, emergency room observations, staff and patient interview). In a process of synthesis and abstraction, the codes are then grouped, summarised and/or categorised [ 15 , 20 ]. The end product of the coding or analysis process is a descriptive theory of the behavioural pattern under investigation [ 20 ]. The coding process is performed using qualitative data management software, the most common ones being InVivo, MaxQDA and Atlas.ti. It should be noted that these are data management tools which support the analysis performed by the researcher(s) [ 14 ].

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig3_HTML.jpg

From data collection to data analysis

Attributions for icons: see Fig. ​ Fig.2, 2 , also “Speech to text” by Trevor Dsouza, “Field Notes” by Mike O’Brien, US, “Voice Record” by ProSymbols, US, “Inspection” by Made, AU, and “Cloud” by Graphic Tigers; all from the Noun Project

How to report qualitative research?

Protocols of qualitative research can be published separately and in advance of the study results. However, the aim is not the same as in RCT protocols, i.e. to pre-define and set in stone the research questions and primary or secondary endpoints. Rather, it is a way to describe the research methods in detail, which might not be possible in the results paper given journals’ word limits. Qualitative research papers are usually longer than their quantitative counterparts to allow for deep understanding and so-called “thick description”. In the methods section, the focus is on transparency of the methods used, including why, how and by whom they were implemented in the specific study setting, so as to enable a discussion of whether and how this may have influenced data collection, analysis and interpretation. The results section usually starts with a paragraph outlining the main findings, followed by more detailed descriptions of, for example, the commonalities, discrepancies or exceptions per category [ 20 ]. Here it is important to support main findings by relevant quotations, which may add information, context, emphasis or real-life examples [ 20 , 23 ]. It is subject to debate in the field whether it is relevant to state the exact number or percentage of respondents supporting a certain statement (e.g. “Five interviewees expressed negative feelings towards XYZ”) [ 21 ].

How to combine qualitative with quantitative research?

Qualitative methods can be combined with other methods in multi- or mixed methods designs, which “[employ] two or more different methods [ …] within the same study or research program rather than confining the research to one single method” [ 24 ]. Reasons for combining methods can be diverse, including triangulation for corroboration of findings, complementarity for illustration and clarification of results, expansion to extend the breadth and range of the study, explanation of (unexpected) results generated with one method with the help of another, or offsetting the weakness of one method with the strength of another [ 1 , 17 , 24 – 26 ]. The resulting designs can be classified according to when, why and how the different quantitative and/or qualitative data strands are combined. The three most common types of mixed method designs are the convergent parallel design , the explanatory sequential design and the exploratory sequential design. The designs with examples are shown in Fig.  4 .

An external file that holds a picture, illustration, etc.
Object name is 42466_2020_59_Fig4_HTML.jpg

Three common mixed methods designs

In the convergent parallel design, a qualitative study is conducted in parallel to and independently of a quantitative study, and the results of both studies are compared and combined at the stage of interpretation of results. Using the above example of EVT provision, this could entail setting up a quantitative EVT registry to measure process times and patient outcomes in parallel to conducting the qualitative research outlined above, and then comparing results. Amongst other things, this would make it possible to assess whether interview respondents’ subjective impressions of patients receiving good care match modified Rankin Scores at follow-up, or whether observed delays in care provision are exceptions or the rule when compared to door-to-needle times as documented in the registry. In the explanatory sequential design, a quantitative study is carried out first, followed by a qualitative study to help explain the results from the quantitative study. This would be an appropriate design if the registry alone had revealed relevant delays in door-to-needle times and the qualitative study would be used to understand where and why these occurred, and how they could be improved. In the exploratory design, the qualitative study is carried out first and its results help informing and building the quantitative study in the next step [ 26 ]. If the qualitative study around EVT provision had shown a high level of dissatisfaction among the staff members involved, a quantitative questionnaire investigating staff satisfaction could be set up in the next step, informed by the qualitative study on which topics dissatisfaction had been expressed. Amongst other things, the questionnaire design would make it possible to widen the reach of the research to more respondents from different (types of) hospitals, regions, countries or settings, and to conduct sub-group analyses for different professional groups.

How to assess qualitative research?

A variety of assessment criteria and lists have been developed for qualitative research, ranging in their focus and comprehensiveness [ 14 , 17 , 27 ]. However, none of these has been elevated to the “gold standard” in the field. In the following, we therefore focus on a set of commonly used assessment criteria that, from a practical standpoint, a researcher can look for when assessing a qualitative research report or paper.

Assessors should check the authors’ use of and adherence to the relevant reporting checklists (e.g. Standards for Reporting Qualitative Research (SRQR)) to make sure all items that are relevant for this type of research are addressed [ 23 , 28 ]. Discussions of quantitative measures in addition to or instead of these qualitative measures can be a sign of lower quality of the research (paper). Providing and adhering to a checklist for qualitative research contributes to an important quality criterion for qualitative research, namely transparency [ 15 , 17 , 23 ].

Reflexivity

While methodological transparency and complete reporting is relevant for all types of research, some additional criteria must be taken into account for qualitative research. This includes what is called reflexivity, i.e. sensitivity to the relationship between the researcher and the researched, including how contact was established and maintained, or the background and experience of the researcher(s) involved in data collection and analysis. Depending on the research question and population to be researched this can be limited to professional experience, but it may also include gender, age or ethnicity [ 17 , 27 ]. These details are relevant because in qualitative research, as opposed to quantitative research, the researcher as a person cannot be isolated from the research process [ 23 ]. It may influence the conversation when an interviewed patient speaks to an interviewer who is a physician, or when an interviewee is asked to discuss a gynaecological procedure with a male interviewer, and therefore the reader must be made aware of these details [ 19 ].

Sampling and saturation

The aim of qualitative sampling is for all variants of the objects of observation that are deemed relevant for the study to be present in the sample “ to see the issue and its meanings from as many angles as possible” [ 1 , 16 , 19 , 20 , 27 ] , and to ensure “information-richness [ 15 ]. An iterative sampling approach is advised, in which data collection (e.g. five interviews) is followed by data analysis, followed by more data collection to find variants that are lacking in the current sample. This process continues until no new (relevant) information can be found and further sampling becomes redundant – which is called saturation [ 1 , 15 ] . In other words: qualitative data collection finds its end point not a priori , but when the research team determines that saturation has been reached [ 29 , 30 ].

This is also the reason why most qualitative studies use deliberate instead of random sampling strategies. This is generally referred to as “ purposive sampling” , in which researchers pre-define which types of participants or cases they need to include so as to cover all variations that are expected to be of relevance, based on the literature, previous experience or theory (i.e. theoretical sampling) [ 14 , 20 ]. Other types of purposive sampling include (but are not limited to) maximum variation sampling, critical case sampling or extreme or deviant case sampling [ 2 ]. In the above EVT example, a purposive sample could include all relevant professional groups and/or all relevant stakeholders (patients, relatives) and/or all relevant times of observation (day, night and weekend shift).

Assessors of qualitative research should check whether the considerations underlying the sampling strategy were sound and whether or how researchers tried to adapt and improve their strategies in stepwise or cyclical approaches between data collection and analysis to achieve saturation [ 14 ].

Good qualitative research is iterative in nature, i.e. it goes back and forth between data collection and analysis, revising and improving the approach where necessary. One example of this are pilot interviews, where different aspects of the interview (especially the interview guide, but also, for example, the site of the interview or whether the interview can be audio-recorded) are tested with a small number of respondents, evaluated and revised [ 19 ]. In doing so, the interviewer learns which wording or types of questions work best, or which is the best length of an interview with patients who have trouble concentrating for an extended time. Of course, the same reasoning applies to observations or focus groups which can also be piloted.

Ideally, coding should be performed by at least two researchers, especially at the beginning of the coding process when a common approach must be defined, including the establishment of a useful coding list (or tree), and when a common meaning of individual codes must be established [ 23 ]. An initial sub-set or all transcripts can be coded independently by the coders and then compared and consolidated after regular discussions in the research team. This is to make sure that codes are applied consistently to the research data.

Member checking

Member checking, also called respondent validation , refers to the practice of checking back with study respondents to see if the research is in line with their views [ 14 , 27 ]. This can happen after data collection or analysis or when first results are available [ 23 ]. For example, interviewees can be provided with (summaries of) their transcripts and asked whether they believe this to be a complete representation of their views or whether they would like to clarify or elaborate on their responses [ 17 ]. Respondents’ feedback on these issues then becomes part of the data collection and analysis [ 27 ].

Stakeholder involvement

In those niches where qualitative approaches have been able to evolve and grow, a new trend has seen the inclusion of patients and their representatives not only as study participants (i.e. “members”, see above) but as consultants to and active participants in the broader research process [ 31 – 33 ]. The underlying assumption is that patients and other stakeholders hold unique perspectives and experiences that add value beyond their own single story, making the research more relevant and beneficial to researchers, study participants and (future) patients alike [ 34 , 35 ]. Using the example of patients on or nearing dialysis, a recent scoping review found that 80% of clinical research did not address the top 10 research priorities identified by patients and caregivers [ 32 , 36 ]. In this sense, the involvement of the relevant stakeholders, especially patients and relatives, is increasingly being seen as a quality indicator in and of itself.

How not to assess qualitative research

The above overview does not include certain items that are routine in assessments of quantitative research. What follows is a non-exhaustive, non-representative, experience-based list of the quantitative criteria often applied to the assessment of qualitative research, as well as an explanation of the limited usefulness of these endeavours.

Protocol adherence

Given the openness and flexibility of qualitative research, it should not be assessed by how well it adheres to pre-determined and fixed strategies – in other words: its rigidity. Instead, the assessor should look for signs of adaptation and refinement based on lessons learned from earlier steps in the research process.

Sample size

For the reasons explained above, qualitative research does not require specific sample sizes, nor does it require that the sample size be determined a priori [ 1 , 14 , 27 , 37 – 39 ]. Sample size can only be a useful quality indicator when related to the research purpose, the chosen methodology and the composition of the sample, i.e. who was included and why.

Randomisation

While some authors argue that randomisation can be used in qualitative research, this is not commonly the case, as neither its feasibility nor its necessity or usefulness has been convincingly established for qualitative research [ 13 , 27 ]. Relevant disadvantages include the negative impact of a too large sample size as well as the possibility (or probability) of selecting “ quiet, uncooperative or inarticulate individuals ” [ 17 ]. Qualitative studies do not use control groups, either.

Interrater reliability, variability and other “objectivity checks”

The concept of “interrater reliability” is sometimes used in qualitative research to assess to which extent the coding approach overlaps between the two co-coders. However, it is not clear what this measure tells us about the quality of the analysis [ 23 ]. This means that these scores can be included in qualitative research reports, preferably with some additional information on what the score means for the analysis, but it is not a requirement. Relatedly, it is not relevant for the quality or “objectivity” of qualitative research to separate those who recruited the study participants and collected and analysed the data. Experiences even show that it might be better to have the same person or team perform all of these tasks [ 20 ]. First, when researchers introduce themselves during recruitment this can enhance trust when the interview takes place days or weeks later with the same researcher. Second, when the audio-recording is transcribed for analysis, the researcher conducting the interviews will usually remember the interviewee and the specific interview situation during data analysis. This might be helpful in providing additional context information for interpretation of data, e.g. on whether something might have been meant as a joke [ 18 ].

Not being quantitative research

Being qualitative research instead of quantitative research should not be used as an assessment criterion if it is used irrespectively of the research problem at hand. Similarly, qualitative research should not be required to be combined with quantitative research per se – unless mixed methods research is judged as inherently better than single-method research. In this case, the same criterion should be applied for quantitative studies without a qualitative component.

The main take-away points of this paper are summarised in Table ​ Table1. 1 . We aimed to show that, if conducted well, qualitative research can answer specific research questions that cannot to be adequately answered using (only) quantitative designs. Seeing qualitative and quantitative methods as equal will help us become more aware and critical of the “fit” between the research problem and our chosen methods: I can conduct an RCT to determine the reasons for transportation delays of acute stroke patients – but should I? It also provides us with a greater range of tools to tackle a greater range of research problems more appropriately and successfully, filling in the blind spots on one half of the methodological spectrum to better address the whole complexity of neurological research and practice.

Take-away-points

Acknowledgements

Abbreviations, authors’ contributions.

LB drafted the manuscript; WW and CG revised the manuscript; all authors approved the final versions.

no external funding.

Availability of data and materials

Ethics approval and consent to participate, consent for publication, competing interests.

The authors declare no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections
  • How to Write Your Methods

paper about research methods

Ensure understanding, reproducibility and replicability

What should you include in your methods section, and how much detail is appropriate?

Why Methods Matter

The methods section was once the most likely part of a paper to be unfairly abbreviated, overly summarized, or even relegated to hard-to-find sections of a publisher’s website. While some journals may responsibly include more detailed elements of methods in supplementary sections, the movement for increased reproducibility and rigor in science has reinstated the importance of the methods section. Methods are now viewed as a key element in establishing the credibility of the research being reported, alongside the open availability of data and results.

A clear methods section impacts editorial evaluation and readers’ understanding, and is also the backbone of transparency and replicability.

For example, the Reproducibility Project: Cancer Biology project set out in 2013 to replicate experiments from 50 high profile cancer papers, but revised their target to 18 papers once they understood how much methodological detail was not contained in the original papers.

paper about research methods

What to include in your methods section

What you include in your methods sections depends on what field you are in and what experiments you are performing. However, the general principle in place at the majority of journals is summarized well by the guidelines at PLOS ONE : “The Materials and Methods section should provide enough detail to allow suitably skilled investigators to fully replicate your study. ” The emphases here are deliberate: the methods should enable readers to understand your paper, and replicate your study. However, there is no need to go into the level of detail that a lay-person would require—the focus is on the reader who is also trained in your field, with the suitable skills and knowledge to attempt a replication.

A constant principle of rigorous science

A methods section that enables other researchers to understand and replicate your results is a constant principle of rigorous, transparent, and Open Science. Aim to be thorough, even if a particular journal doesn’t require the same level of detail . Reproducibility is all of our responsibility. You cannot create any problems by exceeding a minimum standard of information. If a journal still has word-limits—either for the overall article or specific sections—and requires some methodological details to be in a supplemental section, that is OK as long as the extra details are searchable and findable .

Imagine replicating your own work, years in the future

As part of PLOS’ presentation on Reproducibility and Open Publishing (part of UCSF’s Reproducibility Series ) we recommend planning the level of detail in your methods section by imagining you are writing for your future self, replicating your own work. When you consider that you might be at a different institution, with different account logins, applications, resources, and access levels—you can help yourself imagine the level of specificity that you yourself would require to redo the exact experiment. Consider:

  • Which details would you need to be reminded of? 
  • Which cell line, or antibody, or software, or reagent did you use, and does it have a Research Resource ID (RRID) that you can cite?
  • Which version of a questionnaire did you use in your survey? 
  • Exactly which visual stimulus did you show participants, and is it publicly available? 
  • What participants did you decide to exclude? 
  • What process did you adjust, during your work? 

Tip: Be sure to capture any changes to your protocols

You yourself would want to know about any adjustments, if you ever replicate the work, so you can surmise that anyone else would want to as well. Even if a necessary adjustment you made was not ideal, transparency is the key to ensuring this is not regarded as an issue in the future. It is far better to transparently convey any non-optimal methods, or methodological constraints, than to conceal them, which could result in reproducibility or ethical issues downstream.

Visual aids for methods help when reading the whole paper

Consider whether a visual representation of your methods could be appropriate or aid understanding your process. A visual reference readers can easily return to, like a flow-diagram, decision-tree, or checklist, can help readers to better understand the complete article, not just the methods section.

Ethical Considerations

In addition to describing what you did, it is just as important to assure readers that you also followed all relevant ethical guidelines when conducting your research. While ethical standards and reporting guidelines are often presented in a separate section of a paper, ensure that your methods and protocols actually follow these guidelines. Read more about ethics .

Existing standards, checklists, guidelines, partners

While the level of detail contained in a methods section should be guided by the universal principles of rigorous science outlined above, various disciplines, fields, and projects have worked hard to design and develop consistent standards, guidelines, and tools to help with reporting all types of experiment. Below, you’ll find some of the key initiatives. Ensure you read the submission guidelines for the specific journal you are submitting to, in order to discover any further journal- or field-specific policies to follow, or initiatives/tools to utilize.

Tip: Keep your paper moving forward by providing the proper paperwork up front

Be sure to check the journal guidelines and provide the necessary documents with your manuscript submission. Collecting the necessary documentation can greatly slow the first round of peer review, or cause delays when you submit your revision.

Randomized Controlled Trials – CONSORT The Consolidated Standards of Reporting Trials (CONSORT) project covers various initiatives intended to prevent the problems of  inadequate reporting of randomized controlled trials. The primary initiative is an evidence-based minimum set of recommendations for reporting randomized trials known as the CONSORT Statement . 

Systematic Reviews and Meta-Analyses – PRISMA The Preferred Reporting Items for Systematic Reviews and Meta-Analyses ( PRISMA ) is an evidence-based minimum set of items focusing  on the reporting of  reviews evaluating randomized trials and other types of research.

Research using Animals – ARRIVE The Animal Research: Reporting of In Vivo Experiments ( ARRIVE ) guidelines encourage maximizing the information reported in research using animals thereby minimizing unnecessary studies. (Original study and proposal , and updated guidelines , in PLOS Biology .) 

Laboratory Protocols Protocols.io has developed a platform specifically for the sharing and updating of laboratory protocols , which are assigned their own DOI and can be linked from methods sections of papers to enhance reproducibility. Contextualize your protocol and improve discovery with an accompanying Lab Protocol article in PLOS ONE .

Consistent reporting of Materials, Design, and Analysis – the MDAR checklist A cross-publisher group of editors and experts have developed, tested, and rolled out a checklist to help establish and harmonize reporting standards in the Life Sciences . The checklist , which is available for use by authors to compile their methods, and editors/reviewers to check methods, establishes a minimum set of requirements in transparent reporting and is adaptable to any discipline within the Life Sciences, by covering a breadth of potentially relevant methodological items and considerations. If you are in the Life Sciences and writing up your methods section, try working through the MDAR checklist and see whether it helps you include all relevant details into your methods, and whether it reminded you of anything you might have missed otherwise.

Summary Writing tips

The main challenge you may find when writing your methods is keeping it readable AND covering all the details needed for reproducibility and replicability. While this is difficult, do not compromise on rigorous standards for credibility!

paper about research methods

  • Keep in mind future replicability, alongside understanding and readability.
  • Follow checklists, and field- and journal-specific guidelines.
  • Consider a commitment to rigorous and transparent science a personal responsibility, and not just adhering to journal guidelines.
  • Establish whether there are persistent identifiers for any research resources you use that can be specifically cited in your methods section.
  • Deposit your laboratory protocols in Protocols.io, establishing a permanent link to them. You can update your protocols later if you improve on them, as can future scientists who follow your protocols.
  • Consider visual aids like flow-diagrams, lists, to help with reading other sections of the paper.
  • Be specific about all decisions made during the experiments that someone reproducing your work would need to know.

paper about research methods

Don’t

  • Summarize or abbreviate methods without giving full details in a discoverable supplemental section.
  • Presume you will always be able to remember how you performed the experiments, or have access to private or institutional notebooks and resources.
  • Attempt to hide constraints or non-optimal decisions you had to make–transparency is the key to ensuring the credibility of your research.
  • How to Write a Great Title
  • How to Write an Abstract
  • How to Report Statistics
  • How to Write Discussions and Conclusions
  • How to Edit Your Work

The contents of the Peer Review Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

The contents of the Writing Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher…

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 6. The Methodology
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

The methods section describes actions taken to investigate a research problem and the rationale for the application of specific procedures or techniques used to identify, select, process, and analyze information applied to understanding the problem, thereby, allowing the reader to critically evaluate a study’s overall validity and reliability. The methodology section of a research paper answers two main questions: How was the data collected or generated? And, how was it analyzed? The writing should be direct and precise and always written in the past tense.

Kallet, Richard H. "How to Write the Methods Section of a Research Paper." Respiratory Care 49 (October 2004): 1229-1232.

Importance of a Good Methodology Section

You must explain how you obtained and analyzed your results for the following reasons:

  • Readers need to know how the data was obtained because the method you chose affects the results and, by extension, how you interpreted their significance in the discussion section of your paper.
  • Methodology is crucial for any branch of scholarship because an unreliable method produces unreliable results and, as a consequence, undermines the value of your analysis of the findings.
  • In most cases, there are a variety of different methods you can choose to investigate a research problem. The methodology section of your paper should clearly articulate the reasons why you have chosen a particular procedure or technique.
  • The reader wants to know that the data was collected or generated in a way that is consistent with accepted practice in the field of study. For example, if you are using a multiple choice questionnaire, readers need to know that it offered your respondents a reasonable range of answers to choose from.
  • The method must be appropriate to fulfilling the overall aims of the study. For example, you need to ensure that you have a large enough sample size to be able to generalize and make recommendations based upon the findings.
  • The methodology should discuss the problems that were anticipated and the steps you took to prevent them from occurring. For any problems that do arise, you must describe the ways in which they were minimized or why these problems do not impact in any meaningful way your interpretation of the findings.
  • In the social and behavioral sciences, it is important to always provide sufficient information to allow other researchers to adopt or replicate your methodology. This information is particularly important when a new method has been developed or an innovative use of an existing method is utilized.

Bem, Daryl J. Writing the Empirical Journal Article. Psychology Writing Center. University of Washington; Denscombe, Martyn. The Good Research Guide: For Small-Scale Social Research Projects . 5th edition. Buckingham, UK: Open University Press, 2014; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008.

Structure and Writing Style

I.  Groups of Research Methods

There are two main groups of research methods in the social sciences:

  • The e mpirical-analytical group approaches the study of social sciences in a similar manner that researchers study the natural sciences . This type of research focuses on objective knowledge, research questions that can be answered yes or no, and operational definitions of variables to be measured. The empirical-analytical group employs deductive reasoning that uses existing theory as a foundation for formulating hypotheses that need to be tested. This approach is focused on explanation.
  • The i nterpretative group of methods is focused on understanding phenomenon in a comprehensive, holistic way . Interpretive methods focus on analytically disclosing the meaning-making practices of human subjects [the why, how, or by what means people do what they do], while showing how those practices arrange so that it can be used to generate observable outcomes. Interpretive methods allow you to recognize your connection to the phenomena under investigation. However, the interpretative group requires careful examination of variables because it focuses more on subjective knowledge.

II.  Content

The introduction to your methodology section should begin by restating the research problem and underlying assumptions underpinning your study. This is followed by situating the methods you used to gather, analyze, and process information within the overall “tradition” of your field of study and within the particular research design you have chosen to study the problem. If the method you choose lies outside of the tradition of your field [i.e., your review of the literature demonstrates that the method is not commonly used], provide a justification for how your choice of methods specifically addresses the research problem in ways that have not been utilized in prior studies.

The remainder of your methodology section should describe the following:

  • Decisions made in selecting the data you have analyzed or, in the case of qualitative research, the subjects and research setting you have examined,
  • Tools and methods used to identify and collect information, and how you identified relevant variables,
  • The ways in which you processed the data and the procedures you used to analyze that data, and
  • The specific research tools or strategies that you utilized to study the underlying hypothesis and research questions.

