Icon Partners

  • Quality Improvement
  • Talk To Minitab

The Basics of Structured Problem-Solving Methodologies: DMAIC & 8D

Topics: Minitab Engage

When it comes to solving a problem, organizations want to get to the root cause of the problem, as quickly as possible. They also want to ensure that they find the most effective solution to that problem, make sure the solution is implemented fully, and is sustained into the future so that the problem no longer occurs. The best way to do this is by implementing structured problem-solving. In this blog post, we’ll briefly cover structured problem-solving and the best improvement methodologies to achieve operational excellence. Before we dive into ways Minitab can help, let’s first cover the basics of problem-solving.

WHAT IS STRUCTURED PROBLEM-SOLVING?

Structured problem-solving is a disciplined approach that breaks down the problem-solving process into discrete steps with clear objectives. This method enables you to tackle complex problems, while ensuring you’re resolving the right ones. It also ensures that you fully understand those problems, you've considered the reasonable solutions, and are effectively implementing and sustaining them.

WHAT IS A STRUCTURED PROBLEM-SOLVING METHODOLOGY?

A structured problem-solving methodology is a technique that consists of a series of phases that a project must pass through before it gets completed. The goal of a methodology is to highlight the intention behind solving a particular problem and offers a strategic way to resolve it. WHAT ARE THE BEST PROBLEM-SOLVING METHODOLOGIES?

That depends on the problem you’re trying to solve for your improvement initiative. The structure and discipline of completing all the steps in each methodology is more important than the specific methodology chosen. To help you easily visualize these methodologies, we’ve created the Periodic Table of Problem-Solving Methodologies. Now let’s cover two important methodologies for successful process improvement and problem prevention: DMAIC and 8D .

DMAIC Methodology

8D is known as the Eight Disciplines of problem-solving. It consists of eight steps to solve difficult, recurring, or critical problems. The methodology consists of problem-solving tools to help you identify, correct, and eliminate the source of problems within your organization. If the problem you’re trying to solve is complex and needs to be resolved quickly, 8D might be the right methodology to implement for your organization. Each methodology could be supported with a project template, where its roadmap corresponds to the set of phases in that methodology. It is a best practice to complete each step of a given methodology, before moving on to the next one.

MINITAB ENGAGE, YOUR SOLUTION TO EFFECTIVE PROBLEM-SOLVING

Minitab Engage TM was built to help organizations drive innovation and improvement initiatives. What makes our solution unique is that it combines structured problem-solving methodologies with tools and dashboards to help you plan, execute, and measure your innovation initiatives! There are many problem-solving methodologies and tools to help you get started. We have the ultimate end-to-end improvement solution to help you reach innovation success.

Ready to explore structured problem-solving?

Download our free eBook to discover the top methodologies and tools to help you accelerate your innovation programs.

Download Now

You Might Also Like

  • Trust Center

© 2023 Minitab, LLC. All Rights Reserved.

  • Terms of Use
  • Privacy Policy
  • Cookies Settings

logo

McKinsey Problem Solving: Six steps to solve any problem and tell a persuasive story

' src=

The McKinsey problem solving process is a series of mindset shifts and structured approaches to thinking about and solving challenging problems. It is a useful approach for anyone working in the knowledge and information economy and needs to communicate ideas to other people.

Over the past several years of creating StrategyU, advising an undergraduates consulting group and running workshops for clients, I have found over and over again that the principles taught on this site and in this guide are a powerful way to improve the type of work and communication you do in a business setting.

When I first set out to teach these skills to the undergraduate consulting group at my alma mater, I was still working at BCG. I was spending my day building compelling presentations, yet was at a loss for how to teach these principles to the students I would talk with at night.

Through many rounds of iteration, I was able to land on a structured process and way of framing some of these principles such that people could immediately apply them to their work.

While the “official” McKinsey problem solving process is seven steps, I have outline my own spin on things – from experience at McKinsey and Boston Consulting Group. Here are six steps that will help you solve problems like a McKinsey Consultant:

Step #1: School is over, stop worrying about “what” to make and worry about the process, or the “how”

When I reflect back on my first role at McKinsey, I realize that my biggest challenge was unlearning everything I had learned over the previous 23 years. Throughout school you are asked to do specific things. For example, you are asked to write a 5 page paper on Benjamin Franklin — double spaced, 12 font and answering two or three specific questions.

In school, to be successful you follow these rules as close as you can. However, in consulting there are no rules on the “what.” Typically the problem you are asked to solve is ambiguous and complex — exactly why they hire you. In consulting, you are taught the rules around the “how” and have to then fill in the what.

The “how” can be taught and this entire site is founded on that belief. Here are some principles to get started:

Step #2: Thinking like a consultant requires a mindset shift

There are two pre-requisites to thinking like a consultant. Without these two traits you will struggle:

  • A healthy obsession looking for a “better way” to do things
  • Being open minded to shifting ideas and other approaches

In business school, I was sitting in one class when I noticed that all my classmates were doing the same thing — everyone was coming up with reasons why something should should not be done.

As I’ve spent more time working, I’ve realized this is a common phenomenon. The more you learn, the easier it becomes to come up with reasons to support the current state of affairs — likely driven by the status quo bias — an emotional state that favors not changing things. Even the best consultants will experience this emotion, but they are good at identifying it and pushing forward.

Key point : Creating an effective and persuasive consulting like presentation requires a comfort with uncertainty combined with a slightly delusional belief that you can figure anything out.

Step #3: Define the problem and make sure you are not solving a symptom

Before doing the work, time should be spent on defining the actual problem. Too often, people are solutions focused when they think about fixing something. Let’s say a company is struggling with profitability. Someone might define the problem as “we do not have enough growth.” This is jumping ahead to solutions — the goal may be to drive more growth, but this is not the actual issue. It is a symptom of a deeper problem.

Consider the following information:

  • Costs have remained relatively constant and are actually below industry average so revenue must be the issue
  • Revenue has been increasing, but at a slowing rate
  • This company sells widgets and have had no slowdown on the number of units it has sold over the last five years
  • However, the price per widget is actually below where it was five years ago
  • There have been new entrants in the market in the last three years that have been backed by Venture Capital money and are aggressively pricing their products below costs

In a real-life project there will definitely be much more information and a team may take a full week coming up with a problem statement . Given the information above, we may come up with the following problem statement:

Problem Statement : The company is struggling to increase profitability due to decreasing prices driven by new entrants in the market. The company does not have a clear strategy to respond to the price pressure from competitors and lacks an overall product strategy to compete in this market.

Step 4: Dive in, make hypotheses and try to figure out how to “solve” the problem

Now the fun starts!

There are generally two approaches to thinking about information in a structured way and going back and forth between the two modes is what the consulting process is founded on.

First is top-down . This is what you should start with, especially for a newer “consultant.” This involves taking the problem statement and structuring an approach. This means developing multiple hypotheses — key questions you can either prove or disprove.

Given our problem statement, you may develop the following three hypotheses:

  • Company X has room to improve its pricing strategy to increase profitability
  • Company X can explore new market opportunities unlocked by new entrants
  • Company X can explore new business models or operating models due to advances in technology

As you can see, these three statements identify different areas you can research and either prove or disprove. In a consulting team, you may have a “workstream leader” for each statement.

Once you establish the structure you you may shift to the second type of analysis: a bottom-up approach . This involves doing deep research around your problem statement, testing your hypotheses, running different analysis and continuing to ask more questions. As you do the analysis, you will begin to see different patterns that may unlock new questions, change your thinking or even confirm your existing hypotheses. You may need to tweak your hypotheses and structure as you learn new information.

A project vacillates many times between these two approaches. Here is a hypothetical timeline of a project:

Strategy consulting process

Step 5: Make a slides like a consultant

The next step is taking the structure and research and turning it into a slide. When people see slides from McKinsey and BCG, they see something that is compelling and unique, but don’t really understand all the work that goes into those slides. Both companies have a healthy obsession (maybe not to some people!) with how things look, how things are structured and how they are presented.

They also don’t understand how much work is spent on telling a compelling “story.” The biggest mistake people make in the business world is mistaking showing a lot of information versus telling a compelling story. This is an easy mistake to make — especially if you are the one that did hours of analysis. It may seem important, but when it comes down to making a slide and a presentation, you end up deleting more information rather than adding. You really need to remember the following:

Data matters, but stories change hearts and minds

Here are four quick ways to improve your presentations:

Tip #1 — Format, format, format

Both McKinsey and BCG had style templates that were obsessively followed. Some key rules I like to follow:

  • Make sure all text within your slide body is the same font size (harder than you would think)
  • Do not go outside of the margins into the white space on the side
  • All titles throughout the presentation should be 2 lines or less and stay the same font size
  • Each slide should typically only make one strong point

Tip #2 — Titles are the takeaway

The title of the slide should be the key insight or takeaway and the slide area should prove the point. The below slide is an oversimplification of this:

Example of a single slide

Even in consulting, I found that people struggled with simplifying a message to one key theme per slide. If something is going to be presented live, the simpler the better. In reality, you are often giving someone presentations that they will read in depth and more information may make sense.

To go deeper, check out these 20 presentation and powerpoint tips .

Tip #3 — Have “MECE” Ideas for max persuasion

“MECE” means mutually exclusive, collectively exhaustive — meaning all points listed cover the entire range of ideas while also being unique and differentiated from each other.