In addition, an effectively written methodology section should:

  • Introduce the overall methodological approach for investigating your research problem . Is your study qualitative or quantitative or a combination of both (mixed method)? Are you going to take a special approach, such as action research, or a more neutral stance?
  • Indicate how the approach fits the overall research design . Your methods for gathering data should have a clear connection to your research problem. In other words, make sure that your methods will actually address the problem. One of the most common deficiencies found in research papers is that the proposed methodology is not suitable to achieving the stated objective of your paper.
  • Describe the specific methods of data collection you are going to use , such as, surveys, interviews, questionnaires, observation, archival research. If you are analyzing existing data, such as a data set or archival documents, describe how it was originally created or gathered and by whom. Also be sure to explain how older data is still relevant to investigating the current research problem.
  • Explain how you intend to analyze your results . Will you use statistical analysis? Will you use specific theoretical perspectives to help you analyze a text or explain observed behaviors? Describe how you plan to obtain an accurate assessment of relationships, patterns, trends, distributions, and possible contradictions found in the data.
  • Provide background and a rationale for methodologies that are unfamiliar for your readers . Very often in the social sciences, research problems and the methods for investigating them require more explanation/rationale than widely accepted rules governing the natural and physical sciences. Be clear and concise in your explanation.
  • Provide a justification for subject selection and sampling procedure . For instance, if you propose to conduct interviews, how do you intend to select the sample population? If you are analyzing texts, which texts have you chosen, and why? If you are using statistics, why is this set of data being used? If other data sources exist, explain why the data you chose is most appropriate to addressing the research problem.
  • Provide a justification for case study selection . A common method of analyzing research problems in the social sciences is to analyze specific cases. These can be a person, place, event, phenomenon, or other type of subject of analysis that are either examined as a singular topic of in-depth investigation or multiple topics of investigation studied for the purpose of comparing or contrasting findings. In either method, you should explain why a case or cases were chosen and how they specifically relate to the research problem.
  • Describe potential limitations . Are there any practical limitations that could affect your data collection? How will you attempt to control for potential confounding variables and errors? If your methodology may lead to problems you can anticipate, state this openly and show why pursuing this methodology outweighs the risk of these problems cropping up.

NOTE:   Once you have written all of the elements of the methods section, subsequent revisions should focus on how to present those elements as clearly and as logically as possibly. The description of how you prepared to study the research problem, how you gathered the data, and the protocol for analyzing the data should be organized chronologically. For clarity, when a large amount of detail must be presented, information should be presented in sub-sections according to topic. If necessary, consider using appendices for raw data.

ANOTHER NOTE: If you are conducting a qualitative analysis of a research problem , the methodology section generally requires a more elaborate description of the methods used as well as an explanation of the processes applied to gathering and analyzing of data than is generally required for studies using quantitative methods. Because you are the primary instrument for generating the data [e.g., through interviews or observations], the process for collecting that data has a significantly greater impact on producing the findings. Therefore, qualitative research requires a more detailed description of the methods used.

YET ANOTHER NOTE:   If your study involves interviews, observations, or other qualitative techniques involving human subjects , you may be required to obtain approval from the university's Office for the Protection of Research Subjects before beginning your research. This is not a common procedure for most undergraduate level student research assignments. However, i f your professor states you need approval, you must include a statement in your methods section that you received official endorsement and adequate informed consent from the office and that there was a clear assessment and minimization of risks to participants and to the university. This statement informs the reader that your study was conducted in an ethical and responsible manner. In some cases, the approval notice is included as an appendix to your paper.

III.  Problems to Avoid

Irrelevant Detail The methodology section of your paper should be thorough but concise. Do not provide any background information that does not directly help the reader understand why a particular method was chosen, how the data was gathered or obtained, and how the data was analyzed in relation to the research problem [note: analyzed, not interpreted! Save how you interpreted the findings for the discussion section]. With this in mind, the page length of your methods section will generally be less than any other section of your paper except the conclusion.

Unnecessary Explanation of Basic Procedures Remember that you are not writing a how-to guide about a particular method. You should make the assumption that readers possess a basic understanding of how to investigate the research problem on their own and, therefore, you do not have to go into great detail about specific methodological procedures. The focus should be on how you applied a method , not on the mechanics of doing a method. An exception to this rule is if you select an unconventional methodological approach; if this is the case, be sure to explain why this approach was chosen and how it enhances the overall process of discovery.

Problem Blindness It is almost a given that you will encounter problems when collecting or generating your data, or, gaps will exist in existing data or archival materials. Do not ignore these problems or pretend they did not occur. Often, documenting how you overcame obstacles can form an interesting part of the methodology. It demonstrates to the reader that you can provide a cogent rationale for the decisions you made to minimize the impact of any problems that arose.

Literature Review Just as the literature review section of your paper provides an overview of sources you have examined while researching a particular topic, the methodology section should cite any sources that informed your choice and application of a particular method [i.e., the choice of a survey should include any citations to the works you used to help construct the survey].

It’s More than Sources of Information! A description of a research study's method should not be confused with a description of the sources of information. Such a list of sources is useful in and of itself, especially if it is accompanied by an explanation about the selection and use of the sources. The description of the project's methodology complements a list of sources in that it sets forth the organization and interpretation of information emanating from those sources.

Azevedo, L.F. et al. "How to Write a Scientific Paper: Writing the Methods Section." Revista Portuguesa de Pneumologia 17 (2011): 232-238; Blair Lorrie. “Choosing a Methodology.” In Writing a Graduate Thesis or Dissertation , Teaching Writing Series. (Rotterdam: Sense Publishers 2016), pp. 49-72; Butin, Dan W. The Education Dissertation A Guide for Practitioner Scholars . Thousand Oaks, CA: Corwin, 2010; Carter, Susan. Structuring Your Research Thesis . New York: Palgrave Macmillan, 2012; Kallet, Richard H. “How to Write the Methods Section of a Research Paper.” Respiratory Care 49 (October 2004):1229-1232; Lunenburg, Frederick C. Writing a Successful Thesis or Dissertation: Tips and Strategies for Students in the Social and Behavioral Sciences . Thousand Oaks, CA: Corwin Press, 2008. Methods Section. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Rudestam, Kjell Erik and Rae R. Newton. “The Method Chapter: Describing Your Research Plan.” In Surviving Your Dissertation: A Comprehensive Guide to Content and Process . (Thousand Oaks, Sage Publications, 2015), pp. 87-115; What is Interpretive Research. Institute of Public and International Affairs, University of Utah; Writing the Experimental Report: Methods, Results, and Discussion. The Writing Lab and The OWL. Purdue University; Methods and Materials. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College.

Writing Tip

Statistical Designs and Tests? Do Not Fear Them!

Don't avoid using a quantitative approach to analyzing your research problem just because you fear the idea of applying statistical designs and tests. A qualitative approach, such as conducting interviews or content analysis of archival texts, can yield exciting new insights about a research problem, but it should not be undertaken simply because you have a disdain for running a simple regression. A well designed quantitative research study can often be accomplished in very clear and direct ways, whereas, a similar study of a qualitative nature usually requires considerable time to analyze large volumes of data and a tremendous burden to create new paths for analysis where previously no path associated with your research problem had existed.

To locate data and statistics, GO HERE .

Another Writing Tip

Knowing the Relationship Between Theories and Methods

There can be multiple meaning associated with the term "theories" and the term "methods" in social sciences research. A helpful way to delineate between them is to understand "theories" as representing different ways of characterizing the social world when you research it and "methods" as representing different ways of generating and analyzing data about that social world. Framed in this way, all empirical social sciences research involves theories and methods, whether they are stated explicitly or not. However, while theories and methods are often related, it is important that, as a researcher, you deliberately separate them in order to avoid your theories playing a disproportionate role in shaping what outcomes your chosen methods produce.

Introspectively engage in an ongoing dialectic between the application of theories and methods to help enable you to use the outcomes from your methods to interrogate and develop new theories, or ways of framing conceptually the research problem. This is how scholarship grows and branches out into new intellectual territory.

Reynolds, R. Larry. Ways of Knowing. Alternative Microeconomics . Part 1, Chapter 3. Boise State University; The Theory-Method Relationship. S-Cool Revision. United Kingdom.

Yet Another Writing Tip

Methods and the Methodology

Do not confuse the terms "methods" and "methodology." As Schneider notes, a method refers to the technical steps taken to do research . Descriptions of methods usually include defining and stating why you have chosen specific techniques to investigate a research problem, followed by an outline of the procedures you used to systematically select, gather, and process the data [remember to always save the interpretation of data for the discussion section of your paper].

The methodology refers to a discussion of the underlying reasoning why particular methods were used . This discussion includes describing the theoretical concepts that inform the choice of methods to be applied, placing the choice of methods within the more general nature of academic work, and reviewing its relevance to examining the research problem. The methodology section also includes a thorough review of the methods other scholars have used to study the topic.

Bryman, Alan. "Of Methods and Methodology." Qualitative Research in Organizations and Management: An International Journal 3 (2008): 159-168; Schneider, Florian. “What's in a Methodology: The Difference between Method, Methodology, and Theory…and How to Get the Balance Right?” PoliticsEastAsia.com. Chinese Department, University of Leiden, Netherlands.

  • << Previous: Scholarly vs. Popular Publications
  • Next: Qualitative Methods >>
  • Last Updated: May 30, 2024 9:38 AM
  • URL: https://libguides.usc.edu/writingguide

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Methods | Definition, Types, Examples

Research methods are specific procedures for collecting and analysing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs quantitative : Will your data take the form of words or numbers?
  • Primary vs secondary : Will you collect original data yourself, or will you use data that have already been collected by someone else?
  • Descriptive vs experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyse the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analysing data, examples of data analysis methods, frequently asked questions about methodology.

Data are the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

You can also take a mixed methods approach, where you use both qualitative and quantitative research methods.

Primary vs secondary data

Primary data are any original information that you collect for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary data are information that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data. But if you want to synthesise existing knowledge, analyse historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Descriptive vs experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Prevent plagiarism, run a free check.

Your data analysis methods will depend on the type of data you collect and how you prepare them for analysis.

Data can often be analysed both quantitatively and qualitatively. For example, survey responses could be analysed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that were collected:

  • From open-ended survey and interview questions, literature reviews, case studies, and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions.

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that were collected either:

  • During an experiment.
  • Using probability sampling methods .

Because the data are collected and analysed in a statistically valid way, the results of quantitative analysis can be easily standardised and shared among researchers.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

More interesting articles.

  • A Quick Guide to Experimental Design | 5 Steps & Examples
  • Between-Subjects Design | Examples, Pros & Cons
  • Case Study | Definition, Examples & Methods
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | A Step-by-Step Guide with Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Controlled Experiments | Methods & Examples of Control
  • Correlation vs Causation | Differences, Designs & Examples
  • Correlational Research | Guide, Design & Examples
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definitions, Uses & Examples
  • Data Cleaning | A Guide with Examples & Steps
  • Data Collection Methods | Step-by-Step Guide & Examples
  • Descriptive Research Design | Definition, Methods & Examples
  • Doing Survey Research | A Step-by-Step Guide & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Explanatory vs Response Variables | Definitions & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Types, Threats & Examples
  • Extraneous Variables | Examples, Types, Controls
  • Face Validity | Guide with Definition & Examples
  • How to Do Thematic Analysis | Guide & Examples
  • How to Write a Strong Hypothesis | Guide & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs Deductive Research Approach (with Examples)
  • Internal Validity | Definition, Threats & Examples
  • Internal vs External Validity | Understanding Differences & Examples
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide, & Examples
  • Multistage Sampling | An Introductory Guide with Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalisation | A Guide with Examples, Pros & Cons
  • Population vs Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs Quantitative Research | Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Reliability vs Validity in Research | Differences, Types & Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Research Design | Step-by-Step Guide with Examples
  • Sampling Methods | Types, Techniques, & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Stratified Sampling | A Step-by-Step Guide with Examples
  • Structured Interview | Definition, Guide & Examples
  • Systematic Review | Definition, Examples & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity | Types, Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Examples
  • Types of Variables in Research | Definitions & Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Are Control Variables | Definition & Examples
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Double-Barrelled Question?
  • What Is a Double-Blind Study? | Introduction & Examples
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What is a Literature Review? | Guide, Template, & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Meaning, Guide & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition & Methods
  • What Is Quota Sampling? | Definition & Examples
  • What is Secondary Research? | Definition, Types, & Examples
  • What Is Snowball Sampling? | Definition & Examples
  • Within-Subjects Design | Explanation, Approaches, Examples
  • Locations and Hours
  • UCLA Library
  • Research Guides
  • Research Tips and Tools

Advanced Research Methods

Writing the research paper.

  • What Is Research?
  • Library Research
  • Writing a Research Proposal

Before Writing the Paper

Methods, thesis and hypothesis, clarity, precision and academic expression, format your paper, typical problems, a few suggestions, avoid plagiarism.

  • Presenting the Research Paper

Find a topic.

  • Try to find a subject that really interests you.
  • While you explore the topic, narrow or broaden your target and focus on something that gives the most promising results.
  • Don't choose a huge subject if you have to write a 3 page long paper, and broaden your topic sufficiently if you have to submit at least 25 pages.
  • Consult your class instructor (and your classmates) about the topic.

Explore the topic.

  • Find primary and secondary sources in the library.
  • Read and critically analyse them.
  • Take notes.
  • Compile surveys, collect data, gather materials for quantitative analysis (if these are good methods to investigate the topic more deeply).
  • Come up with new ideas about the topic. Try to formulate your ideas in a few sentences.
  • Review your notes and other materials and enrich the outline.
  • Try to estimate how long the individual parts will be.
  • Do others understand what you want to say?
  • Do they accept it as new knowledge or relevant and important for a paper?
  • Do they agree that your thoughts will result in a successful paper?
  • Qualitative: gives answers on questions (how, why, when, who, what, etc.) by investigating an issue
  • Quantitative:requires data and the analysis of data as well
  • the essence, the point of the research paper in one or two sentences.
  • a statement that can be proved or disproved.
  • Be specific.
  • Avoid ambiguity.
  • Use predominantly the active voice, not the passive.
  • Deal with one issue in one paragraph.
  • Be accurate.
  • Double-check your data, references, citations and statements.

Academic Expression

  • Don't use familiar style or colloquial/slang expressions.
  • Write in full sentences.
  • Check the meaning of the words if you don't know exactly what they mean.
  • Avoid metaphors.
  • Almost the rough content of every paragraph.
  • The order of the various topics in your paper.
  • On the basis of the outline, start writing a part by planning the content, and then write it down.
  • Put a visible mark (which you will later delete) where you need to quote a source, and write in the citation when you finish writing that part or a bigger part.
  • Does the text make sense?
  • Could you explain what you wanted?
  • Did you write good sentences?
  • Is there something missing?
  • Check the spelling.
  • Complete the citations, bring them in standard format.

Use the guidelines that your instructor requires (MLA, Chicago, APA, Turabian, etc.).

  • Adjust margins, spacing, paragraph indentation, place of page numbers, etc.
  • Standardize the bibliography or footnotes according to the guidelines.

paper about research methods

  • EndNote and EndNote Basic by UCLA Library Last Updated May 8, 2024 1144 views this year
  • Zotero by UCLA Library Last Updated May 15, 2024 816 views this year

(Based on English Composition 2 from Illinois Valley Community College):

  • Weak organization
  • Poor support and development of ideas
  • Weak use of secondary sources
  • Excessive errors
  • Stylistic weakness

When collecting materials, selecting research topic, and writing the paper:

  • Be systematic and organized (e.g. keep your bibliography neat and organized; write your notes in a neat way, so that you can find them later on.
  • Use your critical thinking ability when you read.
  • Write down your thoughts (so that you can reconstruct them later).
  • Stop when you have a really good idea and think about whether you could enlarge it to a whole research paper. If yes, take much longer notes.
  • When you write down a quotation or summarize somebody else's thoughts in your notes or in the paper, cite the source (i.e. write down the author, title, publication place, year, page number).
  • If you quote or summarize a thought from the internet, cite the internet source.
  • Write an outline that is detailed enough to remind you about the content.
  • Read your paper for yourself or, preferably, somebody else. 
  • When you finish writing, check the spelling;
  • Use the citation form (MLA, Chicago, or other) that your instructor requires and use it everywhere.

Plagiarism : somebody else's words or ideas presented without citation by an author

  • Cite your source every time when you quote a part of somebody's work.
  • Cite your source  every time when you summarize a thought from somebody's work.
  • Cite your source  every time when you use a source (quote or summarize) from the Internet.

Consult the Citing Sources research guide for further details.

  • << Previous: Writing a Research Proposal
  • Next: Presenting the Research Paper >>
  • Last Updated: May 16, 2024 10:20 AM
  • URL: https://guides.library.ucla.edu/research-methods
  • Privacy Policy

Research Method

Home » Research Paper – Structure, Examples and Writing Guide

Research Paper – Structure, Examples and Writing Guide

Table of Contents

Research Paper

Research Paper

Definition:

Research Paper is a written document that presents the author’s original research, analysis, and interpretation of a specific topic or issue.

It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new knowledge or insights to a particular field of study, and to demonstrate the author’s understanding of the existing literature and theories related to the topic.

Structure of Research Paper

The structure of a research paper typically follows a standard format, consisting of several sections that convey specific information about the research study. The following is a detailed explanation of the structure of a research paper:

The title page contains the title of the paper, the name(s) of the author(s), and the affiliation(s) of the author(s). It also includes the date of submission and possibly, the name of the journal or conference where the paper is to be published.

The abstract is a brief summary of the research paper, typically ranging from 100 to 250 words. It should include the research question, the methods used, the key findings, and the implications of the results. The abstract should be written in a concise and clear manner to allow readers to quickly grasp the essence of the research.

Introduction

The introduction section of a research paper provides background information about the research problem, the research question, and the research objectives. It also outlines the significance of the research, the research gap that it aims to fill, and the approach taken to address the research question. Finally, the introduction section ends with a clear statement of the research hypothesis or research question.

Literature Review

The literature review section of a research paper provides an overview of the existing literature on the topic of study. It includes a critical analysis and synthesis of the literature, highlighting the key concepts, themes, and debates. The literature review should also demonstrate the research gap and how the current study seeks to address it.

The methods section of a research paper describes the research design, the sample selection, the data collection and analysis procedures, and the statistical methods used to analyze the data. This section should provide sufficient detail for other researchers to replicate the study.

The results section presents the findings of the research, using tables, graphs, and figures to illustrate the data. The findings should be presented in a clear and concise manner, with reference to the research question and hypothesis.

The discussion section of a research paper interprets the findings and discusses their implications for the research question, the literature review, and the field of study. It should also address the limitations of the study and suggest future research directions.

The conclusion section summarizes the main findings of the study, restates the research question and hypothesis, and provides a final reflection on the significance of the research.

The references section provides a list of all the sources cited in the paper, following a specific citation style such as APA, MLA or Chicago.

How to Write Research Paper

You can write Research Paper by the following guide:

  • Choose a Topic: The first step is to select a topic that interests you and is relevant to your field of study. Brainstorm ideas and narrow down to a research question that is specific and researchable.
  • Conduct a Literature Review: The literature review helps you identify the gap in the existing research and provides a basis for your research question. It also helps you to develop a theoretical framework and research hypothesis.
  • Develop a Thesis Statement : The thesis statement is the main argument of your research paper. It should be clear, concise and specific to your research question.
  • Plan your Research: Develop a research plan that outlines the methods, data sources, and data analysis procedures. This will help you to collect and analyze data effectively.
  • Collect and Analyze Data: Collect data using various methods such as surveys, interviews, observations, or experiments. Analyze data using statistical tools or other qualitative methods.
  • Organize your Paper : Organize your paper into sections such as Introduction, Literature Review, Methods, Results, Discussion, and Conclusion. Ensure that each section is coherent and follows a logical flow.
  • Write your Paper : Start by writing the introduction, followed by the literature review, methods, results, discussion, and conclusion. Ensure that your writing is clear, concise, and follows the required formatting and citation styles.
  • Edit and Proofread your Paper: Review your paper for grammar and spelling errors, and ensure that it is well-structured and easy to read. Ask someone else to review your paper to get feedback and suggestions for improvement.
  • Cite your Sources: Ensure that you properly cite all sources used in your research paper. This is essential for giving credit to the original authors and avoiding plagiarism.

Research Paper Example

Note : The below example research paper is for illustrative purposes only and is not an actual research paper. Actual research papers may have different structures, contents, and formats depending on the field of study, research question, data collection and analysis methods, and other factors. Students should always consult with their professors or supervisors for specific guidelines and expectations for their research papers.

Research Paper Example sample for Students:

Title: The Impact of Social Media on Mental Health among Young Adults

Abstract: This study aims to investigate the impact of social media use on the mental health of young adults. A literature review was conducted to examine the existing research on the topic. A survey was then administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO (Fear of Missing Out) are significant predictors of mental health problems among young adults.

Introduction: Social media has become an integral part of modern life, particularly among young adults. While social media has many benefits, including increased communication and social connectivity, it has also been associated with negative outcomes, such as addiction, cyberbullying, and mental health problems. This study aims to investigate the impact of social media use on the mental health of young adults.

Literature Review: The literature review highlights the existing research on the impact of social media use on mental health. The review shows that social media use is associated with depression, anxiety, stress, and other mental health problems. The review also identifies the factors that contribute to the negative impact of social media, including social comparison, cyberbullying, and FOMO.

Methods : A survey was administered to 200 university students to collect data on their social media use, mental health status, and perceived impact of social media on their mental health. The survey included questions on social media use, mental health status (measured using the DASS-21), and perceived impact of social media on their mental health. Data were analyzed using descriptive statistics and regression analysis.

Results : The results showed that social media use is positively associated with depression, anxiety, and stress. The study also found that social comparison, cyberbullying, and FOMO are significant predictors of mental health problems among young adults.

Discussion : The study’s findings suggest that social media use has a negative impact on the mental health of young adults. The study highlights the need for interventions that address the factors contributing to the negative impact of social media, such as social comparison, cyberbullying, and FOMO.

Conclusion : In conclusion, social media use has a significant impact on the mental health of young adults. The study’s findings underscore the need for interventions that promote healthy social media use and address the negative outcomes associated with social media use. Future research can explore the effectiveness of interventions aimed at reducing the negative impact of social media on mental health. Additionally, longitudinal studies can investigate the long-term effects of social media use on mental health.

Limitations : The study has some limitations, including the use of self-report measures and a cross-sectional design. The use of self-report measures may result in biased responses, and a cross-sectional design limits the ability to establish causality.

Implications: The study’s findings have implications for mental health professionals, educators, and policymakers. Mental health professionals can use the findings to develop interventions that address the negative impact of social media use on mental health. Educators can incorporate social media literacy into their curriculum to promote healthy social media use among young adults. Policymakers can use the findings to develop policies that protect young adults from the negative outcomes associated with social media use.

References :

  • Twenge, J. M., & Campbell, W. K. (2019). Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Preventive medicine reports, 15, 100918.
  • Primack, B. A., Shensa, A., Escobar-Viera, C. G., Barrett, E. L., Sidani, J. E., Colditz, J. B., … & James, A. E. (2017). Use of multiple social media platforms and symptoms of depression and anxiety: A nationally-representative study among US young adults. Computers in Human Behavior, 69, 1-9.
  • Van der Meer, T. G., & Verhoeven, J. W. (2017). Social media and its impact on academic performance of students. Journal of Information Technology Education: Research, 16, 383-398.

Appendix : The survey used in this study is provided below.

Social Media and Mental Health Survey

  • How often do you use social media per day?
  • Less than 30 minutes
  • 30 minutes to 1 hour
  • 1 to 2 hours
  • 2 to 4 hours
  • More than 4 hours
  • Which social media platforms do you use?
  • Others (Please specify)
  • How often do you experience the following on social media?
  • Social comparison (comparing yourself to others)
  • Cyberbullying
  • Fear of Missing Out (FOMO)
  • Have you ever experienced any of the following mental health problems in the past month?
  • Do you think social media use has a positive or negative impact on your mental health?
  • Very positive
  • Somewhat positive
  • Somewhat negative
  • Very negative
  • In your opinion, which factors contribute to the negative impact of social media on mental health?
  • Social comparison
  • In your opinion, what interventions could be effective in reducing the negative impact of social media on mental health?
  • Education on healthy social media use
  • Counseling for mental health problems caused by social media
  • Social media detox programs
  • Regulation of social media use

Thank you for your participation!

Applications of Research Paper

Research papers have several applications in various fields, including:

  • Advancing knowledge: Research papers contribute to the advancement of knowledge by generating new insights, theories, and findings that can inform future research and practice. They help to answer important questions, clarify existing knowledge, and identify areas that require further investigation.
  • Informing policy: Research papers can inform policy decisions by providing evidence-based recommendations for policymakers. They can help to identify gaps in current policies, evaluate the effectiveness of interventions, and inform the development of new policies and regulations.
  • Improving practice: Research papers can improve practice by providing evidence-based guidance for professionals in various fields, including medicine, education, business, and psychology. They can inform the development of best practices, guidelines, and standards of care that can improve outcomes for individuals and organizations.
  • Educating students : Research papers are often used as teaching tools in universities and colleges to educate students about research methods, data analysis, and academic writing. They help students to develop critical thinking skills, research skills, and communication skills that are essential for success in many careers.
  • Fostering collaboration: Research papers can foster collaboration among researchers, practitioners, and policymakers by providing a platform for sharing knowledge and ideas. They can facilitate interdisciplinary collaborations and partnerships that can lead to innovative solutions to complex problems.

When to Write Research Paper

Research papers are typically written when a person has completed a research project or when they have conducted a study and have obtained data or findings that they want to share with the academic or professional community. Research papers are usually written in academic settings, such as universities, but they can also be written in professional settings, such as research organizations, government agencies, or private companies.

Here are some common situations where a person might need to write a research paper:

  • For academic purposes: Students in universities and colleges are often required to write research papers as part of their coursework, particularly in the social sciences, natural sciences, and humanities. Writing research papers helps students to develop research skills, critical thinking skills, and academic writing skills.
  • For publication: Researchers often write research papers to publish their findings in academic journals or to present their work at academic conferences. Publishing research papers is an important way to disseminate research findings to the academic community and to establish oneself as an expert in a particular field.
  • To inform policy or practice : Researchers may write research papers to inform policy decisions or to improve practice in various fields. Research findings can be used to inform the development of policies, guidelines, and best practices that can improve outcomes for individuals and organizations.
  • To share new insights or ideas: Researchers may write research papers to share new insights or ideas with the academic or professional community. They may present new theories, propose new research methods, or challenge existing paradigms in their field.

Purpose of Research Paper

The purpose of a research paper is to present the results of a study or investigation in a clear, concise, and structured manner. Research papers are written to communicate new knowledge, ideas, or findings to a specific audience, such as researchers, scholars, practitioners, or policymakers. The primary purposes of a research paper are:

  • To contribute to the body of knowledge : Research papers aim to add new knowledge or insights to a particular field or discipline. They do this by reporting the results of empirical studies, reviewing and synthesizing existing literature, proposing new theories, or providing new perspectives on a topic.
  • To inform or persuade: Research papers are written to inform or persuade the reader about a particular issue, topic, or phenomenon. They present evidence and arguments to support their claims and seek to persuade the reader of the validity of their findings or recommendations.
  • To advance the field: Research papers seek to advance the field or discipline by identifying gaps in knowledge, proposing new research questions or approaches, or challenging existing assumptions or paradigms. They aim to contribute to ongoing debates and discussions within a field and to stimulate further research and inquiry.
  • To demonstrate research skills: Research papers demonstrate the author’s research skills, including their ability to design and conduct a study, collect and analyze data, and interpret and communicate findings. They also demonstrate the author’s ability to critically evaluate existing literature, synthesize information from multiple sources, and write in a clear and structured manner.

Characteristics of Research Paper

Research papers have several characteristics that distinguish them from other forms of academic or professional writing. Here are some common characteristics of research papers:

  • Evidence-based: Research papers are based on empirical evidence, which is collected through rigorous research methods such as experiments, surveys, observations, or interviews. They rely on objective data and facts to support their claims and conclusions.
  • Structured and organized: Research papers have a clear and logical structure, with sections such as introduction, literature review, methods, results, discussion, and conclusion. They are organized in a way that helps the reader to follow the argument and understand the findings.
  • Formal and objective: Research papers are written in a formal and objective tone, with an emphasis on clarity, precision, and accuracy. They avoid subjective language or personal opinions and instead rely on objective data and analysis to support their arguments.
  • Citations and references: Research papers include citations and references to acknowledge the sources of information and ideas used in the paper. They use a specific citation style, such as APA, MLA, or Chicago, to ensure consistency and accuracy.
  • Peer-reviewed: Research papers are often peer-reviewed, which means they are evaluated by other experts in the field before they are published. Peer-review ensures that the research is of high quality, meets ethical standards, and contributes to the advancement of knowledge in the field.
  • Objective and unbiased: Research papers strive to be objective and unbiased in their presentation of the findings. They avoid personal biases or preconceptions and instead rely on the data and analysis to draw conclusions.

Advantages of Research Paper

Research papers have many advantages, both for the individual researcher and for the broader academic and professional community. Here are some advantages of research papers:

  • Contribution to knowledge: Research papers contribute to the body of knowledge in a particular field or discipline. They add new information, insights, and perspectives to existing literature and help advance the understanding of a particular phenomenon or issue.
  • Opportunity for intellectual growth: Research papers provide an opportunity for intellectual growth for the researcher. They require critical thinking, problem-solving, and creativity, which can help develop the researcher’s skills and knowledge.
  • Career advancement: Research papers can help advance the researcher’s career by demonstrating their expertise and contributions to the field. They can also lead to new research opportunities, collaborations, and funding.
  • Academic recognition: Research papers can lead to academic recognition in the form of awards, grants, or invitations to speak at conferences or events. They can also contribute to the researcher’s reputation and standing in the field.
  • Impact on policy and practice: Research papers can have a significant impact on policy and practice. They can inform policy decisions, guide practice, and lead to changes in laws, regulations, or procedures.
  • Advancement of society: Research papers can contribute to the advancement of society by addressing important issues, identifying solutions to problems, and promoting social justice and equality.

Limitations of Research Paper

Research papers also have some limitations that should be considered when interpreting their findings or implications. Here are some common limitations of research papers:

  • Limited generalizability: Research findings may not be generalizable to other populations, settings, or contexts. Studies often use specific samples or conditions that may not reflect the broader population or real-world situations.
  • Potential for bias : Research papers may be biased due to factors such as sample selection, measurement errors, or researcher biases. It is important to evaluate the quality of the research design and methods used to ensure that the findings are valid and reliable.
  • Ethical concerns: Research papers may raise ethical concerns, such as the use of vulnerable populations or invasive procedures. Researchers must adhere to ethical guidelines and obtain informed consent from participants to ensure that the research is conducted in a responsible and respectful manner.
  • Limitations of methodology: Research papers may be limited by the methodology used to collect and analyze data. For example, certain research methods may not capture the complexity or nuance of a particular phenomenon, or may not be appropriate for certain research questions.
  • Publication bias: Research papers may be subject to publication bias, where positive or significant findings are more likely to be published than negative or non-significant findings. This can skew the overall findings of a particular area of research.
  • Time and resource constraints: Research papers may be limited by time and resource constraints, which can affect the quality and scope of the research. Researchers may not have access to certain data or resources, or may be unable to conduct long-term studies due to practical limitations.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

  • Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Email [email protected]

paper about research methods

What Are the Different Types of Research Methods Used in Dissertation?

May 29, 2024 by Avery Devereaux

Introduction

Are you writing a research paper? Or are you beginning to write a dissertation? You need to know about the accolades of writing a dissertation.

One of them is different types of research methods. It will help you gain knowledge and interpret and write to delve better into the research topic. Therefore, it is important to know about different types of research, which will help you collect data properly and act on it.

Consequently, it is important to understand different research methodologies, which can help you write high-quality research papers. So, let’s learn more in the next section.

Different Types of Research Methods

After determining the hypothesis, you need to know different research methods. This will help you write an analysis much better. You will also be able to give direction to your dissertation paper and improve its quality.

Here are a few different types of research methods, as per the best –

Quantitative Research

Quantitative research is one of the primitive forms of scientific research. Following science, every other discipline followed the methods where numbers and facts acted to prove the hypothesis. The researchers collected primary data to give justice to your research topics and the objectives you have set.

However, to use the research method properly, you need to collect a large amount of data, which will help you to get accurate data. Therefore, with the right process, you can earn major benefits from the research method. So, if you are doing random sampling, you can use quantitative research to get the best outcome for your hypothesis.

Qualitative Research

As the humanities got more and more modern, the need for quantitative research increased. It was invented to get more human response from the respondents. The research method is much more humane and subjective in nature to put a better understanding upfront.

It mainly came into action after the birth of social psychology, which sought to understand human actions and usage.

For this, you can do observations, focus group discussions, interviews, and historical research. This will help you understand more about human interactions and their relation to social surroundings. Therefore, qualitative studies came into play to get a better understanding of humans.

Mixed Methods

Another addition to the list is mixed methods. It is a modern approach taken up by social science departments that seek to use quantitative and qualitative data to prove the relevancy of their data and hypothesis. That’s why most professors today ask researchers to use mixed methods to give a better understanding of the topic.

The modern approach has been fruitful, as numbers paint the picture for the holistic understanding to follow and coincide with it. That way, you get better results and properly analyze the subject. Also, it will increase the chance of error in your paper and follow the principles of falsification.

Fundamental Research

After moving away from the social science approach, let’s take the scientific approach, which aims to decipher what’s happening and formulate a theory. This approach is applicable to subjects like Math and psychology , where you can solve equations or behavioral patterns to present a theoretical understanding.

Moreover, fundamental research mostly applies to psychology, as it helps companies or institutions with their staff behavior. They study the behavorial pattern to come up with useful insights. That way, you will see in some cases, economics disciplines use the approach to offer an understanding of the correlation between two principles.

Conceptual Research

Another research method is conceptual research. In this research, philosophers mostly take abstract ideas and build theories around them. Here, there is no need for practical research, as it surrounds the present situations or visits past concepts and puts forth their discussion on it.

The methodology works by observing and understanding the situation in your own terms and interpreting them factually. The philosophers used the concept to understand the environment, nature, and everyday situations and forward a commentary of theories and inferences. Moreover, it enables thinkers to have multiple theories and inferences regarding one situation and revisit them or analyze the present ones to create new theories.

Empirical Research

Often, two variables affect each other to create a sense of mutual understanding. For example, if the inflation rate rises, your purchasing power decreases due to the high cost of prices and mortgage rates. Consequently, when you try to study the events it leads to experiments and observations, which is in other empirical research.

You will mostly see the usage of empirical research in fundamental sciences like chemistry and Physics. Those disciplines show how variables affect each other and lead to the creation of a world of their own. For this, you need to generate a hypothesis and work your research around to prove it null or alternative.

Descriptive Research

We all have read Max Weber, who suggests that social scientists should discuss facts and situations as they are without revealing their understanding. Similarly, this principle applies to descriptive research , where you have to discuss the variables as they are without actually controlling them.

This is a type of research in which you discuss the facts of the situation rather than putting your analysis in it. Therefore, it is also known as Ex post facto research. Research methods are mostly used when researchers have to describe characteristics, frequencies, and trends.

The Bottom Line

In the end, now that you know different types of research methods, you can choose any of them and apply them in your research. However, you can ask us, Ivory Research, to do the job for you and write you a great dissertation paper.

Here are a few frequently asked questions –

What are the research methods?

Research methods are the process through which research is conducted to understand its relevancy and understanding in the modern world.

What is a research method example?

Surveys, observations, interviews, focus group discussions, and so on are a few examples of research methods.

What is the concept of research?

The creation of new knowledge or creating a new concept around the existing one is a concept of research. 

Buy Me A Coffee

The Havok Journal seeks to serve as a voice of the Veteran and First Responder communities through a focus on current affairs and articles of interest to the public in general, and the veteran community in particular. We strive to offer timely, current, and informative content, with the occasional piece focused on entertainment. We are continually expanding and striving to improve the readers’ experience.

© 2024 The Havok Journal

[email protected]

The Havok Journal welcomes re-posting of our original content as long as it is done in compliance with our Terms of Use.

Like this article?

More articles related to this.

paper about research methods

Gonadorelin is a synthetic decapeptide designed to mimic the effects of the gonadotropin-releasing hormone. Studies…

paper about research methods

If you’re feeling stuck in your current career path and you’re ready to take the…

paper about research methods

Writing a research paper can be daunting, especially for those new to the process. However,…

Subscribe to our newsletter

Sign up to receive email updates daily and to hear what's going on with us!

  • Full Name *
  • Email address *

Explaining research performance: investigating the importance of motivation

  • Original Paper
  • Open access
  • Published: 23 May 2024
  • Volume 4 , article number  105 , ( 2024 )

Cite this article

You have full access to this open access article

paper about research methods

  • Silje Marie Svartefoss   ORCID: orcid.org/0000-0001-5072-1293 1   nAff4 ,
  • Jens Jungblut 2 ,
  • Dag W. Aksnes 1 ,
  • Kristoffer Kolltveit 2 &
  • Thed van Leeuwen 3  

559 Accesses

6 Altmetric

Explore all metrics

In this article, we study the motivation and performance of researchers. More specifically, we investigate what motivates researchers across different research fields and countries and how this motivation influences their research performance. The basis for our study is a large-N survey of economists, cardiologists, and physicists in Denmark, Norway, Sweden, the Netherlands, and the UK. The analysis shows that researchers are primarily motivated by scientific curiosity and practical application and less so by career considerations. There are limited differences across fields and countries, suggesting that the mix of motivational aspects has a common academic core less influenced by disciplinary standards or different national environments. Linking motivational factors to research performance, through bibliometric data on publication productivity and citation impact, our data show that those driven by practical application aspects of motivation have a higher probability for high productivity. Being driven by career considerations also increases productivity but only to a certain extent before it starts having a detrimental effect.

Similar content being viewed by others

paper about research methods

Theories of Motivation in Education: an Integrative Framework

paper about research methods

How to design bibliometric research: an overview and a framework proposal

paper about research methods

Scientific Truth in a Post-Truth Era: A Review*

Avoid common mistakes on your manuscript.

Introduction

Motivation and abilities are known to be as important factors in explaining employees’ job performance of employees (Van Iddekinge et al. 2018 ), and in the vast scientific literature on motivation, it is common to differentiate between intrinsic and extrinsic motivation factors (Ryan and Deci 2000 ). In this context, path-breaking individuals are said to often be intrinsically motivated (Jindal-Snape and Snape 2006 ; Thomas and Nedeva 2012 ; Vallerand et al. 1992 ), and it has been found that the importance of these of types of motivations differs across occupations and career stages (Duarte and Lopes 2018 ).

In this article, we address the issue of motivation for one specific occupation, namely: researchers working at universities. Specifically, we investigate what motivates researchers across fields and countries (RQ1) and how this motivation is linked to their research performance (RQ2). The question of why people are motivated to do their jobs is interesting to address in an academic context, where work is usually harder to control, and individuals tend to have a lot of much freedom in structuring their work. Moreover, there have been indications that academics possess an especially high level of motivation for their tasks that is not driven by a search for external rewards but by an intrinsic satisfaction from academic work (Evans and Meyer 2003 ; Leslie 2002 ). At the same time, elements of researchers’ performance are measurable through indicators of their publication activity: their productivity through the number of outputs they produce and the impact of their research through the number of citations their publications receive (Aksnes and Sivertsen 2019 ; Wilsdon et al. 2015 ).

Elevating research performance is high on the agenda of many research organisations (Hazelkorn 2015 ). How such performance may be linked to individuals’ motivational aspects has received little attention. Thus, a better understanding of this interrelation may be relevant for developing institutional strategies to foster environments that promote high-quality research and research productivity.

Previous qualitative research has shown that scientists are mainly intrinsically motivated (Jindal-Snape and Snape 2006 ). Other survey-based contributions suggest that there can be differences in motivations across disciplines (Atta-Owusu and Fitjar 2021 ; Lam 2011 ). Furthermore, the performance of individual scientists has been shown to be highly skewed in terms of publication productivity and citation rates (Larivière et al. 2010 ; Ruiz-Castillo and Costas 2014 ). There is a large body of literature explaining these differences. Some focus on national and institutional funding schemes (Hammarfelt and de Rijcke 2015 ; Melguizo and Strober 2007 ) and others on the research environment, such as the presence of research groups and international collaboration (Jeong et al. 2014 ), while many studies address the role of academic rank, age, and gender (see e.g. Baccini et al. 2014 ; Rørstad and Aksnes 2015 ). Until recently, less emphasis has been placed on the impact of researchers’ motivation. Some studies have found that different types of motivations drive high levels of research performance (see e.g. Horodnic and Zaiţ 2015 ; Ryan and Berbegal-Mirabent 2016 ). However, researchers are only starting to understand how this internal drive relates to research performance.

While some of the prior research on the impact of motivation depends on self-reported research performance evaluations (Ryan 2014 ), the present article combines survey responses with actual bibliometric data. To investigate variation in research motivation across scientific fields and countries, we draw on a large-N survey of economists, cardiologists, and physicists in Denmark, Norway, Sweden, the Netherlands, and the UK. To investigate how this motivation is linked to their research performance, we map the survey respondents’ publication and citation data from the Web of Science (WoS).

This article is organised as follows. First, we present relevant literature on research performance and motivation. Next, the scientific fields and countries are then presented before elaborating on our methodology. In the empirical analysis, we investigate variations in motivation across fields, gender, age, and academic position and then relate motivation to publications and citations as our two measures of research performance. In the concluding section, we discuss our findings and implications for national decision-makers and individual researchers.

Motivation and research performance

As noted above, the concepts of intrinsic and extrinsic motivation play an important role in the literature on motivation and performance. Here, intrinsic motivation refers to doing something for its inherent satisfaction rather than for some separable consequence. Extrinsic motivation refers to doing something because it leads to a separable outcome (Ryan and Deci 2000 ).

Some studies have found that scientists are mainly intrinsically motivated (Jindal-Snape and Snape 2006 ; Lounsbury et al. 2012 ). Research interests, curiosity, and a desire to contribute to new knowledge are examples of such motivational factors. Intrinsic motives have also been shown to be crucial when people select research as a career choice (Roach and Sauermann 2010 ). Nevertheless, scientists are also motivated by extrinsic factors. Several European countries have adopted performance-based research funding systems (Zacharewicz et al. 2019 ). In these systems, researchers do not receive direct financial bonuses when they publish, although such practices may occur at local levels (Stephan et al. 2017 ). Therefore, extrinsic motivation for such researchers may include salary increases, peer recognitions, promotion, or expanded access to research resources (Lam 2011 ). According to Tien and Blackburn ( 1996 ), both types of motivations operate simultaneously, and their importance vary and may depend on the individual’s circumstances, personal situation, and values.

The extent to which different kinds of motivations play a role in scientists’ performance has been investigated in several studies. In these studies, bibliometric indicators based on the number of publications are typically used as outcome measures. Such indicators play a critical role in various contexts in the research system (Wilsdon et al. 2015 ), although it has also been pointed out that individuals can have different motivations to publish (Hangel and Schmidt-Pfister 2017 ).

Based on a survey of Romanian economics and business administration academics combined with bibliometric data, Horodnic and Zait ( 2015 ) found that intrinsic motivation was positively correlated with research productivity, while extrinsic motivation was negatively correlated. Their interpretations of the results are that researchers motivated by scientific interest are more productive, while researchers motivated by extrinsic forces will shift their focus to more financially profitable activities. Similarly, based on the observation that professors continue to publish even after they have been promoted to full professor, Finkelstein ( 1984 ) concluded that intrinsic rather than extrinsic motivational factors have a decisive role regarding the productivity of academics.

Drawing on a survey of 405 research scientists working in biological, chemical, and biomedical research departments in UK universities, Ryan ( 2014 ) found that (self-reported) variations in research performance can be explained by instrumental motivation based on financial incentives and internal motivation based on the individual’s view of themselves (traits, competencies, and values). In the study, instrumental motivation was found to have a negative impact on research performance: As the desire for financial rewards increase, the level of research performance decreases. In other words, researchers mainly motivated by money will be less productive and effective in their research. Contrarily, internal motivation was found to have a positive impact on research performance. This was explained by highlighting that researchers motivated by their self-concept set internal standards that become a reference point that reinforces perceptions of competency in their environments.

Nevertheless, it has also been argued that intrinsic and extrinsic motivations for publishing are intertwined (Ma 2019 ). According to Tien and Blackburn ( 1996 ), research productivity is neither purely intrinsically nor purely extrinsically motivated. Publication activity is often a result of research, which may be intrinsically motivated or motivated by extrinsic factors such as a wish for promotion, where the number of publications is often a part of the assessment (Cruz-Castro and Sanz-Menendez 2021 ; Tien 2000 , 2008 ).

The negative relationship between external/instrumental motivation and performance and the positive relationship between internal/self-concept motivation and performance are underlined by Ryan and Berbegal-Mirabent ( 2016 ). Drawing on a fuzzy set qualitative comparative analysis of a random sampling of 300 of the original respondents from Ryan ( 2014 ), they find that scientists working towards the standards and values they identify with, combined with a lack of concern for instrumental rewards, contribute to higher levels of research performance.

Based on the above, this article will address two research questions concerning different forms of motivation and the relationship between motivation and research performance.

How does the motivation of researchers vary across fields and countries?

How do different types of motivations affect research performance?

In this study, the roles of three different motivational factors are analysed. These are scientific curiosity, practical and societal applications, and career progress. The study aims to assess the role of these specific motivational factors and not the intrinsic-extrinsic distinction more generally. Of the three factors, scientific curiosity most strongly relates to intrinsic motivation; practical and societal applications also entail strong intrinsic aspects. On the other hand, career progress is linked to extrinsic motivation.

In addition to variation in researchers’ motivations by field and country, we consider differences in relation to age, position and gender. Additionally, when investigating how motivation relates to scientific performance we control for the influence of age, gender, country and funding. These are dimensions where differences might be found in motivational factors given that scientific performance, particularly publication productivity, has been shown to differ along these dimensions (Rørstad and Aksnes 2015 ).