An extreme example would be this:

  • Slide title: There are seven continents
  • Slide content: The seven continents are North America, South America, Europe, Africa Asia, Antarctica, Australia

The list of continents provides seven distinct points that when taken together are mutually exclusive and collectively exhaustive . The MECE principle is not perfect — it is more of an ideal to push your logic in the right direction. Use it to continually improve and refine your story.

Applying this to a profitability problem at the highest level would look like this:

Goal: Increase profitability

2nd level: We can increase revenue or decrease costs

3rd level: We can increase revenue by selling more or increasing prices

Each level is MECE. It is almost impossible to argue against any of this (unless you are willing to commit accounting fraud!).

Tip #4 — Leveraging the Pyramid Principle

The pyramid principle is an approach popularized by Barbara Minto and essential to the structured problem solving approach I learned at McKinsey. Learning this approach has changed the way I look at any presentation since.

Here is a rough outline of how you can think about the pyramid principle as a way to structure a presentation:

pyramid principle structure

As you build a presentation, you may have three sections for each hypothesis. As you think about the overall story, the three hypothesis (and the supporting evidence) will build on each other as a “story” to answer the defined problem. There are two ways to think about doing this — using inductive or deductive reasoning:

deductive versus inductive reasoning in powerpoint arguments

If we go back to our profitability example from above, you would say that increasing profitability was the core issue we developed. Lets assume that through research we found that our three hypotheses were true. Given this, you may start to build a high level presentation around the following three points:

example of hypotheses confirmed as part of consulting problem solving

These three ideas not only are distinct but they also build on each other. Combined, they tell a story of what the company should do and how they should react. Each of these three “points” may be a separate section in the presentation followed by several pages of detailed analysis. There may also be a shorter executive summary version of 5–10 pages that gives the high level story without as much data and analysis.

Step 6: The only way to improve is to get feedback and continue to practice

Ultimately, this process is not something you will master overnight. I’ve been consulting, either working for a firm or on my own for more than 10 years and am still looking for ways to make better presentations, become more persuasive and get feedback on individual slides.

The process never ends.

The best way to improve fast is to be working on a great team . Look for people around you that do this well and ask them for feedback. The more feedback, the more iterations and more presentations you make, the better you will become. Good luck!

If you enjoyed this post, you’ll get a kick out of all the free lessons I’ve shared that go a bit deeper. Check them out here .

Do you have a toolkit for business problem solving? I created Think Like a Strategy Consultant as an online course to make the tools of strategy consultants accessible to driven professionals, executives, and consultants. This course teaches you how to synthesize information into compelling insights, structure your information in ways that help you solve problems, and develop presentations that resonate at the C-Level. Click here to learn more or if you are interested in getting started now, enroll in the self-paced version ($497) or hands-on coaching version ($997). Both versions include lifetime access and all future updates.

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Pocket (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is Problem-Solving Therapy?

Arlin Cuncic, MA, is the author of The Anxiety Workbook and founder of the website About Social Anxiety. She has a Master's degree in clinical psychology.

structured problem solving meaning

Daniel B. Block, MD, is an award-winning, board-certified psychiatrist who operates a private practice in Pennsylvania.

structured problem solving meaning

Verywell / Madelyn Goodnight

Problem-Solving Therapy Techniques

How effective is problem-solving therapy, things to consider, how to get started.

Problem-solving therapy is a brief intervention that provides people with the tools they need to identify and solve problems that arise from big and small life stressors. It aims to improve your overall quality of life and reduce the negative impact of psychological and physical illness.

Problem-solving therapy can be used to treat depression , among other conditions. It can be administered by a doctor or mental health professional and may be combined with other treatment approaches.

At a Glance

Problem-solving therapy is a short-term treatment used to help people who are experiencing depression, stress, PTSD, self-harm, suicidal ideation, and other mental health problems develop the tools they need to deal with challenges. This approach teaches people to identify problems, generate solutions, and implement those solutions. Let's take a closer look at how problem-solving therapy can help people be more resilient and adaptive in the face of stress.

Problem-solving therapy is based on a model that takes into account the importance of real-life problem-solving. In other words, the key to managing the impact of stressful life events is to know how to address issues as they arise. Problem-solving therapy is very practical in its approach and is only concerned with the present, rather than delving into your past.

This form of therapy can take place one-on-one or in a group format and may be offered in person or online via telehealth . Sessions can be anywhere from 30 minutes to two hours long. 

Key Components

There are two major components that make up the problem-solving therapy framework:

  • Applying a positive problem-solving orientation to your life
  • Using problem-solving skills

A positive problem-solving orientation means viewing things in an optimistic light, embracing self-efficacy , and accepting the idea that problems are a normal part of life. Problem-solving skills are behaviors that you can rely on to help you navigate conflict, even during times of stress. This includes skills like:

  • Knowing how to identify a problem
  • Defining the problem in a helpful way
  • Trying to understand the problem more deeply
  • Setting goals related to the problem
  • Generating alternative, creative solutions to the problem
  • Choosing the best course of action
  • Implementing the choice you have made
  • Evaluating the outcome to determine next steps

Problem-solving therapy is all about training you to become adaptive in your life so that you will start to see problems as challenges to be solved instead of insurmountable obstacles. It also means that you will recognize the action that is required to engage in effective problem-solving techniques.

Planful Problem-Solving

One problem-solving technique, called planful problem-solving, involves following a series of steps to fix issues in a healthy, constructive way:

  • Problem definition and formulation : This step involves identifying the real-life problem that needs to be solved and formulating it in a way that allows you to generate potential solutions.
  • Generation of alternative solutions : This stage involves coming up with various potential solutions to the problem at hand. The goal in this step is to brainstorm options to creatively address the life stressor in ways that you may not have previously considered.
  • Decision-making strategies : This stage involves discussing different strategies for making decisions as well as identifying obstacles that may get in the way of solving the problem at hand.
  • Solution implementation and verification : This stage involves implementing a chosen solution and then verifying whether it was effective in addressing the problem.

Other Techniques

Other techniques your therapist may go over include:

  • Problem-solving multitasking , which helps you learn to think clearly and solve problems effectively even during times of stress
  • Stop, slow down, think, and act (SSTA) , which is meant to encourage you to become more emotionally mindful when faced with conflict
  • Healthy thinking and imagery , which teaches you how to embrace more positive self-talk while problem-solving

What Problem-Solving Therapy Can Help With

Problem-solving therapy addresses life stress issues and focuses on helping you find solutions to concrete issues. This approach can be applied to problems associated with various psychological and physiological symptoms.

Mental Health Issues

Problem-solving therapy may help address mental health issues, like:

  • Chronic stress due to accumulating minor issues
  • Complications associated with traumatic brain injury (TBI)
  • Emotional distress
  • Post-traumatic stress disorder (PTSD)
  • Problems associated with a chronic disease like cancer, heart disease, or diabetes
  • Self-harm and feelings of hopelessness
  • Substance use
  • Suicidal ideation

Specific Life Challenges

This form of therapy is also helpful for dealing with specific life problems, such as:

  • Death of a loved one
  • Dissatisfaction at work
  • Everyday life stressors
  • Family problems
  • Financial difficulties
  • Relationship conflicts

Your doctor or mental healthcare professional will be able to advise whether problem-solving therapy could be helpful for your particular issue. In general, if you are struggling with specific, concrete problems that you are having trouble finding solutions for, problem-solving therapy could be helpful for you.

Benefits of Problem-Solving Therapy

The skills learned in problem-solving therapy can be helpful for managing all areas of your life. These can include:

  • Being able to identify which stressors trigger your negative emotions (e.g., sadness, anger)
  • Confidence that you can handle problems that you face
  • Having a systematic approach on how to deal with life's problems
  • Having a toolbox of strategies to solve the issues you face
  • Increased confidence to find creative solutions
  • Knowing how to identify which barriers will impede your progress
  • Knowing how to manage emotions when they arise
  • Reduced avoidance and increased action-taking
  • The ability to accept life problems that can't be solved
  • The ability to make effective decisions
  • The development of patience (realizing that not all problems have a "quick fix")

Problem-solving therapy can help people feel more empowered to deal with the problems they face in their lives. Rather than feeling overwhelmed when stressors begin to take a toll, this therapy introduces new coping skills that can boost self-efficacy and resilience .

Other Types of Therapy

Other similar types of therapy include cognitive-behavioral therapy (CBT) and solution-focused brief therapy (SFBT) . While these therapies work to change thinking and behaviors, they work a bit differently. Both CBT and SFBT are less structured than problem-solving therapy and may focus on broader issues. CBT focuses on identifying and changing maladaptive thoughts, and SFBT works to help people look for solutions and build self-efficacy based on strengths.

This form of therapy was initially developed to help people combat stress through effective problem-solving, and it was later adapted to address clinical depression specifically. Today, much of the research on problem-solving therapy deals with its effectiveness in treating depression.

Problem-solving therapy has been shown to help depression in: 

  • Older adults
  • People coping with serious illnesses like cancer

Problem-solving therapy also appears to be effective as a brief treatment for depression, offering benefits in as little as six to eight sessions with a therapist or another healthcare professional. This may make it a good option for someone unable to commit to a lengthier treatment for depression.

Problem-solving therapy is not a good fit for everyone. It may not be effective at addressing issues that don't have clear solutions, like seeking meaning or purpose in life. Problem-solving therapy is also intended to treat specific problems, not general habits or thought patterns .

In general, it's also important to remember that problem-solving therapy is not a primary treatment for mental disorders. If you are living with the symptoms of a serious mental illness such as bipolar disorder or schizophrenia , you may need additional treatment with evidence-based approaches for your particular concern.