Research context: three fields, five countries

To address the research question about potential differences across fields and countries, the study is based on a sample consisting of researchers in three different fields (cardiology, economics, and physics) and five countries (Denmark, Norway, Sweden, the Netherlands, and the UK). Below, we describe this research context in greater detail.

The fields represent three different domains of science: medicine, social sciences, and the natural sciences, where different motivational factors may be at play. This means that the fields cover three main areas of scientific investigations: the understanding of the world, the functioning of the human body, and societies and their functions. The societal role and mission of the fields also differ. While a primary aim of cardiology research and practice is to reduce the burden of cardiovascular disease, physics research may drive technology advancements, which impacts society. Economics research may contribute to more effective use of limited resources and the management of people, businesses, markets, and governments. In addition, the fields also differ in publication patterns (Piro et al. 2013 ). The average number of publications per researcher is generally higher in cardiology and physics than in economics (Piro et al. 2013 ). Moreover, cardiologists and physicists mainly publish in international scientific journals (Moed 2005 ; Van Leeuwen 2013 ). In economics, researchers also tend to publish books, chapters, and articles in national languages, in addition to international journal articles (Aksnes and Sivertsen 2019 ; van Leeuwen et al. 2016 ).

We sampled the countries with a twofold aim. On the one hand, we wanted to have countries that are comparable so that differences in the development of the science systems, working conditions, or funding availability would not be too large. On the other hand, we also wanted to assure variation among the countries regarding these relevant framework conditions to ensure that our findings are not driven by a specific contextual condition.

The five countries in the study are all located in the northwestern part of Europe, with science systems that are foremost funded by block grant funding from the national governments (unlike, for example, the US, where research grants by national funding agencies are the most important funding mechanism) (Lepori et al. 2023 ).

In all five countries, the missions of the universities are composed of a blend of education, research, and outreach. Furthermore, the science systems in Norway, Denmark, Sweden, and the Netherlands have a relatively strong orientation towards the Anglo-Saxon world in the sense that publishing in the national language still exists, but publishing in English in internationally oriented journals in which English is the language of publications is the norm (Kulczycki et al. 2018 ). These framework conditions ensure that those working in the five countries have somewhat similar missions to fulfil in their professions while also belonging to a common mainly Anglophone science system.

However, in Norway, Denmark, Sweden, and the Netherlands, research findings in some social sciences, law, and the humanities are still oriented on publishing in various languages. Hence, we avoided selecting the humanities field for this study due to a potential issue with cross-country comparability (Sivertsen 2019 ; Sivertsen and Van Leeuwen 2014 ; Van Leeuwen 2013 ).

Finally, the chosen countries vary regarding their level of university autonomy. When combining the scores for organisational, financial, staffing, and academic autonomy presented in the latest University Autonomy in Europe Scorecard presented by the European University Association (EUA), the UK, the Netherlands, and Denmark have higher levels of autonomy compared to Norway and Sweden, with Swedish universities having less autonomy than their Norwegian counterparts (Pruvot et al. 2023 ). This variation is relevant for our study, as it ensures that our findings are not driven by response from a higher education system with especially high or low autonomy, which can influence the motivation and satisfaction of academics working in it (Daumiller et al. 2020 ).

Data and methods

The data used in this article are a combination of survey data and bibliometric data retrieved from the WoS. The WoS database was chosen for this study due to its comprehensive coverage of research literature across all disciplines, encompassing the three specific research areas under analysis. Additionally, the WoS database is well-suited for bibliometric analyses, offering citation counts essential for this study.

Two approaches were used to identify the sample for the survey. Initially, a bibliometric analysis of the WoS using journal categories (‘Cardiac & cardiovascular systems’, ‘Economics’, and ‘Physics’) enabled the identification of key institutions with a minimum number of publications within these journal categories. Following this, relevant organisational units and researchers within these units were identified through available information on the units’ webpages. Included were employees in relevant academic positions (tenured academic personnel, post-docs, and researchers, but not PhD students, adjunct positions, guest researchers, or administrative and technical personnel).

Second, based on the WoS data, people were added to this initial sample if they had a minimum number of publications within the field and belonged to any of the selected institutions, regardless of unit affiliation. For economics, the minimum was five publications within the selected period (2011–2016). For cardiology and physics, where the individual publication productivity is higher, the minimum was 10 publications within the same period. The selection of the minimum publication criteria was based on an analysis of publication outputs in these fields between 2011 and 2016. The thresholds were applied to include individuals who are more actively engaged in research while excluding those with more peripheral involvement. The higher thresholds for cardiology and physics reflect the greater frequency of publications (and co-authorship) observed in these fields.

The benefit of this dual-approach strategy to sampling is that we obtain a more comprehensive sample: the full scope of researchers within a unit and the full scope of researchers that publish within the relevant fields. Overall, 59% of the sample were identified through staff lists and 41% through the second step involving WoS data.

The survey data were collected through an online questionnaire first sent out in October 2017 and closed in December 2018. In this period, several reminders were sent to increase the response rate. Overall, the survey had a response rate of 26.1% ( N  = 2,587 replies). There were only minor variations in response rates between scientific fields; the variations were larger between countries. Tables  1 and 2 provide an overview of the response rate by country and field.

Operationalisation of motivation

Motivation was measured by a question in the survey asking respondents what motivates or inspires them to conduct research, of which three dimensions are analysed in the present paper. The two first answer categories were related to intrinsic motivation (‘Curiosity/scientific discovery/understanding the world’ and ‘Application/practical aims/creating a better society’). The third answer category was more related to extrinsic motivation (‘Progress in my career [e.g. tenure/permanent position, higher salary, more interesting/independent work]’). Appendix Table A1 displays the distribution of respondents and the mean value and standard deviation for each item.

These three different aspects of motivation do not measure the same phenomenon but seem to capture different aspects of motivation (see Pearson’s correlation coefficients in Appendix Table A2 ). There is no correlation between curiosity/scientific discovery, career progress, and practical application. However, there is a weak but significant positive correlation between career progress and practical application. These findings indicate that those motivated by career considerations to some degrees also are motivated by practical application.

In addition to investigating how researchers’ motivation varies by field and country, we consider the differences in relation to age, position and gender as well. Field of science differentiates between economics, cardiology, physics, and other fields. The country variables differentiate between the five countries. Age is a nine-category variable. The position variable differentiates between full professors, associate professors, and assistant professors. The gender variable has two categories (male or female). For descriptive statistics on these additional variables, see Appendix Table A3 .

Publication productivity and citation impact

To analyse the respondents’ bibliometric performance, the Centre for Science and Technology Studies (CWTS) in-house WoS database was used. We identified the publication output of each respondent during 2011–2017 (limited to regular articles, reviews, and letters). For 16% of the respondents, no publications were identified in the database. These individuals had apparently not published in international journals covered by the database. However, in some cases, the lack of publications may be due to identification problems (e.g. change of names). Therefore, we decided not to include the latter respondents in the analysis.

Two main performance measures were calculated: publication productivity and citation impact. As an indicator of productivity, we counted the number of publications for each individual (as author or co-author) during the period. To analyse the citation impact, a composite measure using three different indicators was used: total number of citations (total citations counts for all articles they have contributed to during the period, counting citations up to and including 2017), normalised citation score (MNCS), and proportion of publications among the 10% most cited articles in their fields (Waltman and Schreiber 2013 ). Here, the MNCS is an indicator for which the citation count of each article is normalised by subject, article type, and year, where 1.00 corresponds to the world average (Waltman et al. 2011 ). Based on these data, averages for the total publication output of each respondent were calculated. By using three different indicators, we can avoid biases or limitations attached to each of them. For example, using the MNCS, a respondent with only one publication would appear as a high impact researcher if this article was highly cited. However, when considering the additional indicator, total citation counts, this individual would usually perform less well.

The bibliometric scores were skewedly distributed among the respondents. Rather than using the absolute numbers, in this paper, we have classified the respondents into three groups according to their scores on the indicators. Here, we have used percentile rank classes (tertiles). Percentile statistics are increasingly applied in bibliometrics (Bornmann et al. 2013 ; Waltman and Schreiber 2013 ) due to the presence of outliers and long tails, which characterise both productivity and citation distributions.

As the fields analysed have different publication patterns, the respondents within each field were ranked according to their scores on the indicators, and their percentile rank was determined. For the productivity measure, this means that there are three groups that are equal in terms of number of individuals included: 1: Low productivity (the group with the lowest publication numbers, 0–33 percentile), 2: Medium productivity (33–67 percentile), and 3: High productivity (67–100 percentile). For the citation impact measure, we conducted a similar percentile analysis for each of the three composite indicators. Then everyone was assigned to one of the three percentile groups based on their average score: 1: Low citation impact (the group with lowest citation impact, 0–33 percentile), 2: Medium citation impact (33–67 percentile), and 3: High citation impact (67–100 percentile), cf. Table  3 . Although it might be argued that the application of tertile groups rather than absolute numbers leads to a loss of information, the advantage is that the results are not influenced by extreme values and may be easier to interpret.

Via this approach, we can analyse the two important dimensions of the respondents’ performance. However, it should be noted that the WoS database does not cover the publication output of the fields equally. Generally, physics and cardiology are very well covered, while the coverage of economics is somewhat lower due to different publication practices (Aksnes and Sivertsen 2019 ). This problem is accounted for in our study by ranking the respondents in each field separately, as described above. In addition, not all respondents may have been active researchers during the entire 2011–2017 period, which we have not adjusted for. Despite these limitations, the analysis provides interesting information on the bibliometric performance of the respondents at an aggregated level.

Regression analysis

To analyse the relationship between motivation and performance, we apply multinomial logistic regression rather then ordered logistic regression because we assume that the odds for respondents belonging in each category of the dependent variables are not equal (Hilbe 2017 ). The implication of this choice of model is that the model tests the probability of respondents being in one category compared to another (Hilbe 2017 ). This means that a reference or baseline category must be selected for each of the dependent variables (productivity and citation impact). Furthermore, the coefficient estimates show how the probability of being in one of the other categories decreases or increases compared to being in the reference category.

For this analysis, we selected the medium performers as the reference or baseline category for both our dependent variables. This enables us to evaluate how the independent variables affect the probability of being in the low performers group compared to the medium performers and the high performers compared to the medium performers.

To evaluate model fit, we started with a baseline model where only types of motivations were included as independent variables. Subsequently, the additional variables were introduced into the model, and based on measures for model fit (Pseudo R 2 , -2LL, and Akaike Information Criterion (AIC)), we concluded that the model with all additional variables included provides the best fit to the data for both the dependent variables (see Appendix Tables A5 and A6 ). Additional control variables include age, gender, country, and funding. We include these variables as controls to obtain robust effects of motivation and not effects driven by other underlying factors. The type of funding was measured by variables where the respondent answered the following question: ‘How has your research been funded the last five years?’ The funding variable initially consisted of four categories: ‘No source’, ‘Minor source’, ‘Moderate source’, and ‘Major source’. In this analysis, we have combined ‘No source’ and ‘Minor source’ into one category (0) and ‘Moderate source’ and ‘Major source’ into another category (1). Descriptive statistics for the funding variables are available in Appendix Table A4 . We do not control for the influence of field due to how the scientific performance variables are operationalised, the field normalisation implies that there are no variations across fields. We also do not control for position, as this variable is highly correlated with age, and we are therefore unable to include these two variables in the same model.

The motivation of researchers

In the empirical analysis, we first investigate variation in motivation and then relate it to publications and citations as our two measures of research performance.

As Fig.  1 shows, the respondents are mainly driven by curiosity and the wish to make scientific discoveries. This is by far the most important motivation. Practical application is also an important source of motivation, while making career progress is not identified as being very important.

figure 1

Motivation of researchers– percentage

As Table  4 shows, at the level of fields, there are no large differences, and the motivational profiles are relatively similar. However, physicists tend to view practical application as somewhat less important than cardiologists and economists. Moreover, career progress is emphasised most by economists. Furthermore, as table 5 shows, there are some differences in motivation between countries. For curiosity/scientific discovery and practical application, the variations across countries are minor, but researchers in Denmark tend to view career progress as somewhat more important than researchers in the other countries.

Furthermore, as table 6 shows, women seem to view practical application and career progress as a more important motivation than men; these differences are also significant. Similar gender disparities have also been reported in a previous study (Zhang et al. 2021 ).

There are also some differences in motivation across the additional variables worth mentioning, as Table  7 shows. Unsurprisingly, perhaps, there is a significant moderate negative correlation between age, position, and career progress. This means that the importance of career progress as a motivation seems to decrease with increased age or a move up the position hierarchy.

In the second part of the analysis, we relate motivation to research performance. We first investigate publications and productivity using the percentile groups. Here, we present the results we use using predicted probabilities because they are more easily interpretable than coefficient estimates. For the model with productivity percentile groups as the dependent variable, the estimates for career progress were negative when comparing the medium productivity group to the high productivity group and the medium productivity group to the low productivity group. This result indicates that the probability of being in the high and low productivity groups decreases compared to the medium productivity group as the value of career progress increases, which may point towards a curvilinear relationship between the variables. A similar pattern was also found in the model with the citation impact group as the dependent variable, although it was not as apparent.

As a result of this apparent curvilinear relationship, we included quadric terms for career progress in both models, and these were significant. Likelihood ratio tests also show that the models with quadric terms included have a significant better fit to the data. Furthermore, the AIC was also lower for these models compared to the initial models where quadric terms were not included (see Appendix Tables A5 – A7 ). Consequently, we base our results on these models, which can be found in Appendix Table A7 . Due to a low number of respondents in the low categories of the scientific curiosity/discovery variable, we also combined the first three values into one to include it as a variable in the regression analysis, which results in a reduced three-value variable for scientific curiosity/discovery.

Results– productivity percentile group

Using the productivity percentile group as the dependent variable, we find that the motivational aspects of practical application and career progress have a significant effect on the probability of being in the low, medium, or high productivity group but not curiosity/scientific discovery. In Figs.  2 and 3 , each line represents the probability of being in each group across the scale of each motivational aspect.

figure 2

Predicted probability for being in each of the productivity groups according to the value on the ‘practical application’ variable

figure 3

Predicted probability of being in the low and high productivity groups according to the value on the ‘progress in my career’ variable

Figure  2 shows that at low values of application, there are no significant differences between the probability of being in either of the groups. However, from around value 3 of application, the differences between the probability of being in each group increases, and these are also significant. As a result, we concluded that high scores on practical application is related to increased probability of being in the high productivity group.

In Fig.  3 , we excluded the medium productivity group from the figure because there are no significant differences between this group and the high and low productivity group. Nevertheless, we found significant differences between the low productivity and the high productivity group. Since we added a quadric term for career progress, the two lines in Fig.  3 have a curvilinear shape. Figure  3 shows that there are only significant differences between the probability of being in the low or high productivity group at mid and high values of career progress. In addition, the probability of being in the high productivity group is at its highest value at mid values of career progress. This indicates that being motivated by career progress increases the probability of being in the high productivity group but only up to a certain point before it begins to have a negative effect on the probability of being in this group.

We also included age and gender as variables in the model, and Figs.  4 and 5 show the results. Figure  4 shows that age especially impacts the probability of being in the high productivity and low productivity groups. The lowest age category (< 30–34 years) has the highest probability for being in the low productivity group, while from the mid age category (50 years and above), the probability is highest for being in the high productivity group. This means that increased age is related to an increased probability of high productivity. The variable controlling for the effect of funding also showed some significant results (see Appendix Table A7 ). The most relevant finding is that receiving competitive grants from external public sources had a very strong and significant positive effect on being in the high productivity group and a medium-sized significant negative effect on being in the low productivity group. This shows that receiving external funding in the form of competitive grants has a strong effect on productivity.

figure 4

Predicted probability of being in each of the productivity groups according to age

Figure  5 shows that there is a difference between male and female respondents. For females, there are no differences in the probability of being in either of the groups, while males have a higher probability of being in the high productivity group compared to the medium and low productivity groups.

figure 5

Results– citation impact group

For the citation impact group as the dependent variable, we found that career progress has a significant effect on the probability of being in the low citation impact group or the high citation group but not curiosity/scientific discovery or practical application. Figure  6 shows how the probability of being in the high citation impact group increases as the value on career progress increases and is higher than that of being in the low citation impact group, but only up to a certain point. This indicates that career progress increases the probability of being in the high citation impact group to some degree but that too high values are not beneficial for high citation impact. However, it should also be noted that the effect of career progress is weak and that it is difficult to conclude on how very low or very high values of career progress affect the probability of being in the two groups.

figure 6

Predicted probability for being in each of the citation impact groups according to the value on the ‘progress in my career’ variable

We also included age and gender as variables in the model, and we found a similar pattern as in the model with productivity percentile group as the dependent variable. However, the relationship between the variables is weaker in this model with the citation impact group as the dependent variable. Figure  7 shows that the probability of being in the high citation impact group increases with age, but there is no significant difference between the probability of being in the high citation impact group and the medium citation impact group. We only see significant differences when each of these groups is compared to the low citation impact group. In addition, the increase in probability is more moderate in this model.

figure 7

Predicted probability of being in each of the citation impact groups according to age

Figure  8 shows that there are differences between male and female respondents. Male respondents have a significant higher probability of being in the medium or high citation impact group compared to the low citation impact group, but there is no significant difference in the probability between the high and medium citation impact groups. For female respondents, there are no significant differences. Similarly, for age, the effect also seems to be more moderate in this model compared to the model with productivity percentile groups as the dependent variable. In addition, the effect of funding sources is more moderate on citation impact compared to productivity (see Appendix Table A7 ). Competitive grants from external public sources still have the most relevant effect, but the effect size and level of significance is lower than for the model where productivity groups are the dependent variable. Respondents who received a large amount of external funding through competitive grants are more likely to be highly cited, but the effect size is much smaller, and the result is only significant at p  < 0.1. Those who do not receive much funding from this source are more likely to be in the low impact group. Here, the effect size is large, and the coefficient is highly significant.

figure 8

Predicted probability for being in each of the citation impact groups according to gender

Concluding discussion

This article aimed to explore researchers’ motivations and investigate the impact of motivation on research performance. By addressing these issues across several fields and countries, we provided new evidence on the motivation and performance of researchers.

Most researchers in our large-N survey found curiosity/scientific discovery to be a crucial motivational factor, with practical application being the second most supported aspect. Only a smaller number of respondents saw career progress as an important inspiration to conduct their research. This supports the notion that researchers are mainly motivated by core aspects of academic work such as curiosity, discoveries, and practical application of their knowledge and less so by personal gains (see Evans and Meyer 2003 ). Therefore, our results align with earlier research on motivation. In their interview study of scientists working at a government research institute in the UK, Jindal-Snape and Snape ( 2006 ) found that the scientists were typically motivated by the ability to conduct high quality, curiosity-driven research and de-motivated by the lack of feedback from management, difficulty in collaborating with colleagues, and constant review and change. Salaries, incentive schemes, and prospects for promotion were not considered a motivator for most scientists. Kivistö and colleagues ( 2017 ) also observed similar patterns in more recent survey data from Finnish academics.

As noted in the introduction, the issue of motivation has often been analysed in the literature using the intrinsic-extrinsic distinction. In our study, we have not applied these concepts directly. However, it is clear that the curiosity/scientific discovery item should be considered a type of intrinsic motivation, as it involves performing the activity for its inherent satisfaction. Moreover, the practical application item should probably be considered mainly intrinsic, as it involves creating a better society (for others) without primarily focusing on gains for oneself. The career progress item explicitly mentions personal gains such as position and higher salary and is, therefore, a type of extrinsic motivation. This means that our results support the notion that there are very strong elements of intrinsic motivation among researchers (Jindal-Snape and Snape 2006 ).

When analysing the three aspects of motivation, we found some differences. Physicists tend to view practical application as less important than researchers in the two other fields, while career progress was most emphasised by economists. Regarding country differences, our data suggest that career progress is most important for researchers in Denmark. Nevertheless, given the limited effect sizes, the overall picture is that motivational factors seem to be relatively similar regarding disciplinary and country dimensions.

Regarding gender aspects of motivation, our data show that women seem to view practical application and career progress as more important than men. One explanation for this could be the continued gender differences in academic careers, which tend to disadvantage women, thus creating a greater incentive for female scholars to focus on and be motivated by career progress aspects (Huang et al. 2020 ; Lerchenmueller and Sorenson 2018 ). Unsurprisingly, respondents’ age and academic position influenced the importance of different aspects of motivation, especially regarding career progress. Here, increased age and moving up the positional hierarchy are linked to a decrease in importance. This highlights that older academics and those in more senior positions drew more motivation from other sources that are not directly linked to their personal career gains. This can probably be explained by the academic career ladder plateauing at a certain point in time, as there are often no additional titles and very limited recognition beyond becoming a full professor. Finally, the type of funding that scholars received also had an influence on their productivity and, to a certain extent, citation impact.

Overall, there is little support that researchers across various fields and countries are very different when it comes to their motivation for conducting research. Rather, there seems to be a strong common core of academic motivation that varies mainly by gender and age/position. Rather than talking about researchers’ motivation per se, our study, therefore, suggests that one should talk about motivation across gender, at different stages of the career, and, to a certain degree, in different fields. Thus, motivation seems to be a multi-faceted construct, and the importance of different aspects of motivation vary between different groups.

In the second step of our analysis, we linked motivation to performance. Here, we focused on both scientific productivity and citation impact. Regarding the former, our data show that both practical application and career progress have a significant effect on productivity. The relationship between practical application aspects and productivity is linear, meaning that those who indicate that this aspect of motivation is very important to them have a higher probability of being in the high productivity group. The relationship between career aspects of motivation and productivity is curve linear, and we found only significant differences between the high and low productivity groups at mid and high values of the motivation scale. This indicates that being more motivated by career progress increases productivity but only to a certain extent before it starts having a detrimental effect. A common assumption has been that intrinsic motivation has a positive and instrumental effect and extrinsic motivation has a negative effect on the performance of scientists (Peng and Gao 2019 ; Ryan and Berbegal-Mirabent 2016 ). Our results do not generally support this, as motives related to career progress are positively linked with productivity only to a certain point. Possibly, this can be explained by the fact that the number of publications is often especially important in the context of recruitment and promotion (Langfeldt et al. 2021 ; Reymert et al. 2021 ). Thus, it will be beneficial from a scientific career perspective to have many publications when trying to get hired or promoted.

Regarding citation impact, our analysis highlights that only the career aspects of motivation have a significant effect. Similar to the results regarding productivity, being more motivated by career progress increases the probability of being in the high citation impact group, but only to a certain value when the difference stops being significant. It needs to be pointed out that the effect strength is weaker than in the analysis that focused on productivity. Thus, these results should be treated with greater caution.

Overall, our results shed light on some important aspects regarding the motivation of academics and how this translates into research performance. Regarding our first research question, it seems to be the case that there is not one type of motivation but rather different contextual mixes of motivational aspects that are strongly driven by gender and the academic position/age. We found only limited effects of research fields and even less pronounced country effects, suggesting that while situational, the mix of motivational aspects also has a common academic core that is less influenced by different national environments or disciplinary standards. Regarding our second research question, our results challenge the common assumption that intrinsic motivation has a positive effect and extrinsic motivation has a negative effect on the performance of scientists. Instead, we show that motives related to career are positively linked to productivity at least to a certain point. Our analysis regarding citation patterns achieved similar results. Combined with the finding regarding the importance of current academic position and age for specific patterns of motivation, it could be argued that the fact that the number of publications is often used as a measurement in recruitment and promotion makes academics that are more driven by career aspects publish more, as this is perceived as a necessary condition for success.