Problem-solving therapy is best aimed at someone who has a mental or physical issue that is being treated separately, but who also has life issues that go along with that problem that has yet to be addressed.

For example, it could help if you can't clean your house or pay your bills because of your depression, or if a cancer diagnosis is interfering with your quality of life.

Your doctor may be able to recommend therapists in your area who utilize this approach, or they may offer it themselves as part of their practice. You can also search for a problem-solving therapist with help from the American Psychological Association’s (APA) Society of Clinical Psychology .

If receiving problem-solving therapy from a doctor or mental healthcare professional is not an option for you, you could also consider implementing it as a self-help strategy using a workbook designed to help you learn problem-solving skills on your own.

During your first session, your therapist may spend some time explaining their process and approach. They may ask you to identify the problem you’re currently facing, and they’ll likely discuss your goals for therapy .

Keep In Mind

Problem-solving therapy may be a short-term intervention that's focused on solving a specific issue in your life. If you need further help with something more pervasive, it can also become a longer-term treatment option.

Get Help Now

We've tried, tested, and written unbiased reviews of the best online therapy programs including Talkspace, BetterHelp, and ReGain. Find out which option is the best for you.

Shang P, Cao X, You S, Feng X, Li N, Jia Y. Problem-solving therapy for major depressive disorders in older adults: an updated systematic review and meta-analysis of randomized controlled trials .  Aging Clin Exp Res . 2021;33(6):1465-1475. doi:10.1007/s40520-020-01672-3

Cuijpers P, Wit L de, Kleiboer A, Karyotaki E, Ebert DD. Problem-solving therapy for adult depression: An updated meta-analysis . Eur Psychiatry . 2018;48(1):27-37. doi:10.1016/j.eurpsy.2017.11.006

Nezu AM, Nezu CM, D'Zurilla TJ. Problem-Solving Therapy: A Treatment Manual . New York; 2013. doi:10.1891/9780826109415.0001

Owens D, Wright-Hughes A, Graham L, et al. Problem-solving therapy rather than treatment as usual for adults after self-harm: a pragmatic, feasibility, randomised controlled trial (the MIDSHIPS trial) .  Pilot Feasibility Stud . 2020;6:119. doi:10.1186/s40814-020-00668-0

Sorsdahl K, Stein DJ, Corrigall J, et al. The efficacy of a blended motivational interviewing and problem solving therapy intervention to reduce substance use among patients presenting for emergency services in South Africa: A randomized controlled trial . Subst Abuse Treat Prev Policy . 2015;10(1):46. doi:doi.org/10.1186/s13011-015-0042-1

Margolis SA, Osborne P, Gonzalez JS. Problem solving . In: Gellman MD, ed. Encyclopedia of Behavioral Medicine . Springer International Publishing; 2020:1745-1747. doi:10.1007/978-3-030-39903-0_208

Kirkham JG, Choi N, Seitz DP. Meta-analysis of problem solving therapy for the treatment of major depressive disorder in older adults . Int J Geriatr Psychiatry . 2016;31(5):526-535. doi:10.1002/gps.4358

Garand L, Rinaldo DE, Alberth MM, et al. Effects of problem solving therapy on mental health outcomes in family caregivers of persons with a new diagnosis of mild cognitive impairment or early dementia: A randomized controlled trial . Am J Geriatr Psychiatry . 2014;22(8):771-781. doi:10.1016/j.jagp.2013.07.007

Noyes K, Zapf AL, Depner RM, et al. Problem-solving skills training in adult cancer survivors: Bright IDEAS-AC pilot study .  Cancer Treat Res Commun . 2022;31:100552. doi:10.1016/j.ctarc.2022.100552

Albert SM, King J, Anderson S, et al. Depression agency-based collaborative: effect of problem-solving therapy on risk of common mental disorders in older adults with home care needs . The American Journal of Geriatric Psychiatry . 2019;27(6):619-624. doi:10.1016/j.jagp.2019.01.002

By Arlin Cuncic, MA Arlin Cuncic, MA, is the author of The Anxiety Workbook and founder of the website About Social Anxiety. She has a Master's degree in clinical psychology.

lls-logo-main

Guide: A3 Problem Solving

Author's Avatar

Author: Daniel Croft

Daniel Croft is an experienced continuous improvement manager with a Lean Six Sigma Black Belt and a Bachelor's degree in Business Management. With more than ten years of experience applying his skills across various industries, Daniel specializes in optimizing processes and improving efficiency. His approach combines practical experience with a deep understanding of business fundamentals to drive meaningful change.

Problem-solving is one of the key tools a successful business needs to structure improvements and one I have been using to solve problems in a structured way in my career at a range of businesses over the years. When there is a problem in business that is leading to increased costs, waste , quality issues, etc., it is necessary to address these problems. A3 structured problem solving is a Lean Six Sigma methodology that has been designed and developed to support continuous improvement and solve complex business problems in a logical and structured process. 

The guide will give you a full understanding of what A3 Problem solving is and a breakdown of all the steps of how to apply it within your business with an example of where I have made improvements with it previously.

Importance of A3 in Lean Management

The A3 problem-solving method is a key tool in Lean Six Sigma and continuous improvement in business, and in my experience, it is often the standard approach all improvement activities must follow and is particularly popular in the automotive industry. This is because of the following:

Focus on Root Causes : Rather than applying a quick fix to a problem or jumping to conclusions and solutionizing, A3 requires gaining a deep understanding of the root causes of the problem. By addressing these root causes, the chances of recurrence is reduced.

Standardization : With a consistent format, the A3 process ensures that problems are approached in a standardized way, regardless of the team or department. This standardization creates a common language and understanding across the organization and ensures all problems are addressed to the same standard and approach.

Team Involvement : An A3 isn’t an individual process. It requires a cross-functional team to work together on problem-solving, ensuring that a range of perspectives and expertise is considered. This collective approach builds a stronger understanding of the problem and ensures that solutions are well-rounded and robust.

Visual Storytelling : The A3 report serves as a visual storyboard, making it easier for stakeholders at all levels to understand the problem, the analysis, and the countermeasures. This visualization enhances communication and drives alignment.

The 6 Steps of A3 Problem Solving (With Real Example)

The A3 problem-solving process can initially seem difficult if you have never done one before and particularly if you have never been a team member in one. To help you with this we will break down the 6 steps into manageable activities, followed by a real-life example to help you apply this method within your business.

As a side note, the A3 problem-solving process was actually one of the first Lean Six Sigma tools I learned to use three weeks into my continuous improvement career after being thrown into the deep end due to resource availability, so I can understand how difficult it can be to understand. 

Step 1: Describe the problem

Problem description.

The problem description is an important first step in the process as it ensures a common understanding with the team of what the issue is that needs to be addressed. This can be done by using a technique called the 5W1H Is/Is Not method to help gain a clear understanding of the problem. 

To understand the 5W1H Is/Is Not the Process, check out our guide for details of that technique. However, in short, it’s about asking key questions about the problem, for example, “What IS the problem?” and “What IS NOT the problem?”

Let’s say you have been asked to look into a problem where “Machine downtime on the automotive assembly line has increased by 30% over the past three months, leading to production delays and increased costs.”

An example of a 5W1H Is/Is Not on this may result in the following output:

5W1H Is Is Not
Who Affects assembly line workers and leads Affecting administrative staff
What Increased machine downtime by 30% This affects all machinery on the floor
When Over the past 3 months An issue that has been consistent over the years
Where Automotive assembly line No.3 Present in assembly lines No.1 and No.2
Why Lack of preventive maintenance and outdated components Due to manual errors by operators
How Through interruptions in the assembly process Through supply chain or external factors

 Based on this we can create a clear problem description as the focus of the project that give the team a clear and common understanding of the issue looking to be resolved in the next steps of the process. The problem description could then be written as:

“Over the past three months, machine downtime on Automotive Assembly Line No.3 has increased by 30%. This has predominantly affected the assembly line workers and leads, leading to production delays and higher labour costs. “

Current Condition

Next is demonstrating the current condition and demonstrating the impact on the business. This can often be done with data and charts to back up the problem that might show trends or changes in outputs.

This might look something like the below and demonstrate a good baseline for confirming the improvement at the end of the A3

A3 Structured Problem Solving - Step 1 - Chart

Containment Actions

Next is containment actions. Since you have identified a problem, there is likely an impact on the business or the customer. As a team, you should consider what can be done to limit or eliminate this problem in the short term. Remember this is just a containment action and should not be seen as a long-term fix. 

In our situation we decided to “Implement temporary overtime shifts to meet production goals, leading to an increase in labor costs.”

At this stage, the A3 should look similar to the one below; you can use charts and graphics to represent the current state as well if they fit within the limit area. Remember, we must include the content of the A3 within the 1-page A3 Document.

A3 Structured Problem Solving - Step 1

Step 2: Set the A3 Goals

The next step of the A3 is to, as a team, set the goal for the project. As we have a clear understanding of the current condition of the problem, we can use that as our baseline for improvement and set a realistic target for improvement. 

A suggested method for setting the Target condition would be to use the SMART Target method.

If you are not familiar with SMART Targets , read our guide; it will cover the topic in much more detail. In short, a SMART target creates a goal statement that is specific, measurable, achievable, relevant and time-bound. 

By doing this you make it very clear what the goal of the project is, how it will be measured, it is something that can be achieved, relevant to the needs of the business and has a deadline for when results need to be seen.

For our A3 we decided that the goal would be “Our goal is to achieve at least a 20% reduction in machine downtime on Automotive Assembly Line No.3, lowering it from 90 minutes to no more than 72 minutes per day per machine, within the next 60 days. This reduction is crucial for increasing productivity and reducing labour costs, aligning with our overall business objectives.”

I also recommend using charts in this section to visualize the benefit or improvement to ensure you have stakeholder and sponsor support. Visuals are much easier and faster for people to understand.

A3 Structured Problem Solving - Step 2 - Chart

At this point, your A3 might look something like the one below, with the first 1/4 or section complete. The next step is to move on to the root cause analysis to get to the root of the problem and ensure the improvement does not focus on addressing the symptoms of the problem.

A3 Structured Problem Solving - Step 2

Step 3: Root Cause Analysis

Root cause analysis is the next step in the process, often referred to as gap analysis, as this step focuses on how to get to the goal condition from the current condition.

Tip: If at this point you find the team going off-topic and focusing on other issues, Ask the question, “Is this preventing us from hitting our goal statement?”  I have found this very useful for keeping on track in my time as an A3 facilitator.

For root cause analysis, a couple of key tools are usually used: a fishbone diagram and a five-why Analysis . Again, we won’t go into the full details of these tools within this guide, as they have been covered in extensive detail in their own guides.

But the aim at this point is as a team, to brainstorm what is preventing us from achieving our target condition. This is done by allowing all members of the team to input the reasons they think it is not being achieved. These inputs are often written on sticky notes and placed on the fishbone diagram. Following this, you may have results similar to the ones below.  Note: it is important that the inputs are specific so they can be understood. e.g. “Calibration” alone is not specific to how it’s causing the problem; specify it with “Calibration: Inaccurate measurements affecting machine settings.”

A3 Structured Problem Solving - Step 3 - Fishbone Diagram

After the fishbone diagram has been populated and the team has exhausted all ideas, the team should then vote on the most likely cause to explore with a 5 Whys analysis. This is done because, due to resource limitations, it is unlikely all of the suggestions can be explored and actioned.

In this situation the team decided the “lack of preventative machines: machines not being serviced regularly” was the cause of increased downtime. This was explored with the 5 Whys to get to the root cause of why Assembly Line 3 did not have preventative maintenance implemented.

The result of this root cause analysis can be seen below, and you may end up with more ideas on the fishbone, as generally there are a lot of ideas generated by a diverse team during brainstorming.

A3 Structured Problem Solving - Step 3

Step 4: Solutions and Corrective Actions

Now that we understand what the root cause of the problem is, we need to address it with solutions and corrective actions. Again, as a team, consider the root cause of the problem and discuss what actions need to be taken by the team, who will do them, and when they will be done. The result should be an action plan, for example, like the one below:

A3 Structured Problem Solving - Step 4 - Action List

This action plan needs to be carried out and implemented.

The result of this section will likely just be an action list and look like the below section.

A3 Structured Problem Solving - Step 4

Step 5: Validate Solution and Standardize

Within step 5 it is time to collect data to validate and confirm the actions that have been implemented resulting in solving the problem and meeting the target state of the problem. This is done by continuing to collect data that demonstrates the problem in the baseline to see if the problem is being reduced.

For example, below, the project team continued to collect Assembly Line 3 downtime data on a weekly basis. Initially, there was a steady reduction, likely due to the focus of the project on the problem, which had some impact. However, once the majority of the action was implemented, a huge drop in product downtime was seen, exceeding the target. This showed the actions have been successful

A3 Structured Problem Solving - Step 5 - Confirmation Chart

If, in the validation stage, you find that the improvement required is not being made, you should go back to step 3 and reconsider the root cause analysis with the team, pick another area to focus on, and create an action plan for that following the same steps.

A3 Structured Problem Solving - Step 5

Step 6: Preventive Actions and Lessons Learned

In step 6 after the confirmation of project success you should look at preventive actions and lessons learned to be shared from this project:

  • Preventive Action: The new preventive maintenance schedule will be standardized across all assembly lines. This will prevent other lines having similar issues and make further improvements
  • Lessons Learned: A formal review will be conducted to document the process, including challenges faced and how they were overcome, which will then be archived for future reference.

In our project, this looked like the one below and will be used as a reference point in the future for similar issues. 

structured problem solving meaning

And that is the successful completion of a structured A3 problem-solving technique.

The complete A3 looks like the below image. Yours may slightly differ as the problem and information vary between projects.

A3 Structured problem solving example sheet with all the steps of the A3 Process on an A3 Report

Downloadable A3 Reporting Template

To support you with your A3 problem solving, you can download our free A3 problem solving report from the template section of the website.

A3-Problem-Solving-Feature-Image-Learnleansigma

Problem-solving is important in businesses, specifically when faced with increased costs or quality issues. A3 Structured Problem Solving, rooted in Lean Six Sigma, addresses complex business challenges systematically.

Originally from Toyota’s lean methodology, A3, named after the 11″x17″ paper size, visually maps problem-solving processes. This method ensures concise communication and focuses on crucial details, as illustrated by the provided example.

Emphasized in Lean Management, A3 stresses understanding root causes, standardization across teams, team collaboration, and visual representation for clarity. This tool is not only a guide to understanding the issue but is a standardized format ensuring robust solutions. Particularly for novices, breaking down its six steps, from problem description to setting A3 goals and root cause analysis, provides clarity. Visual aids further enhance comprehension and alignment across stakeholders.

  • Sobek II, D.K. and Jimmerson, C., 2004. A3 reports: tool for process improvement. In  IIE Annual Conference. Proceedings  (p. 1). Institute of Industrial and Systems Engineers (IISE).
  • Matthews, D.D., 2018.  The A3 workbook: unlock your problem-solving mind . CRC Press.

Q: What is A3 problem solving?

A: A3 problem solving is a structured approach used to tackle complex problems and find effective solutions. It gets its name from the A3-sized paper that is typically used to document the problem-solving process.

Q: What are the key benefits of using A3 problem solving?

A: A3 problem solving provides several benefits, including improved communication, enhanced teamwork, better problem understanding, increased problem-solving effectiveness, and the development of a culture of continuous improvement.

Q: How does A3 problem solving differ from other problem-solving methods?

A: A3 problem solving emphasizes a systematic and structured approach, focusing on problem understanding, root cause analysis, and the development and implementation of countermeasures. It promotes a holistic view of the problem and encourages collaboration and learning throughout the process.

Q: What are the main steps in the A3 problem-solving process?

A: The A3 problem-solving process typically involves the following steps: problem identification and description, current condition analysis, goal setting, root cause analysis, countermeasure development, implementation planning, action plan execution, and follow-up and evaluation.

Q: What is the purpose of the problem identification and description step?

A: The problem identification and description step is crucial for clarifying the problem, its impact, and the desired outcome. It helps establish a common understanding among the team members and ensures everyone is working towards the same goal.

Picture of Daniel Croft

Daniel Croft

Daniel Croft is a seasoned continuous improvement manager with a Black Belt in Lean Six Sigma. With over 10 years of real-world application experience across diverse sectors, Daniel has a passion for optimizing processes and fostering a culture of efficiency. He's not just a practitioner but also an avid learner, constantly seeking to expand his knowledge. Outside of his professional life, Daniel has a keen Investing, statistics and knowledge-sharing, which led him to create the website www.learnleansigma.com, a platform dedicated to Lean Six Sigma and process improvement insights.

Free Lean Six Sigma Templates

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Was this helpful?

The Mobius Strip Blog

The Complete Guide to Structured Problem Solving

When you are looking to thoroughly solve a pesky problem, structured problem solving is the way to go. Structured problem solving allows you to explore the problem, get to the heart of the issue, and develop a creative solution that finally solves the issue.

structured problem solving meaning

To illustrate this example, Takashi Amano was a nature photographer and avid aquarist. He started developing art in the form of fish tanks – which he called nature aquariums. The problem was algae would grow in his tanks and ruin his art. Not deterred, Mr. Amano found a shrimp distributor who bred, small, and clear micro-shrimp which were various algae eaters. Mr. Amano ordered thousands of them and promoted them in the hobby – to the point where the shrimp are now called Amano Shrimp.

He got creative. Knowing he needed a lasting solution to his algae problem, a clear shrimp that would eat the algae and not detract from his art was perfect.

structured problem solving meaning

The Basic idea of Structured Problem Solving

Professionals who solve complex problems for a living all start from the same place. They need to understand the actual problem they are solving. They ask themselves questions to get to the heart of the problem.

Usually promoting thinking with questions like what is the real problem, how can we gather data about the root problem, brainstorm solutions, test a solution and monitor it?

Why Structured Problem-Solving Works

Often, we are eager to jump into solving the first apparent problem with a variety of solutions. Why structured problem-solving works is because it forces us to slow down. By slowing down, we understand the problem first, without leaping into “fix-it” mode with preconceived notions of how the problem should be solved.

Studies have also found that having explicit techniques (methods for problem-solving) in the structured problem-solving workflow not only improves the problem-solving process but also increases the knowledge base all individuals can pull from.  Basically, using structured problem solving allows better solutions to be developed while ensuring everyone participates in sharing their own unique knowledge.

The two ideas translate into the problem-solving principles of:

  • Seek to understand before we seek to solve
  • Search early, search often

By understanding the problem inside and out, the individual, or team can make more informed decisions and generate appropriate solutions.