Our study has a clear focus on the research side of academic work. However, most academics do both teaching and research, which raises the question of how far our results can also inform our knowledge regarding the motivation for teaching. On the one hand, previous studies have highlighted that intrinsic motivation is also of high importance for the quality of teaching (see e.g. Wilkesmann and Lauer 2020 ), which fits well with our findings. At the same time, the literature also highlights persistent goal conflicts of academics (see e.g. Daumiller et al. 2020 ), given that extra time devoted to teaching often comes at the costs of publications and research. Given that other findings in the literature show that research performance continues to be of higher importance than teaching in academic hiring processes (Reymert et al. 2021 ), the interplay between research performance, teaching performance, and different types of motivation is most likely more complicated and demands further investigation.

While offering several relevant insights, our study still comes with certain limitations that must be considered. First, motivation is a complex construct. Thus, there are many ways one could operationalise it, and not one specific understanding so far seems to have emerged as best practice. Therefore, our approach to operationalisation and measurement should be seen as an addition to this broader field of measurement approaches, and we do not claim that this is the only sensible way of doing it. Second, we rely on self-reported survey data to measure the different aspects of motivation in our study. This means that aspects such as social desirability could influence how far academics claim to be motivated by certain aspects. For example, claiming to be mainly motivated by personal career gains may be considered a dubious motive among academics.

With respect to the bibliometric analyses, it is important to realise that we have lumped researchers into categories, thereby ‘smoothening’ the individual performances into group performances under the various variables. This has an effect that some extraordinary scores might have become invisible in our study, which might have been interesting to analyse separately, throwing light on the relationships we studied. However, breaking the material down to the lower level of analysis of individual researchers also comes with a limitation, namely that at the level of the individual academic, bibliometrics tend to become quite sensitive for the underlying numbers, which in itself is then hampered by the coverage of the database used, the publishing cultures in various countries and fields, and the age and position of the individuals. Therefore, the level of the individual academic has not been analysed in our study, how interesting and promising outcomes might have been. even though we acknowledge that such a study could yield interesting results.

Finally, our sample is drawn from northwestern European countries and a limited set of disciplines. We would argue that we have sufficient variation in countries and disciplines to make the results relevant for a broader audience context. While our results show rather small country or discipline differences, we are aware that there might be country- or discipline-specific effects that we cannot capture due to the sampling approach we used. Moreover, as we had to balance sufficient variation in framework conditions with the comparability of cases, the geographical generalisation of our results has limitations.

This article investigated what motivates researchers across different research fields and countries and how this motivation influences their research performance. The analysis showed that the researchers are mainly motivated by scientific curiosity and practical application and less so by career considerations. Furthermore, the analysis shows that researchers driven by practical application aspects of motivation have a higher probability of high productivity. Being driven by career considerations also increases productivity but only to a certain extent before it starts having a detrimental effect.

The article is based on a large-N survey of economists, cardiologists, and physicists in Denmark, Norway, Sweden, the Netherlands, and the UK. Building on this study, future research should expand the scope and study the relationship between motivation and productivity as well as citation impact in a broader disciplinary and geographical context. In addition, we encourage studies that develop and validate our measurement and operationalisation of aspects of researchers’ motivation.

Finally, a long-term panel study design that follows respondents throughout their academic careers and investigates how far their motivational patterns shift over time would allow for more fine-grained analysis and thereby a richer understanding of the important relationship between motivation and performance in academia.

Data availability

The data set for this study is available from the corresponding author upon reasonable request.

Aksnes DW, Sivertsen G (2019) A criteria-based assessment of the coverage of Scopus and web of Science. J Data Inform Sci 4(1):1–21. https://doi.org/10.2478/jdis-2019-0001

Article   Google Scholar  

Atta-Owusu K, Fitjar RD (2021) What motivates academics for external engagement? Exploring the effects of motivational drivers and organizational fairness. Sci Public Policy. https://doi.org/10.1093/scipol/scab075 . November, scab075

Baccini A, Barabesi L, Cioni M, Pisani C (2014) Crossing the hurdle: the determinants of individual. Sci Perform Scientometrics 101(3):2035–2062. https://doi.org/10.1007/s11192-014-1395-3

Bornmann L, Leydesdorff L, Mutz R (2013) The use of percentiles and percentile rank classes in the analysis of bibliometric data: opportunities and limits. J Informetrics 7(1):158–165. https://doi.org/10.1016/j.joi.2012.10.001

Cruz-Castro L, Sanz-Menendez L (2021) What should be rewarded? Gender and evaluation criteria for tenure and promotion. J Informetrics 15(3):1–22. https://doi.org/10.1016/j.joi.2021.101196

Daumiller M, Stupnisky R, Janke S (2020) Motivation of higher education faculty: theoretical approaches, empirical evidence, and future directions. Int J Educational Res 99:101502. https://doi.org/10.1016/j.ijer.2019.101502

Duarte H, Lopes D (2018) Career stages and occupations impacts on workers motivations. Int J Manpow 39(5):746–763. https://doi.org/10.1108/IJM-02-2017-0026

Evans IM, Meyer LH (2003) Motivating the professoriate: why sticks and carrots are only for donkeys. High Educ Manage Policy 15(3):151–167. https://doi.org/10.1787/hemp-v15-art29-en

Finkelstein MJ (1984) The American academic profession: a synthesis of social scientific inquiry since World War II. Ohio State University, Columbus

Google Scholar  

Hammarfelt B, de Rijcke S (2015) Accountability in context: effects of research evaluation systems on publication practices, disciplinary norms, and individual working routines in the Faculty of arts at Uppsala University. Res Evaluation 24(1):63–77. https://doi.org/10.1093/reseval/rvu029

Hangel N, Schmidt-Pfister D (2017) Why do you publish? On the tensions between generating scientific knowledge and publication pressure. Aslib J Inform Manage 69(5):529–544. https://doi.org/10.1108/AJIM-01-2017-0019

Hazelkorn E (2015) Rankings and the reshaping of higher education: the battle for world-class excellence. Palgrave McMillan, Basingstoke

Book   Google Scholar  

Hilbe JM (2017) Logistic regression models. Taylor & Francis Ltd, London

Horodnic IA, Zaiţ A (2015) Motivation and research productivity in a university system undergoing transition. Res Evaluation 24(3):282–292

Huang J, Gates AJ, Sinatra R, Barabási A-L (2020) Historical comparison of gender inequality in scientific careers across countries and disciplines. Proceedings of the National Academy of Sciences 117(9):4609–4616. https://doi.org/10.1073/pnas.1914221117

Jeong S, Choi JY, Kim J-Y (2014) On the drivers of international collaboration: the impact of informal communication, motivation, and research resources. Sci Public Policy 41(4):520–531. https://doi.org/10.1093/scipol/sct079

Jindal-Snape D, Snape JB (2006) Motivation of scientists in a government research institute: scientists’ perceptions and the role of management. Manag Decis 44(10):1325–1343. https://doi.org/10.1108/00251740610715678

Kivistö J, Pekkola E, Lyytinen A (2017) The influence of performance-based management on teaching and research performance of Finnish senior academics. Tert Educ Manag 23(3):260–275. https://doi.org/10.1080/13583883.2017.1328529

Kulczycki E, Engels TCE, Pölönen J, Bruun K, Dušková M, Guns R et al (2018) Publication patterns in the social sciences and humanities: evidence from eight European countries. Scientometrics 116(1):463–486. https://doi.org/10.1007/s11192-018-2711-0

Lam A (2011) What motivates academic scientists to engage in research commercialization: gold, ribbon or puzzle? Res Policy 40(10):1354–1368. https://doi.org/10.1016/j.respol.2011.09.002

Langfeldt L, Reymert I, Aksnes DW (2021) The role of metrics in peer assessments. Res Evaluation 30(1):112–126. https://doi.org/10.1093/reseval/rvaa032

Larivière V, Macaluso B, Archambault É, Gingras Y (2010) Which scientific elites? On the concentration of research funds, publications and citations. Res Evaluation 19(1):45–53. https://doi.org/10.3152/095820210X492495

Lepori B, Jongbloed B, Hicks D (2023) Introduction to the handbook of public funding of research: understanding vertical and horizontal complexities. In: Lepori B, Hicks BJ D (eds) Handbook of public funding of research. Edward Elgar Publishing, Cheltenham, pp 1–19

Chapter   Google Scholar  

Lerchenmueller MJ, Sorenson O (2018) The gender gap in early career transitions in the life sciences. Res Policy 47(6):1007–1017. https://doi.org/10.1016/j.respol.2018.02.009

Leslie DW (2002) Resolving the dispute: teaching is academe’s core value. J High Educ 73(1):49–73

Lounsbury JW, Foster N, Patel H, Carmody P, Gibson LW, Stairs DR (2012) An investigation of the personality traits of scientists versus nonscientists and their relationship with career satisfaction: relationship of personality traits and career satisfaction of scientists and nonscientists. R&D Manage 42(1):47–59. https://doi.org/10.1111/j.1467-9310.2011.00665.x

Ma L (2019) Money, morale, and motivation: a study of the output-based research support scheme. Univ Coll Dublin Res Evaluation 28(4):304–312. https://doi.org/10.1093/reseval/rvz017

Melguizo T, Strober MH (2007) Faculty salaries and the maximization of prestige. Res High Educt 48(6):633–668

Moed HF (2005) Citation analysis in research evaluation. Springer, Dordrecht

Netherlands Observatory of Science (NOWT) (2012) Report to the Dutch Ministry of Science, Education and Culture (OC&W). Den Haag 1998

Peng J-E, Gao XA (2019) Understanding TEFL academics’ research motivation and its relations with research productivity. SAGE Open 9(3):215824401986629. https://doi.org/10.1177/2158244019866295

Piro FN, Aksnes DW, Rørstad K (2013) A macro analysis of productivity differences across fields: challenges in the measurement of scientific publishing. J Am Soc Inform Sci Technol 64(2):307–320. https://doi.org/10.1002/asi.22746

Pruvot EB, Estermann T, Popkhadze N (2023) University autonomy in Europe IV. The scorecard 2023. Retrieved from Brussels. https://eua.eu/downloads/publications/eua autonomy scorecard.pdf

Reymert I, Jungblut J, Borlaug SB (2021) Are evaluative cultures national or global? A cross-national study on evaluative cultures in academic recruitment processes in Europe. High Educ 82(5):823–843. https://doi.org/10.1007/s10734-020-00659-3

Roach M, Sauermann H (2010) A taste for science? PhD scientists’ academic orientation and self-selection into research careers in industry. Res Policy 39(3):422–434. https://doi.org/10.1016/j.respol.2010.01.004

Rørstad K, Aksnes DW (2015) Publication rate expressed by age, gender and academic position– A large-scale analysis of Norwegian academic staff. J Informetrics 9(2):317–333. https://doi.org/10.1016/j.joi.2015.02.003

Ruiz-Castillo J, Costas R (2014) The skewness of scientific productivity. J Informetrics 8(4):917–934. https://doi.org/10.1016/j.joi.2014.09.006

Ryan JC (2014) The work motivation of research scientists and its effect on research performance: work motivation of research scientists. R&D Manage 44(4):355–369. https://doi.org/10.1111/radm.12063

Ryan JC, Berbegal-Mirabent J (2016) Motivational recipes and research performance: a fuzzy set analysis of the motivational profile of high-performing research scientists. J Bus Res 69(11):5299–5304. https://doi.org/10.1016/j.jbusres.2016.04.128

Ryan RM, Deci EL (2000) Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp Educ Psychol 25(1):54–67. https://doi.org/10.1006/ceps.1999.1020

Sivertsen G (2019) Understanding and evaluating research and scholarly publishing in the social sciences and humanities (SSH). Data Inform Manage 3(2):61–71. https://doi.org/10.2478/dim-2019-0008

Sivertsen G, Van Leeuwen T (2014) Scholarly publication patterns in the social sciences and humanities and their relationship with research assessment

Stephan P, Veugelers R, Wang J (2017) Reviewers are blinkered by bibliometrics. Nature 544(7651):411–412. https://doi.org/10.1038/544411a

Thomas D, Nedeva M (2012) Characterizing researchers to study research funding agency impacts: the case of the European Research Council’s starting grants. Res Evaluation 21(4):257–269. https://doi.org/10.1093/reseval/rvs020

Tien FF (2000) To what degree does the desire for promotion motivate faculty to perform research? Testing the expectancy theory. Res High Educt 41(6):723–752. https://doi.org/10.1023/A:1007020721531

Tien FF (2008) What kind of faculty are motivated to perform research by the desire for promotion? High Educ 55(1):17–32. https://doi.org/10.1007/s10734-006-9033-5

Tien FF, Blackburn RT (1996) Faculty rank system, research motivation, and faculty research productivity: measure refinement and theory testing. J High Educ 67(1):2. https://doi.org/10.2307/2943901

Vallerand RJ, Pelletier LG, Blais MR, Briere NM, Senecal C, Vallieres EF (1992) The academic motivation scale: a measure of intrinsic, extrinsic, and amotivation in education. Educ Psychol Meas 52(4):1003–1017. https://doi.org/10.1177/0013164492052004025

Van Iddekinge CH, Aguinis H, Mackey JD, DeOrtentiis PS (2018) A meta-analysis of the interactive, additive, and relative effects of cognitive ability and motivation on performance. J Manag 44(1):249–279. https://doi.org/10.1177/0149206317702220

Van Leeuwen T (2013) Bibliometric research evaluations, Web of Science and the social sciences and humanities: A problematic relationship? Bibliometrie - Praxis Und Forschung, September, Bd. 2(2013). https://doi.org/10.5283/BPF.173

Van Leeuwen T, van Wijk E, Wouters PF (2016) Bibliometric analysis of output and impact based on CRIS data: a case study on the registered output of a Dutch university. Scientometrics 106(1):1–16. https://doi.org/10.1007/s11192-015-1788-y

Waltman L, Schreiber M (2013) On the calculation of percentile-based bibliometric indicators. J Am Soc Inform Sci Technol 64(2):372–379. https://doi.org/10.1002/asi.22775

Waltman L, van Eck NJ, van Leeuwen TN, Visser MS, van Raan AFJ (2011) Towards a new crown indicator: an empirical analysis. Scientometrics 87(3):467–481. https://doi.org/10.1007/s11192-011-0354-5

Wilkesmann U, Lauer S (2020) The influence of teaching motivation and new public management on academic teaching. Stud High Educ 45(2):434–451. https://doi.org/10.1080/03075079.2018.1539960

Wilsdon J, Allen L, Belfiore E, Campbell P, Curry S, Hill S, Jones R et al (2015) The metric tide: report of the independent review of the role of metrics in research assessment and management. https://doi.org/10.13140/RG.2.1.4929.1363

Zacharewicz T, Lepori B, Reale E, Jonkers K (2019) Performance-based research funding in EU member states—A comparative assessment. Sci Public Policy 46(1):105–115. https://doi.org/10.1093/scipol/scy041

Zhang L, Sivertsen G, Du H, Huang Y, Glänzel W (2021) Gender differences in the aims and impacts of research. Scientometrics 126(11):8861–8886. https://doi.org/10.1007/s11192-021-04171-y

Download references

Acknowledgements

We are thankful to the R-QUEST team for input and comments to the paper.

The authors disclosed the receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Research Council Norway (RCN) [grant number 256223] (R-QUEST).

Open access funding provided by University of Oslo (incl Oslo University Hospital)

Author information

Silje Marie Svartefoss

Present address: TIK Centre for Technology, Innovation and Culture, University of Oslo, 0317, Oslo, Norway

Authors and Affiliations

Nordic Institute for Studies in Innovation, Research and Education (NIFU), Økernveien 9, 0608, Oslo, Norway

Silje Marie Svartefoss & Dag W. Aksnes

Department of Political Science, University of Oslo, 0315, Oslo, Norway

Jens Jungblut & Kristoffer Kolltveit

Centre for Science and Technology Studies (CWTS), Leiden University, 2311, Leiden, The Netherlands

Thed van Leeuwen

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Silje Marie Svartefoss, Jens Jungblut, Dag W. Aksnes, Kristoffer Kolltveit, and Thed van Leeuwen. The first draft of the manuscript was written by all authors in collaboration, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Silje Marie Svartefoss .

Ethics declarations

Competing interests.

The authors have no competing interests to declare that are relevant to the content of this article.

Informed consent

was retrieved from the participants in this study.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Svartefoss, S.M., Jungblut, J., Aksnes, D.W. et al. Explaining research performance: investigating the importance of motivation. SN Soc Sci 4 , 105 (2024). https://doi.org/10.1007/s43545-024-00895-9

Download citation

Received : 14 December 2023

Accepted : 15 April 2024

Published : 23 May 2024

DOI : https://doi.org/10.1007/s43545-024-00895-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Performance
  • Productivity
  • Find a journal
  • Publish with us
  • Track your research

Understanding Naturalistic Observation in Research

This essay is about naturalistic observation, a research method used to observe subjects in their natural environment without interference. It discusses the advantages of this method, such as providing rich, qualitative insights into behavior, and the challenges, including observer bias and lack of control over variables. The essay also touches on ethical considerations and the impact of technological advancements on the effectiveness of naturalistic observation. Examples from various fields like anthropology, ecology, and psychology illustrate the method’s versatility and significance in understanding authentic behaviors in real-world settings.

How it works

Naturalistic observation emerges as a method frequently employed in psychology and the social sciences. This methodology entails the observation of subjects in their native habitat devoid of any manipulation or intrusion by the investigator. The primary objective is to amass data on the behavioral patterns of subjects within authentic settings, proffering insights that may elude capture within a more regimented laboratory milieu. By affording behaviors the latitude to manifest organically, researchers can glean genuine reactions and interchanges, rendering this method invaluable for certain types of inquiries.

An eminent advantage of naturalistic observation lies in its capacity to furnish a nuanced, qualitative comprehension of behavior. For instance, through the observation of juveniles at a recreational area, an investigator can discern not only their play dynamics but also their social dynamics, conflict resolution strategies, and the evolution of their play over time. These observations can subsequently underpin deductions regarding social maturation, aggression, collaboration, and other facets of behavior. Such profundity of insight often eludes attainment through alternative methodologies such as surveys or experiments, wherein the contrived nature of the milieu may exert a sway over the behavior under observation.

Nevertheless, naturalistic observation is not devoid of impediments. One of the principal challenges pertains to the specter of observer partiality. Since the investigator is actively monitoring and documenting behaviors, their own presumptions or convictions may inadvertently color their perceptions and interpretations. To counteract this tendency, researchers frequently deploy strategies such as inter-observer concordance, whereby multiple observers independently record the same occurrence and subsequently compare findings to ascertain congruity. Furthermore, meticulous protocols and training can aid observers in preserving objectivity to the fullest extent feasible.

Another hurdle is the paucity of dominion over extraneous variables. Within a natural setting, myriad factors may influence behavior, ranging from meteorological conditions to the presence of bystanders. This renders the establishment of causal relationships a daunting task. For instance, if an investigator is scrutinizing responses to public art installations, discerning whether reactions stem from the art per se or from ancillary factors such as temporal considerations or pedestrian traffic patterns may prove challenging. Despite these constraints, the concession is often warranted for the genuine, ecological validity that naturalistic observation affords.

Ethical considerations likewise loom large in naturalistic observation. Researchers must strike a delicate equilibrium between the exigencies of unobtrusive observation and the entitlements of the subjects under observation. Frequently, this entails safeguarding the anonymity of subjects and refraining from documenting their conduct without their explicit consent, particularly within private domains. Public settings, wherein individuals lack a reasonable expectation of privacy, typically afford greater latitude for naturalistic observation. Nevertheless, ethical precepts must be rigorously adhered to in order to uphold the dignity and rights of all implicated subjects.

Naturalistic observation has made substantial inroads across various domains of inquiry. In anthropology, it has served as a lens through which to explore cultural customs and social configurations across disparate communities. In ecology, scientists engage in the observation of fauna within their native habitats to fathom behaviors germane to survival, procreation, and social dynamics. In psychology, it has proven instrumental in elucidating human behaviors spanning from the genesis of adolescence to social dynamics and psychological well-being. The method’s malleability renders it adaptable to a panoply of research queries and contexts, endowing it with a versatile utility in the researcher’s repertoire.

Technological strides have further augmented the efficacy of naturalistic observation. Contemporary tools such as video recording apparatuses, mobile devices, and even unmanned aerial vehicles can expedite data collection while minimizing interference. These innovations facilitate more granular and precise observations, which can be reviewed iteratively for analysis. Moreover, analytic software can aid in discerning patterns and drawing inferences from voluminous troves of observational data, thereby engendering a more rigorous and methodical analytical process.

In summation, naturalistic observation emerges as a potent means of dissecting behavior within its native milieu. Despite its impediments, including observer partiality, variable control constraints, and ethical quandaries, it furnishes unparalleled insights into the interplay between subjects and their surroundings. By abstaining from intervention, researchers can procure data that is both authentic and germane to real-world contexts. As technological progress marches onward, the potential for naturalistic observation to enrich our comprehension of intricate behaviors is poised to burgeon, cementing its status as a cornerstone of research methodologies. Recall, this exposition serves as a springboard for contemplation and further exploration. For bespoke guidance and to ensure adherence to scholarly standards, contemplate engaging the services of professionals at EduBirdie.

owl

Cite this page

Understanding Naturalistic Observation in Research. (2024, Jun 01). Retrieved from https://papersowl.com/examples/understanding-naturalistic-observation-in-research/

"Understanding Naturalistic Observation in Research." PapersOwl.com , 1 Jun 2024, https://papersowl.com/examples/understanding-naturalistic-observation-in-research/

PapersOwl.com. (2024). Understanding Naturalistic Observation in Research . [Online]. Available at: https://papersowl.com/examples/understanding-naturalistic-observation-in-research/ [Accessed: 1 Jun. 2024]

"Understanding Naturalistic Observation in Research." PapersOwl.com, Jun 01, 2024. Accessed June 1, 2024. https://papersowl.com/examples/understanding-naturalistic-observation-in-research/

"Understanding Naturalistic Observation in Research," PapersOwl.com , 01-Jun-2024. [Online]. Available: https://papersowl.com/examples/understanding-naturalistic-observation-in-research/. [Accessed: 1-Jun-2024]

PapersOwl.com. (2024). Understanding Naturalistic Observation in Research . [Online]. Available at: https://papersowl.com/examples/understanding-naturalistic-observation-in-research/ [Accessed: 1-Jun-2024]

Don't let plagiarism ruin your grade

Hire a writer to get a unique paper crafted to your needs.

owl

Our writers will help you fix any mistakes and get an A+!

Please check your inbox.

You can order an original essay written according to your instructions.

Trusted by over 1 million students worldwide

1. Tell Us Your Requirements

2. Pick your perfect writer

3. Get Your Paper and Pay

Hi! I'm Amy, your personal assistant!