There are a variety of techniques to work through the process. Below are some sample ways to do structured problem solving before getting into the walk-through further down in the article.

structured problem solving meaning

Multiple Ways of Structured Problem Solving

There are many techniques to perform structured problem solving, or at least get more in-depth in certain aspects of the process. Some of my favorite ones include

Pre-mortem analysis: Instead of working through a project and assessing what went wrong at the end, run through a simulation of the project to see where the project could fail before you even start. Where and why did it fail? Then brainstorm solutions to avoid those issues without creating new ones.

The Hat Technique: There are 6 colored hats, all with different roles. Whether alone or in a group, assign some time or a specific person to that role. Having a person designated to each role means that all ideas are validated through six different lenses. Plus, everyone has a designated role which helps keep people engaged, and limits feelings getting hurt since everyone is simply doing their assigned role.

PDCA Cycle: An easy way to remember the process is the PDCA cycle. Which stands for Plan-Do-Check-Act. PDCA is a high-level way to remember how the structured problem-solving process works. 

You can also use the PDCA Model to manage your personal development too !

Get the Creative Juices Flowing

I like to start all my structured problem-solving sessions with some fun at the beginning of the session to get everyone’s creative juices flowing. By taking the 5 minutes to have a little fun, it is surprising how much more creative and engaged people are with the structured problem-solving process!

Problem-solving can be a stressful process, and it can even be high-stakes with the future of the group’s work hanging in the balance. However, laughing together helps relieve stress, makes people more creative, and improves social bonding.

The New Idea: One creative thinking exercise to start your session in a fun way, the goal is to split into two groups. Each group generates two dissimilar words. Then they swap words. For instance, “bug” & “sky-diving” and “winter” and “bikinis” for the other. Then the groups must devise the best ideas for those two words. For the bugs, you could make parachute designs that are themed after a different butterfly, and for the other, you could make a winter work-out with the goal have bikini-ready bodies by the summer. Silly ideas but shows there is a solution to even the weirdest problems.

Horrible idea challenge: Think of your problem. Then have everyone compete to come up with the worst idea. The practical part is that it helps to see what not to do – plus, part of the fun is seeing how creative people can be!

Beyond the two creative ideas, there are also 13 mental models which make work easier overall as well.

structured problem solving meaning

The Structured Problem Solving Process

1. define the problem statement.

The first step is defining what the real problem is. Below are some prompts to get the right decision-makers and problem-solvers sent in the right direction to tackle the challenge.

  • Is the problem many problems?
  • What requirements must a solution meet?
  • Which problem solvers should we engage?
  • What information and language should the problem statement include?
  • Tip: To engage the largest number of solvers from the widest variety of fields, a problem statement must meet the twin goals of being extremely specific but not necessarily technical.
  • What do solvers need to submit?
  • What incentive do solvers need?
  • How will solutions be evaluated, and success measured?

Problem statements are a statement of a current issue or problem. For example , Problem: Voter turnout in the southwest region of Florida has been significantly decreasing over the past decade, while other areas of the state continue to see increasing numbers of voters at the polls.

Writing one or two sentences takes the whole issue and makes it very clear what the issue is.

2. Root Cause Analysis

After getting the foundation set, an understanding of the root problem is critical. If you want to go through all the effort of structured problem solving, you might as well get to the real problem in the end.

Think of weeds in a garden. A potential solution is to mow over the weeds and they are gone. However, every few days the weeds keep coming back. That is because the root is the root issue in this scenario. You need to get the whole root system of the weed out to stop those pesky weeds in your garden.

Below are three techniques to help with Root-Cause Analysis

5 whys: When a problem occurs, drill down to its root cause by asking “Why?” five or more times. Then, when a counter-measure becomes apparent, you follow it through to prevent the issues from recurring.

Fishbone diagram: (Also called Ishikawa diagram named after Kaoru Ishikawa) is a cause-and-effect diagram that helps managers track down the reasons for imperfections, variations, defects, or failures.

Cause mapping: a cause map provides a visual explanation of why an incident occurred. It connects individual cause-and-effect relationships to reveal the system of cause within an issue.

structured problem solving meaning

3. Gather Data

After analyzing the problem and getting to the root cause – you need to gather information to understand why the problem and situation are happening. Doing the research and understanding how the different forces are interacting lets you understand why the problem is happening and how the overall solution is occurring.

Below are three different methods for gathering data to understand the context and interplaying forces in the current problem.

Gemba walk: The purpose is to allow managers and leaders to observe actual work process, engage with employees, gain knowledge about the work process, and explore opportunities for continuous improvement

Process mapping: A process map is a planning and management tool that visually describes the flow of work. Allowing you to see hiccups, bottlenecks, or high-failure points in the process.

Focus groups : Asking open-ended questions to a group of individuals ranging from 6-10 people. Letting you get different perspectives on the same issue.

4. Develop Potential Solutions

The next part is the fun part. You take all the research you’ve gathered in the first three aspects and put them together to come up with a solution to solve the problem. The common way is do Brainstorming.

Harvard Business Review sites that traditional brainstorming, in groups trying to answer the question, isn’t as effective as individuals coming up with ideas on their own first. Working in a big group doesn’t work for many reasons. Working in groups encourages social loafing (coasting on other’s ideas), some members experience social anxiety (introverted members feeling self-conscious of throwing in ideas), and it focuses too much on the solutions over the problem.

The better way to brainstorm is to have everyone work on the main problems and their solutions alone, and then reconvene after twenty minutes. Then everyone shares their top one or two ideas and what features of the problem it tackles.

This method gives everyone time to think about their solutions, present their ideas, and lets all the voices be heard. Plus, all the ideas can then smashed together to come up with a solution based on everyone’s input.

Remember, the solution has to solve the core of the issue and get to the root cause. Plus, it must be feasible in terms of the money, time, and manpower allocated to the project. Use the constraints as a guide to direct the project!

5. Implement a Solution

After running through the potential solutions – pick one and trial run it. Think of the minimum viable product to get to the root cause. You won’t know if you are alleviating the problem until a potential solution is out in the field.

For example , Airbnb founders, Brian Chesky and Joe Gebbia could not afford the rent for their apartment (the problem). They decided to put an air mattress in their living room and turn it into a bed and breakfast (MVP solution). The goal was to make a few bucks, but instead, they discovered the idea the connect Bed and Breakfasts to people looking for renters. They started advertising on Craiglist, then their website, and the story continues.

The point of the story is to illustrate that small tests can be done to see if you are solving the main issue! Their issue was not that someone needed to stay in their apartment for them to make rent – the issue was there was no service that easily let Bed and Breakfasts work with potential clients.

structured problem solving meaning

6. Monitor for Success

Once a solution is implemented, that is not the end. You must make sure the solution works. Keeping in mind the below questions

  • Who is responsible for the solution?
  • What are the risks of implementing the solution?

Some ways to monitor for success are:

Failure mode and effect analysis: A step-by-step approach for identifying all possible failures in a design, a manufacturing process, product, or service.

Impact analysis: A detailed study of business activities, dependencies, and infrastructure. It reveals how critical products and services are delivered and examines the potential impact of a disruptive (or additive solution) event over time

Kaizen : The Japanese term for “continuous improvement”. It is a business philosophy regarding the process that continuously improves operations and involves all employees.

Illustrated Example

A often find it helpful to see someone do the process as well. Here is a great video of IDEO re-working the shopping cart.

Key Take-Aways

What sets apart okay problem solvers from great problem solvers is the ability to think in repeatable, useful frameworks.

Structured Problem Solving is a general concept used to solve challenging problems, and there are hundreds of different methods that fall underneath it.

Action Item

Think of a tough challenge you are facing at work or in your personal life. Test run your problem through the structured problem-solving process with a few of the above techniques, and see what solution you can generate to get to the root of the issue!

Share this:

  • Click to share on Pinterest (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on Tumblr (Opens in new window)

structured problem solving meaning

Post navigation

Previous post.

structured problem solving meaning

I do agree with all of the ideas you’ve presented in your post. They’re really convincing and will definitely work. Still, the posts are too short for starters. Could you please extend them a bit from next time? Thanks for the post.

structured problem solving meaning

Hello, I love hearing the feedback. I will write a follow-up post the structured problem solving that dives into more detail!

structured problem solving meaning

Thank you for some other fantastic article. The place else could anyone get that kind of information in such an ideal method of writing? I have a presentation subsequent week, and I am at the search for such info.

Hello – for similar content, the perspective and ambition parts of the blog have similar content! Some posts to investigate are “A 4 Step Plan to Better Goal Setting (WOOP)” ( https://themobiusstripblog.com/4-step-process-to-better-goal-setting/ ) and “How to Give a Better Presentation” ( https://themobiusstripblog.com/better-presentation/ ). Let me know how your presentation goes!

structured problem solving meaning

Hey there! I know this is kinda off topic nevertheless I’d figured I’d ask. Would you be interested in exchanging links or maybe guest authoring a blog post or vice-versa? My blog covers a lot of the same subjects as yours and I feel we could greatly benefit from each other. If you might be interested feel free to shoot me an email. I look forward to hearing from you! Great blog by the way!

Hello, I am always interested in providing valuable content to my readers! Send me an email either directly from the “Contact Us” page or fill-out the interest form and I can get back to you!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Notify me of follow-up comments by email.

Notify me of new posts by email.

Framework Garage Consulting - Expert Analytics Consulting for Strategic Business Growth

Framework Garage   Consulting

  • May 29, 2023

Structured Thinking 101: How to Apply It to Everything You Do

Updated: Sep 3, 2023

Do you ever face a difficult problem or a tough decision and feel overwhelmed? You’re not alone; we all go through such situations. But, there’s a powerful tool that can help you overcome any challenge with confidence and clarity. It’s called structured thinking, and you already have this skill. In fact, you’ve been using it for a long time and just need to start applying it to more areas of your life: Have you built something with Lego blocks? Assembled furniture? Searched for a job? Chosen a restaurant for dinner? Cooked a meal? All of these require structured thinking. Let’s rediscover it in the next 3 minutes.

What is structured thinking?

Structured thinking is a systematic and organized way of breaking down big problems into smaller, more manageable parts. It's like solving a puzzle: you need a clear framework to analyze the problem, gather information, and find the best solution.

Let's try it out with a common task: planning a trip.

How do you plan a trip that you enjoy? There are many possible answers, but let's keep it simple: the goal is to have a good time. That's step 1: defining the objective .

Now that we know what we want, let's list everything that we need to do to achieve our objective.

These are areas you need to make decisions on: dates, duration, things to do, flights, accommodations, transportation, meals, local events, packing, payment methods, and entry fees to places we want to visit. We also have a budget range, so let’s include that in our elements.

Information

Gather all the relevant information for each element. For example, we research flight durations, flight prices, accommodation options, proximity to places we want to visit, access to cab or public transportation, etc. This step usually takes the most effort because the research is time-consuming.

Analyze and evaluate the information for each element to narrow down your choices later. How many flight options? Can you travel by road instead? How many different experiences do you want to cover throughout your trip? Cash, credit, or debit card? Hotels or Airbnb? You will have more than one option for each element.

Based on your analysis of various options, you start deciding on each element. Your decisions are aligned with your budget and the objective of your trip. By now, you have a clear plan. For example, for a 4-day trip, you will be booking a cab to the airport. You’ll be using local transport at your destination to get to the hotel in the evening. You will then attend a concert and have dinner nearby at a top-rated restaurant. Your plan is taking shape and you can picture yourself experiencing your trip already.

Think of a timeline as a roadmap where you start sequencing your choices. What comes first, then next, and so on. You think about practically every stage. We do this already on our calendars while planning a workday or week. A visual sequence helps you quickly identify conflicts and you can react at the earliest. For example, to take a flight at 9 am, you need to reach the airport by 7 am, factor in travel time to the airport, and wake up accordingly. Day 2 of your trip has a museum visit, a meal at a popular restaurant, a visit to a recommended tourist destination, and a historical monument tour. Is it possible to fit in on day 2? Having all this on a timeline will force you to look at what’s practically possible, make a decision, and defer or abandon experiences that aren’t aligned with your trip's objective.

Execute your plan. Make the bookings and visualize your timeline.

This is where everything comes together and you see the benefits of your planning.

Let's recap: we started with a clear goal and broke it into smaller, manageable tasks. This is structured thinking, and we just created a framework for planning a trip. It's your recipe for planning an amazing trip. If you are happy with how your trip went, you can use this recipe again whenever you want to travel. You would not need to start with a blank planner. You can also improve your framework with time and experience.

You can share this framework with anyone because it's a basic guideline for planning a trip. It doesn't matter which destination, how many people, or what time of the year. It's a structure that you or anyone else can use. You just need to process new information into the same framework you created. When you simplify the concepts into basic and easy explanations, you can relate to them better. The best part? You have done all of this before many times but in your head without realizing it's actually called structured thinking.

Now imagine if you had a framework for everything you need to do regularly. That would be amazing, wouldn't it?

Take a step towards refining your thinking.

Subscribe to my newsletter if you haven't already and join me on a journey of continuous growth.

Did you find this read useful? Already brimming with ideas?

structured problem solving meaning

Recent Posts

Critical Thinking 101 - Your existing superpower in problem-solving and decision-making

The Power of Thought: Unraveling Strategic, Structured, and Critical Thinking for Success

BrewerScienceLogo-Horizontal.png

  • Publications
  • Processing Theories
  • Alkaline Protective Coatings
  • Photosensitive Protective coatings
  • Bonding Materials
  • Debonding Materials
  • Anti-reflective Coatings
  • Directed Self-Assembly
  • Multilayer Systems
  • Flex Sensors
  • Moisture Sensors
  • Manufacturing
  • Executive Advisory Board
  • Quality, Environmental and Safety
  • Community Giving
  • Partnerships
  • Press Releases

Posts by Topic

  • Brewer Science (22)
  • company (22)
  • wafer-level packaging (21)
  • lithography (15)
  • Leadership (14)
  • sensors (14)
  • Internships (9)
  • Technology (9)
  • innovation (7)
  • printed electronics (7)
  • Internet of Things (6)
  • Sustainability (6)
  • community (6)
  • new business developement (6)
  • Directed Self-Assembly (5)
  • Engineering (5)
  • Predictive Maintenance (5)
  • Science, (5)
  • development (5)
  • research (5)
  • zero defects (5)
  • Integrated Circuits (4)
  • coat uniformity (4)
  • culture (4)
  • spin coat (4)
  • technology advancement (4)
  • thin wafer handling (4)
  • workplace safety (4)
  • 3D packaging (3)
  • Datastream (3)
  • Future Leaders (3)
  • GreenCircle Certified (3)
  • Manufacturing (3)
  • Pillars of Impact (3)
  • Problem Solving (3)
  • STEM Jobs (3)
  • business (3)
  • education (3)
  • moisture sensors (3)
  • nanosensors (3)
  • planarization (3)
  • processing equipment (3)
  • quality (3)
  • quality control (3)
  • semiconductor manufacturing (3)
  • semiconductors (3)
  • temporary bonding materials (3)
  • wearable electronics (3)
  • 3D Stacking (2)
  • BrewerBOND (2)
  • CS ManTech (2)
  • Children (2)
  • Convanta (2)
  • Corning (2)
  • Creativity (2)
  • Energy Management (2)
  • Fan-Out Wafer Level Packaging (2)
  • LED manufacturing (2)
  • Nanotechnology (2)
  • Polymers (2)
  • Potential (2)
  • R & D (2)
  • SEMICON Japan (2)
  • Walter Barnes (2)
  • Zero Waste to Landfill (2)
  • advanced materials (2)
  • advanced packaging (2)
  • advanced technology (2)
  • advanved lithography (2)
  • benchtop equipment (2)
  • carbon nanotubes (2)
  • disruptive materials (2)
  • entrepreneurs (2)
  • environment (2)
  • environmental monitoring (2)
  • etch protection (2)
  • human resources (2)
  • inflect sensors (2)
  • infrastructure management (2)
  • integration (2)
  • mems and sensors (2)
  • moore's law (2)
  • multilayer (2)
  • nanoscience (2)
  • oculus rift (2)
  • olympics (2)
  • scratch-resistant (2)
  • smart manufacturing (2)
  • spin process (2)
  • spincoat (2)
  • supply chain (2)
  • thermal slide debonding (2)
  • thick-film (2)
  • wet etching (2)
  • 3-D Stacking (1)
  • 3D printing (1)
  • Adhesives (1)
  • Anniversary (1)
  • Artifical Intelligence (1)
  • Becky Rich (1)
  • Biometric Sensors (1)
  • BrewerBOND 220 (1)
  • Building and Home Automation (1)
  • Compound Semiconductor Manufacturing (1)
  • Covanta Energy (1)
  • Debonding Process (1)
  • Electronics (1)
  • Farming (1)
  • GaN roughening (1)
  • Gartner Hype Scale (1)
  • Gartner Inc. (1)
  • Geothermal (1)
  • Inflect Moisture Sensor (1)
  • Lateral Force (1)
  • Medical and Health-Care Systems (1)
  • National Chemistry Week (1)
  • National Guardsman (1)
  • National Manufacturing Day (1)
  • RDL-first (1)
  • Rama Puligadda (1)
  • Ray Kurzweil (1)
  • SEMICON Taiwan (1)
  • SOC Materials (1)
  • Scratch-resistant sensors (1)
  • Selective Surface Modification (1)
  • Semuconductors (1)
  • Small Molecule Analysis (1)
  • Strategic Materials Conference (1)
  • Temporary Bonding (1)
  • Testing Services (1)
  • Thermal Stability (1)
  • Transportation (1)
  • Truck Drivers (1)
  • Vehicle (1)
  • ZoneBOND (1)
  • adafruit (1)
  • analytical group (1)
  • anti-reflective coating (1)
  • anti-reflective coatings (1)
  • arc materials (1)
  • autonomous car (1)
  • back-end processes (1)
  • batteries (1)
  • bureau veritas certifications (1)
  • chemical engineering (1)
  • chemical stability (1)
  • data logging (1)
  • debonder (1)
  • debonding (1)
  • debonding materials (1)
  • depth-of-focus (1)
  • devices (1)
  • digitsole (1)
  • eco-friendly (1)
  • economics (1)
  • embedded wafer-level (1)
  • energy-from-waste (1)
  • environmental (1)
  • environmental standards (1)
  • etching (1)
  • facial recognition (1)
  • flexible electronics (1)
  • flexible sensors (1)
  • fossil fuel (1)
  • grid array (1)
  • hardmask (1)
  • higher education (1)
  • hybrid bonding (1)
  • idtechex (1)
  • industry 4.0 (1)
  • inflect flex sensor (1)
  • insoluble (1)
  • intellectual property (1)
  • inventors day (1)
  • landfill (1)
  • laser debonding (1)
  • laser release (1)
  • lithographic (1)
  • lithographic composition (1)
  • management (1)
  • mechanical release (1)
  • multi-layer (1)
  • nano technologies (1)
  • optical simulations (1)
  • pebble watch (1)
  • personality traits (1)
  • photolithography (1)
  • pixie scientific (1)
  • planarized substrates (1)
  • powerlifting (1)
  • process engineer (1)
  • prolith (1)
  • protective coatings (1)
  • pure enjoyment (1)
  • purification (1)
  • recycling (1)
  • research and development (1)
  • scientific computing (1)
  • silicon wafers (1)
  • smart technology (1)
  • smart watches (1)
  • sms audio biosport earbuds (1)
  • solar energy (1)
  • soluble (1)
  • spin bowl (1)
  • spin coaters (1)
  • spin-on carbon (1)
  • square substrate (1)
  • substrate size (1)
  • surface modification (1)
  • temperature sensors (1)
  • temporary wafer bonding (1)
  • trilayer (1)
  • trilayer resist process (1)
  • ultrathin wafers (1)
  • unilayer processing (1)
  • unplugged (1)
  • wafer problems (1)
  • wearable devices (1)
  • wearable solar (1)
  • wireless headphones (1)
  • zero landfill (1)

Six Steps to Structured Problem Solving

Subscribe to our blog.