Don't know where to start? Give me your paper requirements and I connect you to an academic expert.

short deadlines

100% Plagiarism-Free

Certified writers

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 27 May 2024

Research on domain ontology construction based on the content features of online rumors

  • Jianbo Zhao 1 ,
  • Huailiang Liu 1 ,
  • Weili Zhang 1 ,
  • Tong Sun 1 ,
  • Qiuyi Chen 1 ,
  • Yuehai Wang 2 ,
  • Jiale Cheng 2 ,
  • Yan Zhuang 1 ,
  • Xiaojin Zhang 1 ,
  • Shanzhuang Zhang 1 ,
  • Bowei Li 3 &
  • Ruiyu Ding 2  

Scientific Reports volume  14 , Article number:  12134 ( 2024 ) Cite this article

196 Accesses

1 Altmetric

Metrics details

  • Computational neuroscience
  • Computer science
  • Data acquisition
  • Data integration
  • Data mining
  • Data processing
  • Human behaviour
  • Information technology
  • Literature mining
  • Machine learning
  • Scientific data

Online rumors are widespread and difficult to identify, which bring serious harm to society and individuals. To effectively detect and govern online rumors, it is necessary to conduct in-depth semantic analysis and understand the content features of rumors. This paper proposes a TFI domain ontology construction method, which aims to achieve semantic parsing and reasoning of the rumor text content. This paper starts from the term layer, the frame layer, and the instance layer, and based on the reuse of the top-level ontology, the extraction of core literature content features, and the discovery of new concepts in the real corpus, obtains the core classes (five parent classes and 88 subclasses) of the rumor domain ontology and defines their concept hierarchy. Object properties and data properties are designed to describe relationships between entities or their features, and the instance layer is created according to the real rumor datasets. OWL language is used to encode the ontology, Protégé is used to visualize it, and SWRL rules and pellet reasoner are used to mine and verify implicit knowledge of the ontology, and judge the category of rumor text. This paper constructs a rumor domain ontology with high consistency and reliability.

Similar content being viewed by others

paper about research methods

Testing theory of mind in large language models and humans

paper about research methods

Investigating child sexual abuse material availability, searches, and users on the anonymous Tor network for a public health intervention strategy

paper about research methods

Explainable chemical artificial intelligence from accurate machine learning of real-space chemical descriptors

Introduction.

Online rumors are false information spread through online media, which have the characteristics of wide content 1 , hard to identify 2 , 3 . Online rumors can mislead the public, disrupt social order, damage personal and collective reputations, and pose a great challenge to the governance of internet information content. Therefore, in order to effectively detect and govern online rumors, it is necessary to conduct an in-depth semantic analysis and understanding of the rumor text content features.

The research on the content features of online rumors focuses on the lexical, syntactic and semantic features of the rumor text, including lexical, syntactic and semantic features 4 , syntactic structure and functional features 5 , source features 5 , 6 , rhetorical methods 7 , narrative structure 6 , 7 , 8 , language style 6 , 9 , 10 , corroborative means 10 , 11 and emotional features 10 , 12 , 13 , 14 , 15 , 16 , 17 , 18 . Most of the existing researches on rumor content features are feature mining under a single domain topic type, and lack of mining the influence relationship between multiple features. Therefore, this paper proposes to build an online rumor domain ontology to realize fine-grained hierarchical modeling of the relationship between rumor content features and credible verification of its effectiveness. Domain ontology is a systematic description of the objective existence in a specific discipline 19 . The construction methods mainly include TOVE method 20 , skeleton method 21 , IDEF-5 method 22 , 23 , methontology method 24 , 25 and seven-step method 26 , 27 , among which seven-step method is the most mature and widely used method at present 28 , which has strong systematicness and applicability 29 , but it does not provide quantitative indicators and methods about the quality and effect of ontology. The construction technology can be divided into the construction technology based on thesaurus conversion, the construction technology based on existing ontology reuse and the semi-automatic and automatic construction technology based on ontology engineering method 30 . The construction technology based on thesaurus conversion and the construction technology based on existing ontology reuse can save construction time and cost, and improve ontology reusability and interoperability, but there are often differences in structure, semantics and scene. Semi-automatic and automatic construction technology based on ontology engineering method The application of artificial intelligence technology can automatically extract ontology elements and structures from data sources with high efficiency and low cost, but the quality and accuracy are difficult to guarantee. Traditional domain ontology construction methods lack effective quality evaluation support, and construction technology lacks effective integration application. Therefore, this paper proposes an improved TFI network rumor domain ontology construction method based on the seven-step method. Starting from the terminology layer, the framework layer and the instance layer, it integrates the top-level ontology and core document content feature reuse technology, the bottom-up semi-automatic construction technology based on N-gram new word discovery algorithm and RoBERTa-Kmeans clustering algorithm, defines the fine-grained features of network rumor content and carries out hierarchical modeling. Using SWRL rules and pellet inference machine, the tacit knowledge of ontology is mined, and the quality of ontology validity and consistency is evaluated and verified.

The structure of this paper is as follows: Sect “ Related work ” introduces the characteristics of rumor content and the related work of domain ontology construction.; Sect “ Research method ” constructs the term layer, the frame layer and the instance layer of the domain ontology; Sect “ Domain ontology construction ” mines and verifies the implicit knowledge of the ontology based on SWRL rules and Pellet reasoner; Sect “ Ontology reasoning and validation ” points out the research limitations and future research directions; Sect “ Discussion ” summarizes the research content and contribution; Sect “ Conclusion ” summarizes the research content and contribution of this paper.

Related Work

Content features of online rumors.

The content features of online rumors refer to the adaptive description of vocabulary, syntax and semantics in rumor texts. Fu et al. 5 have made a linguistic analysis of COVID-19’s online rumors from the perspectives of pragmatics, discourse analysis and syntax, and concluded that the source of information, the specific place and time of the event, the length of the title and statement, and the emotions aroused are the important characteristics to judge the authenticity of the rumors; Zhang et al. 6 summarized the narrative theme, narrative characteristics, topic characteristics, language style and source characteristics of new media rumors; Li et al. 7 found that rumors have authoritative blessing and fear appeal in headline rhetoric, and they use news and digital headlines extensively, and the topic construction mostly uses programmed fixed structure; Yu et al. 8 analyzed and summarized the content distribution, narrative structure, topic scene construction and title characteristics of rumors in detail; Mourao et al. 9 found that the language style of rumors is significantly different from that of real texts, and rumors tend to use simpler, more emotional and more radical discourse strategies; Zhou et al. 10 analyzed the rumor text based on six analysis categories, such as content type, focus object and corroboration means, and found that the epidemic rumors were mostly “infectious” topics, with narrative expression being the most common, strong fear, and preference for exaggerated and polarized discourse style. Huang et al. 11 conducted an empirical study based on WeChat rumors, and found that the “confirmation” means of rumors include data corroboration and specific information, hot events and authoritative release; Butt et al. 12 analyzed the psycholinguistic features of rumors, and extracted four features from the rumor data set: LIWC, readability, senticnet and emotions. Zhou et al. 13 analyzed the semantic features of fake news content in theme and emotion, and found that the distribution of fake news and real news is different in theme features, and the overall mood, negative mood and anger of fake news are higher; Tan et al. 14 divided the content characteristics of rumors into content characteristics with certain emotional tendency and social characteristics that affect credibility; Damstra et al. 15 identified the elements as a consistent indicator of intentionally deceptive news content, including negative emotions causing anger or fear, lengthy sensational headlines, using informal language or swearing, etc. Lai et al. 16 put forward that emotional rumors can make the rumor audience have similar positive and negative emotions through emotional contagion; Yuan et al. 17 found that multimedia evidence form and topic shaping are important means to create rumors, which mostly convey negative emotions of fear and anger, and the provision of information sources is related to the popularity and duration of rumors; Ruan et al. 18 analyzed the content types, emotional types and discourse focus of Weibo’s rumor samples, and found that the proportion of social life rumors was the highest, and the emotional types were mainly hostile and fearful, with the focus on the general public and the personnel of the party, government and military institutions.

The forms and contents of online rumors tend to be diversified and complicated. The existing research on the content features of rumors is mostly aimed at the mining of content characteristics under specific topics, which cannot cover various types of rumor topics, and lacks fine-grained hierarchical modeling of the relationship between features and credible verification of their effectiveness.

Domain ontology construction

Domain ontology is a unified definition, standardized organization and visual representation of the concepts of knowledge in a specific domain 31 , 32 , and it is an important source of information for knowledge-based systems 19 , 33 . Theoretical methods include TOVE method 20 , skeleton method 21 , IDEF-5 method 22 , 23 , methontology method 24 , 25 and seven-step method 26 , 27 . TOVE method transforms informal description into formal ontology, which is suitable for fields that need accurate knowledge, but it is complex and time-consuming, requires high-level domain knowledge and is not easy to expand and maintain. Skeleton method forms an ontology skeleton by defining the concepts and relationships of goals, activities, resources, organizations and environment, which can be adjusted according to needs and is suitable for fields that need multi-perspective and multi-level knowledge, but it lacks formal semantics and reasoning ability. Based on this method, Ran et al. 34 constructed the ontology of idioms and allusions. IDEF5 method uses chart language and detailed description language to construct ontology, formalizes and visualizes objective knowledge, and is suitable for fields that need multi-source data and multi-participation, but it lacks a unified ontology representation language. Based on this method, Li et al. 35 constructed the business process activity ontology of military equipment maintenance support, and Song et al. 36 established the air defense and anti-missile operation process ontology. Methontology is a method close to software engineering. It systematically develops ontologies through the processes of specification, knowledge acquisition, conceptualization, integration, implementation, evaluation and document arrangement, which is suitable for fields that need multi-technology and multi-ontology integration, but it is too complicated and tedious, and requires a lot of resources and time 37 . Based on this method, Yang et al. 38 completed the ontology of emergency plan, Duan et al. 39 established the ontology of high-resolution images of rural residents, and Chen et al. 40 constructed the corpus ontology of Jiangui. Seven-step method is the most mature and widely used method at present 28 . It is systematic and applicable to construct ontology by determining its purpose, scope, terms, structure, attributes, limitations and examples 29 , but it does not provide quantitative indicators and methods about the quality and effect of ontology. Based on this method, Zhu et al. 41 constructed the disease ontology of asthma, Li et al. 42 constructed the ontology of military events, the ontology of weapons and equipment and the ontology model of battlefield environment, and Zhang et al. 43 constructed the ontology of stroke nursing field, and verified the construction results by expert consultation.

Domain ontology construction technology includes thesaurus conversion, existing ontology reuse and semi-automatic and automatic construction technology based on ontology engineering method 30 . The construction technology based on thesaurus transformation takes the existing thesaurus as the knowledge source, and transforms the concepts, terms and relationships in the thesaurus into the entities and relationships of domain ontology through certain rules and methods, which saves the time and cost of ontology construction and improves the quality and reusability of ontology. However, it is necessary to solve the structural and semantic differences between thesaurus and ontology and adjust and optimize them according to the characteristics of different fields and application scenarios. Wu et al. 44 constructed the ontology of the natural gas market according to the thesaurus of the natural gas market and the mapping of subject words to ontology, and Li et al. 45 constructed the ontology of the medical field according to the Chinese medical thesaurus. The construction technology based on existing ontology reuse uses existing ontologies or knowledge resources to generate new domain ontologies through modification, expansion, merger and mapping, which saves time and cost and improves the consistency and interoperability of ontologies, but it also needs to solve semantic differences and conflicts between ontologies. Chen et al. 46 reuse the top-level framework of scientific evidence source information ontology (SEPIO) and traditional Chinese medicine language system (TCMLS) to construct the ontology of clinical trials of traditional Chinese medicine, and Xiao et al. 47 construct the domain ontology of COVID-19 by extracting the existing ontology and the knowledge related to COVID-19 in the diagnosis and treatment guide. Semi-automatic and automatic construction technology based on ontology engineering method semi-automatically or automatically extracts the elements and structures of ontology from data sources by using natural language processing, machine learning and other technologies to realize large-scale, fast and low-cost domain ontology construction 48 , but there are technical difficulties, the quality and accuracy of knowledge extraction can not be well guaranteed, and the quality and consistency of different knowledge sources need to be considered. Suet al. 48 used regular templates and clustering algorithm to construct the ontology of port machinery, Zheng et al. 49 realized the automatic construction of mobile phone ontology through LDA and other models, Dong et al. 50 realized the automatic construction of ontology for human–machine ternary data fusion in manufacturing field, Linli et al. 51 proposed an ontology learning algorithm based on hypergraph, and Zhai et al. 52 learned from it through part-of-speech tagging, dependency syntax analysis and pattern matching.

At present, domain ontology construction methods are not easy to expand, lack of effective quality evaluation support, lack of effective integration and application of construction technology, construction divorced from reality can not guide subsequent practice, subjective ontology verification and so on. Aiming at the problems existing in the research of content characteristics and domain ontology construction of online rumors, this paper proposes an improved TFI network rumor domain ontology construction method based on seven-step method, which combines top-down existing ontology reuse technology with bottom-up semi-automatic construction technology, and establishes rumor domain ontology based on top-level ontology reuse, core document content feature extraction and new concept discovery in the real corpus from the terminology layer, framework layer and instance layer. Using Protégé as a visualization tool, the implicit knowledge mining of ontology is carried out by constructing SWRL rules to verify the semantic parsing ability and consistency of domain ontology.

Research method

This paper proposes a TFI online rumor domain ontology construction method based on the improvement of the seven-step method, which includes the term layer, the frame layer and the instance layer construction.

Term layer construction

Determine the domain and scope: the purpose of constructing the rumor domain ontology is to support the credible detection and governance of online rumors, and the domain and scope of the ontology are determined by answering questions.

Three-dimensional term set construction: investigate the top-level ontology and related core literature, complete the mapping of reusable top-level ontology and rumor content feature concept extraction semi-automatically from top to bottom; establish authoritative real rumor datasets, and complete the domain new concept discovery automatically from bottom to top; based on this, determine the term set of the domain ontology.

Frame layer construction

Define core classes and hierarchical relationships: combine the concepts of the three-dimensional rumor term set, based on the data distribution of the rumor dataset, define the parent class, summarize the subclasses, design hierarchical relationships and explain the content of each class.

Define core properties and facets of properties: in order to achieve deep semantic parsing of rumor text contents, define object properties, data properties and property facets for each category in the ontology.

Instance layer construction

Create instances: analyze the real rumor dataset, extract instance data, and add them to the corresponding concepts in the ontology.

Encode and visualize ontology: use OWL language to encode ontology, and use Protégé to visualize ontology, so that ontology can be understood and operated by computer.

Ontology verification: use SWRL rules and pellet reasoner to mine implicit knowledge of ontology, and verify its semantic parsing ability and consistency.

Ethical statements

This article does not contain any studies with human participants performed by any of the authors.

Determine the professional domain and scope of the ontology description

This paper determines the domain and scope of the online rumor domain ontology by answering the following four questions:

(1) What is the domain covered by the ontology?

The “Rumor Domain Ontology” constructed in this paper only considers content features, not user features and propagation features; the data covers six rumor types of politics and military, disease prevention and treatment, social life, science and technology, nutrition and health, and others involved in China’s mainstream internet rumor-refuting websites.

(2) What is the purpose of the ontology?

To perform fine-grained hierarchical modeling of the relationships among the features of multi-domain online rumor contents, realize semantic parsing and credibility reasoning verification of rumor texts, and guide fine-grained rumor detection and governance. It can also be used as a guiding framework and constraint condition for online rumor knowledge graph construction.

(3) What kind of questions should the information in the ontology provide answers for?

To provide answers for questions such as the fine-grained rumor types of rumor instances, the valid features of rumor types, etc.

(4) Who will use the ontology in the future?

Users of online rumor detection and governance, users of online rumor knowledge graphs construction.

Three-dimensional term set construction

Domain concepts reused by top-level ontology.

As a mature and authoritative common ontology, top-level ontology can be shared and reused in a large range, providing reference and support for the construction of domain ontology. The domain ontology of online rumors established in this paper focuses on the content characteristics, mainly including the content theme, events and emotions of rumor texts. By reusing the terminology concepts in the existing top-level ontology, the terminology in the terminology set can be unified and standardized. At the same time, the top-level concept and its subclass structure can guide the framework construction of domain ontology and reduce the difficulty and cost of ontology construction. Reusable top-level ontologies include: SUMO, senticnet and ERE after screening.

SUMO ontology: a public upper-level knowledge ontology containing some general concepts and relations for describing knowledge in different domains. The partial reusable SUMO top-level concepts and subclasses selected in this paper are shown in Table 1 , which provides support for the sub-concept design of text topics in rumor domain ontology.

Senticnet: a knowledge base for concept-based sentiment analysis, which contains semantic, emotional, and polarity information related to natural language concepts. The partial reusable SenticNet top-level concepts and subclasses selected in this paper are shown in Table 2 , which provides support for the sub-concept design of text topics in rumor domain ontology.

Entities, relations, and events (ERE): a knowledge base of events and entity relations. The partial reusable ERE top-level concepts and subclasses selected in this paper are shown in Table 3 , which provides support for the sub-concept design of text elements in the rumor domain ontology.

Extracting domain concepts based on core literature content features

Domain core literature is an important source for extracting feature concepts. This paper uses ‘rumor detection’ as the search term to retrieve 274 WOS papers and 257 CNKI papers from the WOS and CNKI core literature databases. The content features of rumor texts involved in the literature samples are extracted, the repetition content features are eliminated, the core content features are screened, and the canonical naming of synonymous concepts from different literatures yields the domain concepts as shown in Table 4 . Among them, text theme, text element, text style, text feature and text rhetoric are classified as text features; emotional category, emotional appeal and rumor motive are classified as emotional characteristics; source credibility, evidence credibility and testimony method are classified as information credibility characteristics; social context is implicit.

Extracting domain concepts based on new concept discovery

This paper builds a general rumor dataset based on China’s mainstream rumor-refuting websites as data sources, and proposes a domain new concept discovery algorithm to discover domain new words in the dataset, add them to the word segmentation dictionary to improve the accuracy of word segmentation, and cluster them according to rumor type, resulting in a concept subclass dictionary based on the real rumor dataset, which provided realistic basis and data support for the conceptual design of each subclass in domain ontology.

Building a general rumor dataset

The rumor dataset constructed in this paper contains 12,472 texts, with 6236 rumors and 6236 non-rumors; the data sources are China’s mainstream internet rumor-refuting websites: 1032 from the internet rumor exposure platform of China internet joint rumor-refuting platform, 270 from today’s rumor-refuting of China internet joint rumor-refuting platform, 1852 from Tencent news Jiaozhen platform, 1744 from Baidu rumor-refuting platform, 7036 from science rumor-refuting platform, and 538 from Weibo community management center. This paper invited eight researchers to annotate the labels (rumor, non-rumor), categories (politics and military, disease prevention and treatment, social life, science and technology, nutrition and health, others) of the rumor dataset. Because data annotation is artificial and subjective, in order to ensure the effectiveness and consistency of annotation, before inviting researchers to annotate, this paper formulates annotation standards, including the screening method, trigger words and sentence break identification of rumor information and corresponding rumor information, and clearly explains and exemplifies the screening method and trigger words of rumor categories, so as to reduce the understanding differences among researchers; in view of this standard, researchers are trained in labeling to familiarize them with labeling specifications, so as to improve their labeling ability and efficiency. The method of multi-person cross-labeling is adopted when labeling, and each piece of data is independently labeled by at least two researchers. In case of conflicting labeling results, the labeling results are jointly decided by the data annotators to increase the reliability and accuracy of labeling. After labeling, multi-person cross-validation method is used to evaluate the labeling results. Each piece of data is independently verified by at least two researchers who did not participate in labeling, and conflicting labeling results are jointly decided by at least five researchers to ensure the consistency of evaluation results. Examples of the results are shown in Table 5 .

N-gram word granularity rumor text new word discovery algorithm

Existing neologism discovery algorithms are mostly based on the granularity of Chinese characters, and the time complexity of long word discovery is high and the accuracy rate is low. The algorithm’s usefulness is low, and the newly discovered words are mostly already found in general domain dictionaries. To solve these problems, this paper proposes an online rumor new word discovery algorithm based on N-gram word granularity, as shown in Fig.  1 .

figure 1

Flowchart of domain new word discovery algorithm.

First, obtain the corpus to be processed \({\varvec{c}}=\{{{\varvec{s}}}_{1},{{\varvec{s}}}_{2},...,{{\varvec{s}}}_{{{\varvec{n}}}_{{\varvec{c}}}}\}\) , and perform the first preprocessing on the corpus to be processed, which includes: sentence segmentation, Chinese word segmentation and punctuation removal for the corpus to be processed. Obtain the first corpus \({{\varvec{c}}}^{{\varvec{p}}}=\{{{\varvec{s}}}_{1}^{{\varvec{p}}},{{\varvec{s}}}_{2}^{{\varvec{p}}},...,{{\varvec{s}}}_{{{\varvec{n}}}_{{\varvec{c}}}}^{{\varvec{p}}}\}\) ; where \({s}_{i}\) represents the \(i\) -th sentence in the corpus to be processed, \({n}_{c}\) represents the number of sentences in the corpus to be processed, and \({s}_{i}^{p}\) is the i-th sentence in the first corpus; perform N-gram operation on each sentence in the first corpus separately, and obtain multiple candidate words \(n=2\sim 5\) ; count the word frequency of each candidate word in the first corpus, and remove the candidate words with word frequency less than the first threshold, and obtain the first class of candidate word set;calculate the cohesion of each candidate word in the first class of candidate word set according to the following formula:

In the formula, \(P(\cdot )\) represents word frequency.Then filter according to the second threshold corresponding to N-gram operation, and obtain the second class of candidate word set; after loading the new words in the second class of candidate word set into LTP dictionary, perform the second preprocessing on the corpus to be processed \({\varvec{c}}=\{{{\varvec{s}}}_{1},{{\varvec{s}}}_{2},...,{{\varvec{s}}}_{{{\varvec{n}}}_{{\varvec{c}}}}\}\) ; and obtain the second corpus \({{\varvec{c}}}^{{\varvec{p}}\boldsymbol{^{\prime}}}=\{{{\varvec{s}}}_{1}^{{\varvec{p}}\boldsymbol{^{\prime}}},{{\varvec{s}}}_{2}^{{\varvec{p}}\boldsymbol{^{\prime}}},...,{{\varvec{s}}}_{{{\varvec{n}}}_{{\varvec{c}}}}^{{\varvec{p}}\boldsymbol{^{\prime}}}\}\) ; where the second preprocessing includes: sentence segmentation, Chinese word segmentation and stop word removal for the corpus to be processed; after obtaining the vector representation of each word in the second corpus, determine the vector representation of each new word in the second class of candidate word set; according to the vector representation of each new word, use K-means algorithm for clustering; according to the clustering results and preset classification rules, classify each new word to the corresponding domain. The examples of new words discovered are shown in Table 6 :

RoBERTa-Kmeans rumor text concepts extraction algorithm

After adding the new words obtained by the new word discovery to the LTP dictionary, the accuracy of LTP word segmentation is improved. The five types of rumor texts established in this paper are segmented by using the new LTP dictionary, and the word vectors are obtained by inputting them into the RoBERTa word embedding layer after removing the stop words. The word vectors are clustered by k-means according to rumor type to obtain the concept subclass dictionary. The main process is as follows:

(1) Word embedding layer

The RoBERTa model uses Transformer-Encode for computation, and each module contains multi-head attention mechanism, residual connection and layer normalization, feed-forward neural network. The word vectors are obtained by representing the rumor texts after accurate word segmentation through one-hot encoding, and the position encoding represents the relative or absolute position of the word in the sequence. The word embedding vectors generated by superimposing the two are used as input X. The multi-head attention mechanism uses multiple independent Attention modules to perform parallel operations on the input information, as shown in formula ( 2 ):

where \(\left\{{\varvec{Q}},{\varvec{K}},{\varvec{V}}\right\}\) is the input matrix, \({{\varvec{d}}}_{{\varvec{k}}}\) is the dimension of the input matrix. After calculation, the hidden vectors obtained after computation are residual concatenated with layer normalization, and then calculated by two fully connected layers of feed-forward neural network for input, as shown in formula ( 3 ):

where \(\left\{{{\varvec{W}}}_{{\varvec{e}}},{{\varvec{W}}}_{0}\boldsymbol{^{\prime}}\right\}\) are the weight matrices of two connected layers, \(\left\{{{\varvec{b}}}_{{\varvec{e}}},{{\varvec{b}}}_{0}\boldsymbol{^{\prime}}\right\}\) are the bias terms of two connected layers.

After calculation, a bidirectional association between word embedding vectors is established, which enables the model to learn the semantic features contained in each word embedding vector in different contexts. Through fine-tuning, the learned knowledge is transferred to the downstream clustering task.

(2) K-means clustering

Randomly select k initial points to obtain k classes, and iterate until the loss function of the clustering result is minimized. The loss function can be defined as the sum of squared errors of each sample point from its cluster center point, as shown in formula ( 4 ).

where \({x}_{i}\) represents the \(i\) sample, \({a}_{i}\) is the cluster that \({x}_{i}\) belongs to, \({u}_{{a}_{i}}\) represents the corresponding center point, \(N\) is the total number of samples.

After RoBERTa-kmeans calculation, the concept subclasses obtained are manually screened, merged repetition items, deleted invalid items, and finally obtained 79 rumor concept subclasses, including 14 politics and military subclasses, 23 disease prevention and treatment subclasses, 15 social life subclasses, 13 science and technology subclasses, and 14 nutrition and health subclasses. Some statistics are shown in Table 7 .

Each concept subclass is obtained by clustering several topic words. For example, the topic words that constitute the subclasses of body part, epidemic prevention and control, chemical drugs, etc. under the disease prevention and treatment topic are shown in Table 8 .

(3) Determining the terminology set

This paper constructs a three-dimensional rumor domain ontology terminology set based on the above three methods, and unifies the naming of the terms. Some of the terms are shown in Table 9 .

Framework layer construction

Define core classes and hierarchy, define parent classes.

This paper aims at fine-grained hierarchical modeling of the relationship between the content characteristics of multi-domain network rumors. Therefore, the top-level parent class needs to include the rumor category and the main content characteristics of a sub-category rumor design. The main content characteristics are the clustering results of domain concepts extracted based on the content characteristics of core documents, that is, rumor text feature, rumor emotional characteristic, rumor credibility and social context. The specific contents of the five top parent classes are as follows:

Rumor type: the specific classification of rumors under different subject categories; Rumor text feature, the common features of rumor texts in terms of theme, style, rhetoric, etc. Rumor emotional characteristic: the emotional elements of rumor texts, the Rumor motive of the publisher, and the emotional changes they hope to trigger in the receiver. Rumor credibility: the authority of the information source, the credibility of the evidence material provided by the publisher, and the effectiveness of the testimony method. Social context: the relevant issues and events in the society when the rumor is published.

Induce subclasses and design hierarchical relationships

In this paper, under the top-level parent class, according to the top-level concepts of top-level ontologies such as SUMO, senticnet and ERE and their subclass structures, and the rumor text features of each category extracted from the real rumor text dataset, we summarize its 88 subclasses and design the hierarchical relationships, as shown in Fig.  2 , which include:

(1) Rumor text feature

figure 2

Diagram of the core classes and hierarchy of the rumor domain ontology.

① Text theme 6 , 8 , 13 , 18 , 53 : the theme or topic that the rumor text content involves. Based on the self-built rumor dataset, it is divided into politics and military 54 , involving information such as political figures, political policies, political relations, political activities, military actions, military events, strategic objectives, politics and military reviews, etc.; nutrition and health 55 , involving information such as the relationship between human health and nutrition, the nutritional components and value of food, the plan and advice for healthy eating, health problems and habits, etc.; disease prevention and treatment 10 , involving information such as the definition of disease, vaccine, treatment, prevention, data, etc.; social life 56 , involving information such as social issues, social environment, social values, cultural activities, social media, education system, etc.; science and technology 57 , involving information such as scientific research, scientific discovery, technological innovation, technological application, technological enterprise, etc.; other categories.

② Text element 15 : the structured information of the rumor text contents. It is divided into character, political character, public character, etc.; geographical position, city, region, area, etc.; event, historical event, current event, crisis event, policy event, etc.; action, protection, prevention and control, exercise, fighting, crime, eating, breeding, health preservation, rest, exercise, education, sports, social, cultural, ideological, business, economic, transportation, etc.; material, food, products (food, medicine, health products, cosmetics, etc.) and the materials they contain and their relationship with human health. effect, nutrition, health, harm, natural disaster, man-made disaster, guarantee, prevention, treatment, etc.; institution, government, enterprise, school, hospital, army, police, social group, etc.; nature, weather, astronomy, environment, agriculture, disease, etc.

③ Text style 7 , 10 : the discourse style of the rumor text contents, preferring exaggerated and emotional expression. It is divided into gossip style, creating conflict or entertainment effect; curious style, satisfying people’s curiosity and stimulation; critical style, using receivers’ stereotypes or preconceptions; lyrical style, creating resonance and influencing emotion; didactic style influencing receivers’ thought and behavior from an authoritative perspective; plain style concise objective arousing resonance etc.

④ Text feature 7 , 58 : special language means in the rumor text contents that can increase the transmission and influence of the rumor. It is divided into extensive punctuation reminding or attracting receivers’ attention; many mood words enhancing emotional color and persuasiveness; many emoji conveying attitude; induce forwarding using @ symbol etc. to induce receivers to forward etc.

⑤ Text rhetoric 15 : common rhetorical devices in rumor contents. It is divided into metaphor hyperbole repetition personification etc.

(2) Rumor emotional characteristic

① Emotion category 17 , 59 , 60 : the emotional tendency and intensity expressed in the rumor texts. It is divided into positive emotion happy praise etc.; negative emotion fear 10 anger sadness anxiety 61 dissatisfaction depression etc.; neutral emotion no preference plain objective etc.

② Emotional appeal 16 , 62 , 63 : the online rumor disseminator hopes that the rumor they disseminate can trigger some emotional changes in the receiver. It is divided into “joy” happy pleasant satisfied emotions that prompt receivers to spread or believe some rumors that are conducive to social harmony; “love” love appreciation admiration emotions that prompt receivers to spread or believe some rumors that are conducive to some people or group interests; “anger” angry annoyed dissatisfied emotions that prompt receivers to spread or believe some rumors that are anti-social or intensify conflicts; “fear” fearful afraid nervous emotions that prompt receivers to spread or believe some rumors that have bad effects deliberately exaggerated; “repugnance” disgusted nauseous emotions that prompt receivers to spread or believe some rumors that are detrimental to social harmony; “surprise” surprised shocked amazed emotions that prompt receivers to spread or believe some rumors that deliberately attract traffic exaggerated fabricated etc.

③ Rumor motive 17 , 64 , 65 , 66 : the purpose and need of the rumor publisher to publish rumors and the receiver to forward rumors. Such as profit-driven seeking fame and fortune deceiving receivers; emotional catharsis relieving dissatisfaction emotions by venting; creating panic creating social unrest and riots disrupting social order; entertainment fooling receivers seeking stimulation; information verification digging out the truth of events etc.

(3) Rumor credibility

① source credibility 7 , 17 : the degree of trustworthiness that the information source has. Such as official institutions and authoritative experts and scholars in the field with high credibility; well-known encyclopedias and large-scale civil organizations with medium credibility; small-scale civil organizations and personal hearsay personal experience with low credibility etc.

② evidence credibility 61 : the credibility of the information proof material provided by the publisher. Data support such as scientific basis based on scientific theory or method; related feature with definite research or investigation result in data support; temporal background with clear time place character event and other elements which related to the information content; the common sense of life in line with the facts and scientific common sense that are widely recognized.

③ testimony method 10 , 11 , 17 : the method to support or refute a certain point of view. Such as multimedia material expressing or fabricating content details through pictures videos audio; authority endorsement policy documents research papers etc. of authorized institutions or persons; social identity identity of social relation groups.

(4) Social context

① social issue 67 : some bad phenomena or difficulties in society such as poverty pollution corruption crime government credibility decline 68 etc.

② public attention 63 : events or topics that arouse widespread attention or discussion in the society such as sports events technological innovation food safety religious beliefs Myanmar fraud nuclear wastewater discharge etc.

③ emergency(public sentiment) 69 : some major or urgent events that suddenly occur in society such as earthquake flood public safety malignant infectious disease outbreaks etc.

(5) Rumor type

① Political and military rumor:

Political image rumor: rumors related to images closely connected to politics and military, such as countries, political figures, institutions, symbols, etc. These include positive political image smear rumor, negative political image whitewash rumor, political image fabrication and distortion rumor, etc.

Political event rumor: rumors about military and political events, such as international relations, security cooperation, military strategy, judicial trial, etc. These include positive political event smear rumor, negative political event whitewash rumor, political event fabrication and distortion rumor, etc.

② Nutrition and health rumor:

Food product rumor: rumors related to food, products (food, medicine, health products, cosmetics, etc.), the materials they contain and their association with human health. These include positive effect of food product rumor, negative effect of food product rumor, food product knowledge rumor, etc.

Living habit rumor: rumors related to habitual actions in life and their association with human health. These include positive effect of living habit rumor, negative effect of living habit rumor, living habit knowledge rumor, etc.

③ Disease prevention and treatment rumor:

Disease management rumor: rumors related to disease management and control methods that maintain and promote individual and group health. These include positive prevention and treatment rumor, negative aggravating disease rumor, disease management knowledge rumor, etc.

Disease confirmed transmission rumor: rumors about the confirmation, transmission, and immunity of epidemic diseases at the social level in terms of causes, processes, results, etc. These include local confirmed cases rumor, celebrity confirmed cases rumor, transmission mechanism rumor, etc.

Disease notification and advice rumor: rumors that fabricate or distort the statements of authorized institutions or experts in the field, and provide false policies or suggestions related to diseases. These include institutional notification rumor, expert advice rumor, etc.

④ Social life rumor:

Public figure public opinion rumor: rumors related to public figures’ opinions, actions, private lives, etc. These include positive public figure smear rumor, negative public figure whitewash rumor, public figure life exposure rumor, etc.

Social life event rumor: rumors related to events, actions, and impacts on people's social life. These include positive event sharing rumor, negative event exposure rumor, neutral event knowledge rumor, etc.

Disaster occurrence rumor: rumors related to natural disasters or man-made disasters and their subsequent developments. These include natural disaster occurrence rumor, man-made disaster occurrence rumor, etc.

⑤ Science and technology rumor:

Scientific knowledge rumor: rumors related to natural science or social science theories and knowledge. These include scientific theory rumor, scientific concept rumor, etc.

Science and technology application rumor: rumors related to the research and development and practical application of science and technology and related products. These include scientific and technological product rumor, scientific and technological information rumor, etc.

⑥ Other rumor: rumors that do not contain elements from the above categories.

Definition of core properties and facets of properties

Properties in the ontology are used to describe the relationships between entities or the characteristics of entities. Object properties are relationships that connect two entities, describing the interactions between entities; data properties represent the characteristics of entities, usually in the form of some data type. Based on the self-built rumor dataset, this paper designs object properties, data properties and facets of properties for the parent classes and subclasses of the rumor domain ontology.

Object properties

A partial set of object properties is shown in Table 10 .

Data attributes

The partial data attribute set is shown in Table 11 .

Creating instances

Based on the defined core classes and properties, this paper creates instances according to the real rumor dataset. An example is shown in Table 12 .

This paper selects the online rumor that “Lin Chi-ling was abused by her husband Kuroki Meisa, the tears of betrayal, the shadow of gambling, all shrouded her head. Even if she tried to divorce, she could not get a solution…..” as an example, and draws a structure diagram of the rumor domain ontology instance, as shown in Fig.  3 . This instance shows the seven major text features of the rumor text: text theme, text element, text style, emotion category, emotional appeal, rumor motivation, and rumor credibility, as well as the related subclass instances, laying a foundation for building a multi-source rumor domain knowledge graph.

figure 3

Schematic example of the rumor domain ontology.

Encoding ontology and visualization

Encoding ontology.

This paper uses OWL language to encode the rumor domain ontology, to accurately describe the entities, concepts and their relationships, and to facilitate knowledge reasoning and semantic understanding. Classes in the rumor domain ontology are represented by the class “Class” in OWL and the hierarchical relationship is represented by subclassof. For example, in the creation of the rumor emotional characteristic class and its subclasses, the OWL code is shown in Fig.  4 :

figure 4

Partial OWL codes of the rumor domain ontology.

The ontology is formalized and stored as a code file using the above OWL language, providing support for reasoning.

Ontology visualization

This paper uses protégé5.5 to visualize the rumor domain ontology, showing the hierarchical structure and relationship of the ontology parent class and its subclasses. Due to space limitations, this paper only shows the ontology parent class “RumorEmotionalFeatures” and its subclasses, as shown in Fig.  5 .

figure 5

Ontology parent class “RumorEmotionalFeatures” and its subclasses.

Ontology reasoning and validation

Swrl reasoning rule construction.

SWRL reasoning rule is an ontology-based rule language that can be used to define Horn-like rules to enhance the reasoning and expressive ability of the ontology. This paper uses SWRL reasoning rules to deal with the conflict relationships between classes and between classes and instances in the rumor domain ontology, and uses pellet reasoner to deeply mine the implicit semantic relationships between classes and instances, to verify the semantic parsing ability and consistency of the rumor domain ontology.

This paper summarizes the object property features of various types of online rumors based on the self-built rumor dataset, maps the real rumor texts with the rumor domain ontology, constructs typical SWRL reasoning rules for judging 32 typical rumor types, as shown in Table 13 , and imports them into the protégé rule library, as shown in Fig.  6 . In which x, n, e, z, i, t, v, l, etc. are instances of rumor types, text theme, emotion category, effect, institution, event, action, geographical position, etc. in the ontology. HasTheme, HasEmotion, HasElement, HasSource, HasMood and HasSupport are object property relationships. Polarity value is a data property relationship.

figure 6

Partial SWRL rules for the rumor domain ontology.

Implicit knowledge mining and verification based on pellet reasoner

This paper extracts corresponding instances from the rumor dataset, imports the rumor domain ontology and SWRL rule description into the pellet reasoner in the protégé software, performs implicit knowledge mining of the rumor domain ontology, judges the rumor type of the instance, and verifies the semantic parsing ability and consistency of the ontology.

Positive prevention and treatment of disease rumors are mainly based on the theme of disease prevention and treatment, usually containing products to be sold (including drugs, vaccines, equipment, etc.) and effect of disease names, claiming to have positive effects (such as prevention, cure, relief, etc.) on certain diseases or symptoms, causing positive emotions such as surprise and happiness among patients and their families, thereby achieving the purpose of selling products. The text features and emotional features of this kind of rumors are relatively clear, so this paper takes the rumor text “Hong Kong MDX Medical Group released the ‘DCV Cancer Vaccine’, which can prevent more than 12 kinds of cancers, including prostate cancer, breast cancer and lung cancer.” as an example to verify the semantic parsing ability of the rumor domain ontology. The analysis result of this instance is shown in Fig.  7 . The text theme is cancer prevention in disease prevention and treatment, the text style is plain narrative style, and the text element includes product-DCV cancer vaccine, positive effect-prevention, disease name-prostate cancer, disease name-breast cancer, disease name-lung cancer; the emotion category of this instance is a positive emotion, emotional appeal is joy, love, surprise; The motive for releasing rumors is profit-driven in selling products, the information source is Hong Kong MDX medical group, and pictures and celebrity endorsements are used as testimony method. This paper uses a pellet reasoner to reason on the parsed instance based on SWRL rules, and mines out the specific rumor type of this instance as positive prevention and treatment of disease rumor. This paper also conducted similar instance analysis and reasoning verification for other types of rumor texts, and the results show that the ontology has high consistency and reliability.

figure 7

Implicit relationship between rumor instance parsing results and pellet reasoner mining.

Comparison and evaluation of ontology performance

In this paper, the constructed ontology is compared with the representative rumor index system in the field. By inviting four experts to make a comprehensive evaluation based on the self-built index system 70 , 71 , 72 , their performance in the indicators of reliability, coverage and operability is evaluated. According to the ranking order given by experts, they are given 1–4 points, and the first place in each indicator item gets four points. The average value given by three experts is taken as the single indicator score of each subject, and the total score of each indicator item is taken as the final score of the subject.

As can be seen from Table 14 , the rumor domain ontology constructed in this paper constructs a term set through three ways: reusing the existing ontology, extracting the content features of core documents and discovering new concepts based on real rumor data sets, and the ontology structure has been verified by SWRL rule reasoning of pellet inference machine, which has high reliability; ontology covers six kinds of Chinese online rumors, including the grammatical, semantic, pragmatic and social characteristics of rumor text characteristics, emotional characteristics, rumor credibility and social background, which has a high coverage; ontology is coded by OWL language specification and displayed visually on protege, which is convenient for further expansion and reuse of scholars and has high operability.

The construction method of TFI domain ontology proposed in this paper includes terminology layer, framework layer and instance layer. Compared with the traditional methods, this paper adopts three-dimensional data set construction method in terminology layer construction, investigates top-level ontology and related core documents, and completes the mapping of reusable top-level ontology from top to bottom and the concept extraction of rumor content features in existing literature research. Based on the mainstream internet rumor websites in China, the authoritative real rumor data set is established, and the new word discovery algorithm of N-gram combined with RoBERTa-Kmeans clustering algorithm is used to automatically discover new concepts in the field from bottom to top; determine the terminology set of domain ontology more comprehensively and efficiently. This paper extracts the clustering results of domain concepts based on the content characteristics of core documents in the selection of parent rumors content characteristics in the framework layer construction, that is, rumors text characteristics, rumors emotional characteristics, rumors credibility characteristics and social background characteristics; based on the emotional characteristics and the entity categories of real rumor data sets, the characteristics of rumor categories are defined. Sub-category rumor content features combine the concept of three-dimensional rumor term set and the concept distribution based on real rumor data set, define the sub-category concept and hierarchical relationship close to the real needs, and realize the fine-grained hierarchical modeling of the relationship between multi-domain network rumor content features. In this paper, OWL language is used to encode the rumor domain ontology in the instance layer construction, and SWRL rule language and Pellet inference machine are used to deal with the conflict and mine tacit knowledge, judge the fine-grained categories of rumor texts, and realize the effective quality evaluation of rumor ontology. This makes the rumor domain ontology constructed in this paper have high consistency and reliability, and can effectively analyze and reason different types of rumor texts, which enriches the knowledge system in this field and provides a solid foundation for subsequent credible rumor detection and governance.

However, the study of the text has the following limitations and deficiencies:

(1) The rumor domain ontology constructed in this paper only considers the content characteristics, but does not consider the user characteristics and communication characteristics. User characteristics and communication characteristics are important factors affecting the emergence and spread of online rumors, and the motivation and influence of rumors can be analyzed. In this paper, these factors are not included in the rumor feature system, which may limit the expressive ability and reasoning ability of the rumor ontology and fail to fully reflect the complexity and multidimensional nature of online rumors.

(2) In this paper, the mainstream Internet rumor-dispelling websites in China are taken as the data source of ontology instantiation. The data covers five rumor categories: political and military, disease prevention, social life, science and technology, and nutrition and health, and the data range is limited. And these data sources are mainly official or authoritative rumor websites, and their data volume and update frequency may not be enough to reflect the diversity and variability of online rumors, and can not fully guarantee the timeliness and comprehensiveness of rumor data.

(3) The SWRL reasoning rules used in this paper are based on manual writing, which may not cover all reasoning scenarios, and the degree of automation needs to be improved. The pellet inference engine used in this paper is an ontology inference engine based on OWL-DL, which may have some computational complexity problems and lack of advanced reasoning ability.

The following aspects can be considered for optimization and improvement in the future:

(1) This paper will introduce user characteristics into the rumor ontology, and analyze the factors that cause and accept rumors, such as social attributes, psychological state, knowledge level, beliefs and attitudes, behavioral intentions and so on. This paper will introduce the characteristics of communication, and analyze the propagation dynamic factors of various types of rumors, such as propagation path, propagation speed, propagation range, propagation period, propagation effect, etc. This paper hopes to introduce these factors into the rumor feature system, increase the breadth and depth of the rumor domain ontology, and provide more credible clues and basis for the detection, intervention and prevention of rumors.

(2) This paper will expand the data sources, collect the original rumor data directly from social media, news media, authoritative rumor dispelling institutions and other channels, and build a rumor data set with comprehensive types, diverse expressions and rich characteristics; regularly grab the latest rumor data from these data sources and update and improve the rumor data set in time; strengthen the expressive ability of rumor ontology instance layer, and provide full data support and verification for the effective application of ontology.

(3) The text will introduce GPT, LLaMA, ChantGLM and other language models, and explore the automatic generation algorithm and technology of ontology inference rules based on rumor ontology and dynamic Prompt, so as to realize more effective and intelligent rumor ontology evaluation and complex reasoning.

This paper proposed a method of constructing TFI network rumor domain ontology. Based on the concept distribution of three-dimensional term set and real rumor data set, the main features of network rumors are defined, including text features, emotional features, credibility features, social background features and category features, and the relationships among these multi-domain features are modeled in a fine-grained hierarchy, including five parent classes and 88 subcategories. At the instance level, 32 types of typical rumor category judgment and reasoning rules are constructed, and the ontology is processed by using SWRL rule language and pellet inference machine for conflict processing and tacit knowledge mining, so that the semantic analysis and reasoning of rumor text content are realized, which proves its effectiveness in dealing with complex, fuzzy and uncertain information in online rumors and provides a new perspective and tool for the interpretable analysis and processing of online rumors.

Data availability

The datasets generated during the current study are available from the corresponding author upon reasonable request.

Jiang, S. The production scene and content characteristics of scientific rumors. Youth J. https://doi.org/10.15997/j.cnki.qnjz.2020.33.011 (2020).

Article   Google Scholar  

Jin, X. & Zhao, Y. Analysis of internet rumors from the perspective of co-governance—Practice of rumor governance on wechat platform. News and Writing. 6 , 41–44 (2017).

Bai, S. Research on the causes and countermeasures of internet rumors. Press https://doi.org/10.15897/j.cnki.cn51-1046/g2.2010.04.035 (2010).