What happens when a big problem pops up?  For most of us, our first reaction is, “Quick!  Let’s fix it and make this problem go away.” However, if we rush to fix the problem too quickly, we may end up implementing a “solution” or “quick fix” that doesn’t solve anything because we didn’t take the time to truly identify and understand the root cause of the problem itself.

One way we can keep ourselves from falling into this trap is by having a formal structured problem-solving (SPS) process in place.  Then, when problems do occur, we know exactly what steps to take to help ensure that our solution really will “make it go away.” While there are different variations to an SPS ( 8D , 5Why , DMAIC , etc.), they all follow the same basic steps.

1. Define the Problem

It is important to write a problem statement that is easily understood and is stated purely in terms of measurable or observable symptoms. At this point, there should be no mention of suspected causes or possible solutions. We just need to know what the problem is.  A good problem statement might look something like this: “High (greater than 8 ppb) trace metals in one of our hardmask products are causing unacceptably high defect counts with our most important customer.  We will lose this business if we cannot correct the problem by the end of the year.”

2. Describe the Current Situation

We do this by examining data that is readily available. In our hardmask example, we would collect batch data to identify the specific batches with the elevated defects and then study this data to see what they have in common.  Were they all made in a particular manufacturing location or on the same equipment set? Did they all use the same lots of the raw materials? By identifying where the problem is occurring, and where it is not occurring, we begin to zero in on what is causing our problem.

3. Identify Possible Causes

To identify possible causes, we should gather the team and brainstorm all potential causes that come to mind.  Once we’ve exhausted all possibilities, we can then start systematically ruling items out.  This is the most time-consuming, but one of the most vital steps in the process as we take each potential cause and work to rule it out. We must keep working until we have eliminated everything but the root cause.

4. Verify Root Cause

When we think that we have identified the true root cause, we need verify that it is the root cause by testing out our theory.  For our hardmask example, let’s say that we believe that the root cause is due to a bad batch of one of the raw materials. We can test our theory by making a new batch with everything the same except for a new batch of the suspect ingredient.  If the defect levels are back to normal, that’s a good indication that we have confirmed our root cause. 

5. Implement Solution

After we’ve identified the root cause, we implement a solution to remedy the issue, standardizing our solution and making the change permanent. This could mean updating specifications, writing new training materials, updating training packages or updating the FMEA. In the case of our hardmask example, we would need to create specifications and appropriate testing methods that will alert us that a batch of raw material is bad before we use it.  

6. Monitor for Success

After the solution has been implemented, test data can then be created to find which solutions offer the best improvements. In the case of our hardmask example, we would run test batches to make sure that we have the correct solution in place.  Measurements should also be taken on a scheduled basis to continue to confirm that the solution is still valid, making updates if and when needed.

  To stay up to date on industry hot topics, subscribe to the Brewer Science blog . You can also stay up to date on Brewer Science industry events, topics and news by following us on Twitter , YouTube , LinkedIn , or Facebook .

About Author

Karen Brown

Karen Brown, Director of Organizational Development & Relationships, has been employed with Brewer Science for over a decade. Her background in employee development and training has made her an expert for the Brewer Science team in crafting successful, problem-solving employees

Are Mental Models Limiting Your Growth? – Lessons of Leadership

Subscribe To Blog

Subscribe to email updates.

At Brewer Science, our customer relationships don’t end when you buy materials and equipment. Because we want to work hand-in-hand to get your processes perfect, we’ve empowered an extensive applications and support team to help with all your processing needs.

[email protected]

Recent Posts

Connect with us.

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

phone-icon.jpeg

(925) 289-9001

  • Sep 4, 2022

STRUCTURED PROBLEM SOLVING TOOLS

Updated: Feb 28, 2023

structured problem solving meaning

Structured vs Unstructured Problem Solving

Using a structured approach to solve problems can help to ensure the correct problem is being solved, with the right solution. When an unstructured approach to problem solving is used, which is generally the case, the problem is not well understood and the solution addresses a symptom, rather than the root cause. Another major disadvantage of an unstructured approach is that it is easy to hit a roadblock and convince yourself that the problem cannot be solved or that the solution cannot be implemented for a variety reasons.

Each of the five problem solving tools described below approach problem solving in a different way. They can help you to find solutions that that might not be immediately obvious and compare possible solutions before choosing the best one.

Problem Solving Definition

A problem is the distance between how things currently are and the way they should be. Problem solving forms the ‘bridge’ between these two elements. In order to close the gap, you need to understand the way things are (problem) and the way they ought to be (solution).

The Difference Between Problem Solving and Decision Making

Although there is a clear distinction between problem solving and decision making, the two are often confused. Problem solving differs fundamentally from decision making. A problem occurs when something is not behaving as it should, something is deviating from the norm or something goes wrong. Decision making is a case of choosing between different alternatives. Decision making is required in response to the question: “Which computer shall I buy?” Problem solving is needed in response to the statement: “My computer won’t work”.

Most problem solving methods follow a common pattern, beginning with a definition of the problem, moving on to the consideration of potential solutions, and culminating with the selection, testing and implementation of a chosen course of action. Divergent thinking techniques can be helpful in generating creative ideas, while convergent thinking can assist in structuring and evaluating potential solutions.

Problems can be classified into one of two categories: the ‘fix-it’ or the ‘do-it’ scenario:

Fix-it – solving an existing problem, (e.g. a current product range is falling short of its sales targets). An immediate short-term solution could be to increase marketing activity, for example.

Do-it – moving you in the right direction for what you want to achieve, (e.g. a new product range needs to be introduced to compete with market rivals). This type of problem will require longer term planning in order to achieve its objectives.

Irrespective of the severity or complexity of the problem, the process should:

be systematic and thorough

provide evidence to show how the problem was solved

avoid a rush to a solution without first understanding the cause of the problem

enable possible causes to be assessed

1. Six-Step Problem Solving Model

Problem solving models are used extensively in the workplace and the Six Step method is a simple and reliable way to solve problems. This technique uses an analytical and reliable approach to problem solving. Its process keeps the group assigned to solve a problem on track while they carry out their investigation and search for a solution.

2. The Drill Down Technique

In complex organizations problems are inevitable. Successful organizations take the time to identify these complicated problems and plan a practical resolution as soon as possible. The Drill Down Technique is a popular approach to problem solving in complex organizations. As its name suggests you break down a problem into its various components into small practical pieces that enable you to identify a resolution.

3. The Four Frame Model

The Four Frame Model is one of the most popular and in-depth tools that management use to maximize an organization’s potential. The model divides up an organization into ‘four frames’ – Structural, Human Resource, Political and Symbolic – with the objective of better understanding the organization. Each frame must be looked at in a meaningful way; if one or more is discarded the findings will be incomplete.

4. Eight Disciplines of Problem Solving

This problem-solving tool requires that a practical plan is created at the start of this eight step process. It requires a clear definition of the problem, individuals involved in the solution and the resources. Each of the eight disciplines in this process, are designed to move you a step closer to a successful resolution.

5. The Cynefin Framework

The core of the Cynefin framework is the way that it breaks down problems into one of five contexts. You place your problem into one of these specific contexts and it will then help you decide how best to approach it. This problem-solving tool is a level ‘above’ others because it requires you to figure out how you should be thinking about a problem in the first place. The framework is often used in conjunction with other problem-solving tools in finding a solution.

6. The 5-Whys Technique

The 5 Why’s Technique is an easy-to-use method for uncovering the root of an issue. All you need is asking ‘Why?’ five times. Start with an issue and ask why it happened. Make sure your answer is based on unbiased facts. Continue the process of asking ‘Why?’ four more times. Eventually, you reach the root of the issue. Now you can try to find a solution.

Start Using Structured Problem Solving Techniques

Hopefully you find these different techniques useful and they get your imagination rolling with ideas on how to solve different problems. There are other techniques you can use, but when it comes to solving problems from simple to complex, these techniques will work well. And keep in mind that you can combine these techniques as well.

Here are 5 takeaways to use the next time a problem gets you and your team tangled up:

Don’t start by trying to solve the problem (or the symptom). First, aim to understand the root cause of the problem.

Use questions to generate ideas for solving the problem.

Look to previous problems to find the answers to new ones.

Clear your preconceived ideas and past experiences before attempting to tackle the problem.

When you are looking for people to add to your team – look for people that highlight their ability to solve problems!