Garg, S. & Sharma, D. K. Linguistic features based framework for automatic fake news detection. Comput. Ind. Eng. 172 , 108432 (2022).

Zhao, J., Fu, C. & Kang, X. Content characteristics predict the putative authenticity of COVID-19 rumors. Front. Public Health 10 , 920103 (2022).

Article   PubMed   PubMed Central   Google Scholar  

Zhang, Z., Shu, K. & He, L. The theme and characteristics of wechat rumors. News and Writing. 1 , 60–64 (2016).

Li, B. & Yu, G. Research on the discourse space and communication field of internet rumors in the post-truth era—Based on the analysis of 4160 rumors in wechat circle of friends. Journalism Research. 2 , 103–112 (2018).

Yu, G. Text structure and expression characteristics of internet rumors—Analysis of 6000+ rumors based on tencent big data screening and identification. News and Writing. 2 , 53–59 (2018).

Mourão, R. R. & Robertson, C. T. Fake news as discursive integration: An analysis of sites that publish false, misleading, hyperpartisan and sensational information. J. Stud. 20 , 2077–2095 (2019).

Google Scholar  

Zhou, G. Analysis on the content characteristics and strategies of epidemic rumors—Based on Sina’s “novel coronavirus epidemic rumors list”. Sci. Popul. https://doi.org/10.19293/j.cnki.1673-8357.2021.05.002 (2021).

Huang, Y. An analysis of the internal logic and methods of rumor “confirmation”—An empirical study based on 60 rumors spread on wechat. J. Party Sch. Tianjin Munic. Comm. CPC 20 , 7 (2018).

Butt, S. et al . What goes on inside rumour and non-rumour tweets and their reactions: A psycholinguistic analyses. Comput. Hum. Behav. 135 , 107345 (2022).

Zhou, L., Tao, J. & Zhang, D. Does fake news in different languages tell the same story? An analysis of multi-level thematic and emotional characteristics of news about COVID-19. Inf. Syst. Front. 25 , 493–512. https://doi.org/10.1007/s10796-022-10329-7 (2023).

Article   PubMed   Google Scholar  

Tan, L. et al . Research status of deep learning methods for rumor detection. Multimed. Tools Appl. 82 , 2941–2982 (2023).

Damstra, A. et al. What does fake look like? A review of the literature on intentional deception in the news and on social media. J. Stud. 22 , 1947–1963. https://doi.org/10.1080/1461670X.2021.1979423 (2021).

Lai, S. & Tang, X. Research on the influence of information emotionality on the spread of online rumors. J. Inf. 35 , 116–121 (2016).

ADS   Google Scholar  

Yuan, H. & Xie, Y. Research on the rumor maker of internet rumors about public events—Based on the content analysis of 118 influential Internet rumors about public events. Journalist https://doi.org/10.16057/j.cnki.31-1171/g2.2015.05.008 (2015).

Ruan, Z. & Yin, L. Types and discourse focus of weibo rumors—Based on the content analysis of 307 weibo rumors. Contemporary Communication. 4 , 77–78+84 (2014).

Zhang, W. & Zhu, Q. Research on the Construction Method of Domain Ontology. Books and Information. 5 , 16–19+40 (2011).

Tham, K.D., Fox, M.S. & Gruninger, M. A cost ontology for enterprise modelling. In Proceedings of 3rd IEEE Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises. IEEE , 197–210. https://doi.org/10.1109/ENABL.1994.330502 (1994).

Uschold, M. & Gruninger, M. Ontologies: Principles, methods and applications. Knowl. Eng. Rev. 11 , 93–136 (1996).

Menzel, C. P., Mayer, R. J. & Painter, M. K. IDEF5 ontology description capture method: Concepts and formal foundations (Armstrong Laboratory, Air Force Materiel Command, Wright-Patterson Air Force, 1992).

Book   Google Scholar  

Song, Z., Zhu, F. & ZHANG, D. Research on air and missile defense domain ontology development based on IDEF5 and OWL. Journal of Projectiles, Rockets, Missiles and Guidance. 30 , 176–178 (2010).

Fernández-López, M., Gómez-Pérez, A. & Juristo, N. Methontology: From ontological art towards ontological engineering. AAAI-97 Spring Symposium Series . https://oa.upm.es/5484/ (1997).

Sawsaa, A. & Lu, J. Building information science ontology (OIS) with methontology and protégé. J. Internet Technol. Secur. Trans. 1 , 100–109 (2012).

Yue, L. & Liu, W. Comparative study on the construction methods of domain ontology at home and abroad. Inf. Stud. Theory Appl. 39 , 119–125. https://doi.org/10.16353/j.cnki.1000-7490.2016.08.024 (2016).

Noy, N.F. & McGuinness, D.L. Ontology development 101: A guide to creating your first ontology. Stanford knowledge systems laboratory technical report. KSL-01–05 (2001).

Luo, Y. et al . vim: Research on OWL-based vocabulary ontology construction method for units of measurement. Electronics 12 , 3783 (2023).

Al-Aswadi, F. N., Chan, H. Y. & Gan, K. H. Automatic ontology construction from text: A review from shallow to deep learning trend. Artif. Intell. Rev. 53 , 3901–3928 (2020).

Chen, X. & Mao, T. Ontology construction of documentary heritage—Taking China archives documentary heritage list as an example. Libr. Trib. 43 , 120–131 (2023).

CAS   Google Scholar  

Zhao, X. & Li, T. Research on the ontology construction of archives oriented to digital humanism—Taking Wanli tea ceremony archives as an example. Inf. Stud. Theory Appl. 45 , 154–161. https://doi.org/10.16353/j.cnki.1000-7490.2022.08.021 (2022).

Huang, X. et al . Construction of special knowledge base of government website pages based on domain ontology—Taking “COVID-19 vaccine science popularization” as an example. Libr. Inf. Serv. 66 , 35–46. https://doi.org/10.13266/j.issn.0252-3116.2022.17.004 (2022).

Jindal, R., Seeja, K. & Jain, S. Construction of domain ontology utilizing formal concept analysis and social media analytics. Int. J. Cogn. Comput. Eng. 1 , 62–69 (2020).

Ran, J. et al . Research on ontology construction of idioms and allusions based on OWL. Comput. Technol. Dev. 20 , 63–66 (2010).

Li, L. et al . Research on business process modeling of army equipment maintenance support based on IDEF5. Technol. Innov. Appl. 11 , 80–82 (2021).

Song, Z. et al . Ontology modeling of air defense and anti-missile operation process based on IDEF5/OWL. J. Missiles Guid. 30 , 176–178 (2010).

Li, A., Xu, Y. & Chi, Y. Summary of ontology construction and application. Inf. Stud. Theory Appl 46 , 189–195. https://doi.org/10.16353/j.cnki.1000-7490.2023.11.024 (2023).

Yang, J., Song, C. & Jin, L. Ontology construction of emergency plan based on methontology method. J. Saf. Environ. 18 , 1427–1431. https://doi.org/10.13637/j.issn.1009-6094.2018.04.033 (2018).

Duan, L. & Li, H. Ontology modeling method of high-resolution image rural residential area supported by OIA technology. Modern Agricultural Science and Technology. 2 , 338–340 (2016).

Chen, Y. & Jiang, H. Construction of fire inspection knowledge map based on GIS geospatial relationship. J. Subtrop. Resour. Environ. 18 , 109–118. https://doi.org/10.19687/j.cnki.1673-7105.2023.03.014 (2023).

Zhu, L. et al. Construction of TCM asthma domain ontology. Chin. J. Exp. Tradit. Med. Formulae 23 , 222–226. https://doi.org/10.13422/j.cnki.syfjx.2017150222 (2017).

Li, H. et al . Domain ontology construction and relational reasoning. J. Inf. Eng. Univ. 24 , 321–327 (2023).

Zhang, Y. et al. Construction of ontology of stroke nursing field based on corpus. Chin. Nurs. Res. 36 , 4186–4190 (2022).

Wu, M. et al. Ontology construction of natural gas market knowledge map. Pet. New Energy 34 , 71–76 (2022).

Li, X. et al . Research on ontology construction based on thesaurus and its semantic relationship. Inf. Sci. 36 , 83–87 (2018).

Article   ADS   CAS   Google Scholar  

Chen, Q. et al . Construction of knowledge ontology of clinical trial literature of traditional Chinese medicine. Chin. J. Exp. Tradit. Med. Formulae 29 , 190–197. https://doi.org/10.13422/j.cnki.syfjx.20231115 (2023).

Xiao, Y. et al. Construction and application of novel coronavirus domain ontology. Mil. Med. 46 , 263–268 (2022).

Su, N. et al . Automatic construction method of domain-limited ontology. Lifting the Transport Machinery. 8 , 49–57 (2023).

Zheng, S. et al . Ontology construction method for user-generated content. Inf. Sci. 37 , 43–47. https://doi.org/10.13833/j.issn.1007-7634.2019.11.007 (2019).

Dong, J., Wang, J. & Wang, Z. Ontology automatic construction method for human-machine-object ternary data fusion in manufacturing field. Control Decis. 37 , 1251–1257. https://doi.org/10.13195/j.kzyjc.2020.1298 (2022).

Zhu, L., Hua, G. & Gao, W. Mapping ontology vertices to a line using hypergraph framework. Int. J. Cogn. Comput. Eng. 1 , 1–8 (2020).

Zhai, Y. & Wang, F. Research on the construction method of Chinese domain ontology based on text mining. Inf. Sci. 33 , 3–10. https://doi.org/10.13833/j.cnki.is.2015.06.001 (2015).

Duan, Z. Generation mechanism of internet rumors and countermeasures. Guizhou Soc. Sci. https://doi.org/10.13713/j.cnki.cssci.2016.04.014 (2016).

Du, Z. & Zhi, S. The harm and governance of network political rumors. Academic Journal of Zhongzhou. 4 , 161–165 (2019).

Song, X. et al . Research on influencing factors of health rumor sharing willingness based on MOA theory. J. China Soc. Sci. Tech. Inf. 39 , 511–520 (2020).

Jiang, S. Research on the characteristics, causes and countermeasures of social rumors dissemination in china in recent years. Red Flag Manuscript . 16 , 4 (2011).

Huang, J., Wang, G. & Zhong, S. Research on the propagation law and function mode of sci-tech rumors. Journal of Information. 34 , 156–160 (2015).

Liu, Y. et al . A survey of rumor recognition in social media. Chin. J. Comput. 41 , 1536–1558 (2018).

Wei, D. et al. Public emotions and rumors spread during the covid-19 epidemic in China: Web-based correlation study. J. Med. Internet Res. 22 , e21933 (2020).

Runxi, Z. & Di, Z. A model and simulation of the emotional contagion of netizens in the process of rumor refutation. Sci. Rep. https://doi.org/10.1038/s41598-019-50770-4 (2019).

Tang, X. & Lai, S. Research on the forwarding of network health rumors in public health security incidents—Interaction between perceived risk and information credibility. J. Inf. 40 , 101–107 (2021).

Nicolas, P., Dominik, B. & Stefan, F. Emotions in online rumor diffusion. EPJ Data Sci. https://doi.org/10.1140/epjds/s13688-021-00307-5 (2021).

Deng, G. & Tang, G. Research on the spread of network rumors and its social impact. Seeker https://doi.org/10.16059/j.cnki.cn43-1008/c.2005.10.031 (2005).

Ji, Y. Research on the communication motivation of wechat rumors. Youth J. https://doi.org/10.15997/j.cnki.qnjz.2019.17.006 (2019).

Yuan, G. Analysis on the causes and motives of internet rumors in emergencies—Taking social media as an example. Media. 21 , 80–83 (2016).

Zhao, N., Li, Y. & Zhang, J. A review of the research on influencing factors and motivation mechanism of rumor spread. J. Psychol. Sci. 36 , 965–970. https://doi.org/10.16719/j.cnki.1671-6981.2013.04.015 (2013).

Article   CAS   Google Scholar  

Hu, H. On the formation mechanism of social rumors from the perspective of “rumors and salt storm”. J. Henan Univ. 52 , 63–68 (2012).

Yue, Y. et al. Trust in government buffers the negative effect of rumor exposure on people’s emotions. Curr. Psychol. 42 , 23917–23930 (2023).

Wang, C. & Hou, X. Analysis of rumor discourse in major emergencies. J. Commun. 19 , 34–38 (2012).

Xu, L. Research progress of ontology evaluation. J. China Soc. Scie. Tech. Inf. 35 , 772–784 (2016).

Lantow, B. & Sandkuhl, K. An analysis of applicability using quality metrics for ontologies on ontology design patterns. Intell. Syst. Acc. Financ. Manag. 22 , 81–99 (2015).

Pak, J. & Zhou, L. A framework for ontology evaluationIn. Exploring the Grand Challenges for Next Generation E-Business: 8th Workshop on E-Business, WEB 2009, Phoenix, AZ, USA, December 15, 2009, Revised Selected Papers 8. , 10–18. https://doi.org/10.1007/978-3-642-17449-0_2 (Springer Berlin Heidelberg, 2011).

Download references

Acknowledgements

This study was financially supported by Xi'an Major Scientific and Technological Achievements Transformation and Industrialization Project (20KYPT0003-10).

This work was supported by Xi’an Municipal Bureau of Science and Technology, 20KYPT0003-10.

Author information

Authors and affiliations.

School of Economics and Management, Xidian University, 266 Xifeng Road, Xi’an, 710071, China

Jianbo Zhao, Huailiang Liu, Weili Zhang, Tong Sun, Qiuyi Chen, Yan Zhuang, Xiaojin Zhang & Shanzhuang Zhang

School of Artificial Intelligence, Xidian University, 266 Xifeng Road, Xi’an, 710071, China

Yuehai Wang, Jiale Cheng & Ruiyu Ding

School of Telecommunications Engineering, Xidian University, 266 Xifeng Road, Xi’an, 710071, China

You can also search for this author in PubMed   Google Scholar

Contributions

H.L. formulated the overall research strategy and guided the work. J.Z kept the original data on which the paper was based and verified whether the charts and conclusions accurately reflected the collected data. J.Z. W.Z. and T.S. wrote the main manuscript text. W.Z. Y.W. and Q.C. finished collecting and sorting out the data. J.C. Y.Z. and X.Z. prepared Figs.  1 – 7 , S.Z. B.L. and R.D. prepared Tables 1 – 14 . All authors reviewed the manuscript.

Corresponding author

Correspondence to Jianbo Zhao .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Zhao, J., Liu, H., Zhang, W. et al. Research on domain ontology construction based on the content features of online rumors. Sci Rep 14 , 12134 (2024). https://doi.org/10.1038/s41598-024-62459-4

Download citation

Received : 07 December 2023

Accepted : 16 May 2024

Published : 27 May 2024

DOI : https://doi.org/10.1038/s41598-024-62459-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Rumor content features
  • Domain ontology
  • Top-level ontology reuse
  • New concept discovery

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

paper about research methods

IMAGES

  1. How to Write a Research Paper

    paper about research methods

  2. FREE 5+ Sample Research Paper Templates in PDF

    paper about research methods

  3. Types of Research Report

    paper about research methods

  4. 📚 Free Paper Example on Business Research Methods

    paper about research methods

  5. 😍 Research method paper. Methodology Research Paper Example. 2019-01-22

    paper about research methods

  6. 70. Research Methodology Final Term Paper

    paper about research methods

VIDEO

  1. Ethics in Clinical Research Part I

  2. Contribution in research paper

  3. Quantitative Data Analysis for B. A. VI Semester by Dr. Swati S. Nanda (Political Science)

  4. The scientific approach and alternative approaches to investigation

  5. Techniques of Somatometry & Somatoscopy

  6. 3.Three type of main Research in education

COMMENTS

  1. Research Methods

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  2. What Is a Research Methodology?

    What Is a Research Methodology? | Steps & Tips. Published on August 25, 2022 by Shona McCombes and Tegan George. Revised on November 20, 2023. Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing ...

  3. Research Methodology

    The research methodology is an important section of any research paper or thesis, as it describes the methods and procedures that will be used to conduct the research. It should include details about the research design, data collection methods, data analysis techniques, and any ethical considerations.

  4. (PDF) Understanding research methods: An overview of the essentials

    Abstract. A perennial bestseller since 1997, this updated tenth edition of Understanding Research Methods provides a detailed overview of all the important concepts traditionally covered in a ...

  5. How to use and assess qualitative research methods

    Abstract. This paper aims to provide an overview of the use and assessment of qualitative research methods in the health sciences. Qualitative research can be defined as the study of the nature of phenomena and is especially appropriate for answering questions of why something is (not) observed, assessing complex multi-component interventions ...

  6. How to Write Your Methods

    Your Methods Section contextualizes the results of your study, giving editors, reviewers and readers alike the information they need to understand and interpret your work. Your methods are key to establishing the credibility of your study, along with your data and the results themselves. A complete methods section should provide enough detail ...

  7. Organizing Your Social Sciences Research Paper

    I. Groups of Research Methods. There are two main groups of research methods in the social sciences: The empirical-analytical group approaches the study of social sciences in a similar manner that researchers study the natural sciences.This type of research focuses on objective knowledge, research questions that can be answered yes or no, and operational definitions of variables to be measured.

  8. The Practice of Innovating Research Methods

    Third, despite the value of innovation, we actually know relatively little about the actual practice of research method innovation. Existing work presents exemplars of innovative methods along the research process from research setting to design, forms of data, data collection, and analysis (cf. Elsbach & Kramer, 2016).Other work (Bansal & Corley, 2011) calls for innovating methods via new ...

  9. PDF APA Handbook of Research Methods in Psychology

    Part II. Working Across Epistemologies, Methodologies, and Methods ..... 233 Chapter 12. Mixed Methods Research in Psychology ..... 235 Timothy C. Guetterman and Analay Perez Chapter 13. The Cases W ithin Trials (CWT) Method: An Example of a Mixed Methods Research Design ..... 257 Daniel B. Fishman

  10. What Is a Research Methodology?

    Revised on 10 October 2022. Your research methodology discusses and explains the data collection and analysis methods you used in your research. A key part of your thesis, dissertation, or research paper, the methodology chapter explains what you did and how you did it, allowing readers to evaluate the reliability and validity of your research.

  11. Research Methods

    Compare your paper to billions of pages and articles with Scribbr's Turnitin-powered plagiarism checker. Run a free check ... Research methods are specific procedures for collecting and analysing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will ...

  12. PDF Research Design and Research Methods

    Research Design and Research Methods 47 research design link your purposes to the broader, more theoretical aspects of procedures for conducting Qualitative, Quantitative, and Mixed Methods Research, while the following section will examine decisions about research methods as a narrower, more technical aspect of procedures.

  13. How to Write an APA Methods Section

    Research papers in the social and natural sciences often follow APA style. This article focuses on reporting quantitative research methods. In your APA methods section, you should report enough information to understand and replicate your study, including detailed information on the sample, measures, and procedures used.

  14. Literature review as a research methodology: An ...

    This paper discusses literature review as a methodology for conducting research and offers an overview of different types of reviews, as well as some guidelines to how to both conduct and evaluate a literature review paper. ... but time-consuming approach. Another option could be to focus on the research method or findings, and a third option ...

  15. Papers on research methods: The hidden gems of the research literature

    A research methods paper that presents a data analysis software is the contribution of Stiglic, Watson, and Cilar . The researchers present R, a package in the public domain, and provide the code in R for a confirmatory factor analysis. Our last special issue paper is not a research methods paper. Nor is it any of our traditional paper types.

  16. How to Write the Methods Section of a Research Paper

    The methods section is a fundamental section of any paper since it typically discusses the 'what', 'how', 'which', and 'why' of the study, which is necessary to arrive at the final conclusions. In a research article, the introduction, which serves to set the foundation for comprehending the background and results is usually ...

  17. Writing the Research Paper

    Writing the Research Paper. Write a detailed outline. Almost the rough content of every paragraph. The order of the various topics in your paper. On the basis of the outline, start writing a part by planning the content, and then write it down. Put a visible mark (which you will later delete) where you need to quote a source, and write in the ...

  18. Research Methods

    Quantitative research methods are used to collect and analyze numerical data. This type of research is useful when the objective is to test a hypothesis, determine cause-and-effect relationships, and measure the prevalence of certain phenomena. Quantitative research methods include surveys, experiments, and secondary data analysis.

  19. PDF How to Write the Methods Section of a Research Paper

    The methods section should describe what was done to answer the research question, describe how it was done, justify the experimental design, and explain how the results were analyzed. Scientific writing is direct and orderly. Therefore, the methods section structure should: describe the materials used in the study, explain how the materials ...

  20. Research Paper

    Definition: Research Paper is a written document that presents the author's original research, analysis, and interpretation of a specific topic or issue. It is typically based on Empirical Evidence, and may involve qualitative or quantitative research methods, or a combination of both. The purpose of a research paper is to contribute new ...

  21. (PDF) Research Methods and Methodology

    Abstract and Figures. Research is an interesting field of study which every student or scholar has to encounter in the course of time. The objective of this paper is to explore the various ...

  22. Co-Producing access(ible) Knowledge: Methodological Reflections on a

    This paper is a methodological reflection on a community-based participatory research (CBPR) project that used the photovoice method to unravel the educational experiences of disabled college students in China's higher education institutions.

  23. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  24. What Are the Different Types of Research Methods Used in Dissertation

    Qualitative Research. As the humanities got more and more modern, the need for quantitative research increased. It was invented to get more human response from the respondents. The research method is much more humane and subjective in nature to put a better understanding upfront. It mainly came into action after the birth of social psychology ...

  25. Explaining research performance: investigating the importance of

    In this article, we study the motivation and performance of researchers. More specifically, we investigate what motivates researchers across different research fields and countries and how this motivation influences their research performance. The basis for our study is a large-N survey of economists, cardiologists, and physicists in Denmark, Norway, Sweden, the Netherlands, and the UK. The ...

  26. Understanding Naturalistic Observation in Research

    This essay is about naturalistic observation, a research method used to observe subjects in their natural environment without interference. It discusses the advantages of this method, such as providing rich, qualitative insights into behavior, and the challenges, including observer bias and lack of control over variables.

  27. Research on domain ontology construction based on the content ...

    This paper proposes a TFI online rumor domain ontology construction method based on the improvement of the seven-step method, which includes the term layer, the frame layer and the instance layer ...

  28. Cleveland Clinic, IBM apply quantum computing to protein research

    Researchers from Cleveland Clinic and IBM recently published findings in the Journal of Chemical Theory and Computation that could lay the groundwork for applying quantum computing methods to protein structure prediction. This publication is the first peer-reviewed quantum computing paper from the Cleveland Clinic-IBM Discovery Accelerator ...

  29. What Is Qualitative Research?

    Qualitative research methods. Each of the research approaches involve using one or more data collection methods.These are some of the most common qualitative methods: Observations: recording what you have seen, heard, or encountered in detailed field notes. Interviews: personally asking people questions in one-on-one conversations. Focus groups: asking questions and generating discussion among ...

  30. Applied Sciences

    Time-domain numerical simulation is generally considered an accurate method to predict the mooring system performance, but it is also time and resource-consuming. This paper attempts to completely replace the time-domain numerical simulation with machine learning approaches, using a catenary anchor leg mooring (CALM) system design as an example.