Recent Posts

Introducing Our Newest OKR Training Course: Certified OKR Champion

Anticipating Issues with Data-Driven Insights for Improved Performance

What is a Blue Ocean vs. Red Ocean Strategy?

structured problem solving meaning

Continuous Improvement blog Problem Solving: A Structured Approach

"The problems of the world cannot be solved by thinking the same way we thought when we created them." - Albert Einstein

Problem solving is a skill that is essential for success in both personal and professional life. It is the ability to identify and articulate problems, gather information, generate solutions, and implement those solutions effectively.

There are many different approaches to problem solving, but one of the most effective is the 8-step problem-solving process. This process is structured and systematic, which helps to ensure that problems are solved efficiently and effectively.

The 8 steps of the problem-solving process are:

Define the problem

This is the first and most important step in the problem-solving process. If you do not clearly define the problem, you'll have a hard time solving it.

So how do you define a problem? Here are a few tips:

  • be specific - do not just say, "the application process lead time is too long."; instead, say something like "the current lead time for the application process is 40 working days”
  • use data - if you have data, use it to support your definition of the problem. For example, you could say "the average process lead time has increased by 20% in the past 6 month."
  • be objective - do not let your emotions get in the way of defining the problem. For example, don't say "Our lead time is terrible." Instead, say something like "the process lead time is not meeting our customers’ expectations."

Once you've defined the problem, you'll have a much better understanding of what you need to solve. You'll also be able to narrow down the scope of the problem and identify the root cause.

Here is an example of a well-defined problem statement:

The application process lead time has increased by 20% on average to 40 days, in the past 6 months.

This problem statement is specific, uses data, and is objective. It also includes a measure, which is the 20% average increase in lead time. This measure will help to gauge the effectiveness of the final solution. Your problem statement should always include some sort of measure but no suggested solution!

Break down the problem

Once the problem has been defined, you can break it down into smaller, more manageable problems. This will make it easier to identify the root cause of the problem. For example, if the problem is that a process is not producing the desired output, you could break the problem down into the following smaller problems:

  • the person in the process is not properly trained.
  • the person doing the process is not processing the input correctly.

Set a target

What is the desired outcome of the problem-solving process? What are the specific goals that need to be achieved? It is important to set a clear target so that you know when the problem has been solved. For example, the target for the process problem could be to have the process producing the desired output within 24 hours.

Analyse the root cause

The root cause of the problem is the underlying issue that is causing the problem to occur. It is important to identify the root cause so that it can be addressed effectively. Several techniques can be used to analyse the root cause of a problem, such as the 5 Whys, Fishbone diagrams, and Pareto charts.

A fishbone diagram with six sections branching off that say 'Key Topic' and a head section that says 'Problem Statement'

Develop Countermeasures

Once the root cause of the problem has been identified, countermeasures can be developed to address it. Countermeasures are specific actions that can be taken to prevent the problem from occurring again. For example, the countermeasures for a process problem could include:

  • create Standard Operating Procedures and the “best-known way” of doing the process”
  • retraining everyone in the new way of working
  • create a control plan to ensure that the input information is being processed correctly 100% of the time

Implement countermeasures

The countermeasures that have been developed need to be implemented. This may involve making changes to processes, procedures, or training. It is important to monitor the implementation of the countermeasures to ensure that they are effective.

Evaluate the results

Once the countermeasures have been implemented, it is important to evaluate the results. Did the countermeasures solve the problem? If not, further action may be needed. For example, if the process problem has not been solved, you may need to identify a new root cause and develop new countermeasures.

Standardise and share lessons learned

Once the problem has been solved, it is important to standardise the solution so that it can be used to prevent the problem from occurring again. The lessons learned from the problem-solving process should also be shared so that others can benefit from them. For example, you could create a standard operating procedure for the new way of working or develop a training program for the staff involved.

By following these steps, you can solve problems more effectively and efficiently.

Here are some additional tips for problem-solving:

  • be curious - be willing to investigate problems with an open mind and a desire to learn
  • be collaborative - involve others in the problem-solving process to get different perspectives and ideas
  • use data and evidence - make decisions about solutions based on data and evidence
  • be persistent - do not give up on a problem until you have found a solution that works
  • be optimistic - believe that you can solve the problem and do not be afraid to take risks

By following these tips, you can improve your problem-solving skills and become more effective in your personal and professional life.

So, what are you waiting for? Start solving some problems today. 

Graham Ross smiling at the camera

28 July 2023

Graham Ross, Continuous Improvement Manager

a woman typing on a laptop

More blogs by this author

Our faculties & departments

Engineering.

  • Faculty of Engineering
  • Architecture
  • Biomedical Engineering
  • Chemical & Process Engineering
  • Civil & Environmental Engineering
  • Design, Manufacturing & Engineering Management
  • Electronic & Electrical Engineering
  • Mechanical & Aerospace Engineering
  • Naval Architecture, Ocean & Marine Engineering

Humanities & Social Sciences

  • Faculty of Humanities & Social Sciences
  • Centre for Lifelong Learning
  • Government & Public Policy
  • Psychological Sciences & Health
  • Social Work & Social Policy
  • Faculty of Science
  • Computer & Information Sciences
  • Mathematics & Statistics
  • Pure & Applied Chemistry
  • Strathclyde Institute of Pharmacy & Biomedical Sciences
  • Strathclyde Business School
  • Accounting & Finance
  • Hunter Centre for Entrepreneurship
  • Management Science
  • MBA & General Management
  • Strathclyde Executive Education & Development
  • Work, Employment & Organisation

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 18 free facilitation resources we think you’ll love.

  • 47 useful online tools for workshop planning and meeting facilitation

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

structured problem solving meaning

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

structured problem solving meaning

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

' src=

Your list of techniques for problem solving can be helpfully extended by adding TRIZ to the list of techniques. TRIZ has 40 problem solving techniques derived from methods inventros and patent holders used to get new patents. About 10-12 are general approaches. many organization sponsor classes in TRIZ that are used to solve business problems or general organiztational problems. You can take a look at TRIZ and dwonload a free internet booklet to see if you feel it shound be included per your selection process.

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

structured problem solving meaning

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

structured problem solving meaning

Facilitation is more and more recognized as a key component of work, as employers and society are faced with bigger and more complex problems and ideas. From facilitating meetings to big, multi-stakeholder strategy development workshops, the facilitator's skillset is more and more in demand. In this article, we will go through a list of the best online facilitation resources, including newsletters, podcasts, communities, and 10 free toolkits you can bookmark and read to upskill and improve your facilitation practice. When designing activities and workshops, you'll probably start by using templates and methods you are familiar with. Soon enough, you'll need to expand your range and look for facilitation methods and…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

5 Structured Thinking Techniques for Data Scientists

Try 1 of these 5 structured thinking techniques as you wrestle with your next data science project.

Sara A. Metwalli

Structured thinking is a framework for solving unstructured problems — which covers just about all data science problems. Using a structured approach to solve problems not only only helps solve problems faster but also helps identify the parts of the problem that may need some extra attention. 

Think of structured thinking like the map of a city you’re visiting for the first time.Without a map, you’ll probably find it difficult to reach your destination. Even if you did eventually reach your destination, it’ll probably take you at least double the time.

What Is Structured Thinking?

Here’s where the analogy breaks down: Structured thinking is a framework and not a fixed mindset; you can modify these techniques based on the problem you’re trying to solve.  Let’s look at five structured thinking techniques to use in your next data science project .

  • Six Step Problem Solving Model
  • Eight Disciplines of Problem Solving
  • The Drill Down Technique
  • The Cynefin Framework
  • The 5 Whys Technique

More From Sara A. Metwalli 3 Reasons Data Scientists Need Linear Algebra

1. Six Step Problem Solving Model

This technique is the simplest and easiest to use. As the name suggests, this technique uses six steps to solve a problem, which are:

Have a clear and concise problem definition.

Study the roots of the problem.

Brainstorm possible solutions to the problem.

Examine the possible solution and choose the best one.

Implement the solution effectively.

Evaluate the results.

This model follows the mindset of continuous development and improvement. So, on step six, if your results didn’t turn out the way you wanted, go back to step four and choose another solution (or to step one and try to define the problem differently).

My favorite part about this simple technique is how easy it is to alter based on the specific problem you’re attempting to solve. 

We’ve Got Your Data Science Professionalization Right Here 4 Types of Projects You Need in Your Data Science Portfolio

2. Eight Disciplines of Problem Solving

The eight disciplines of problem solving offers a practical plan to solve a problem using an eight-step process. You can think of this technique as an extended, more-detailed version of the six step problem-solving model.

Each of the eight disciplines in this process should move you a step closer to finding the optimal solution to your problem. So, after you’ve got the prerequisites of your problem, you can follow  disciplines D1-D8.

D1 : Put together your team. Having a team with the skills to solve the project can make moving forward much easier.

D2 : Define the problem. Describe the problem using quantifiable terms: the who, what, where, when, why and how.

D3 : Develop a working plan.

D4 : Determine and identify root causes. Identify the root causes of the problem using cause and effect diagrams to map causes against their effects.

D5 : Choose and verify permanent corrections. Based on the root causes, assess the work plan you developed earlier and edit as needed.

D6 : Implement the corrected action plan.

D7 : Assess your results.

D8 : Congratulate your team. After the end of a project, it’s essential to take a step back and appreciate the work you’ve all done before jumping into a new project.

3. The Drill Down Technique

The drill down technique is more suitable for large, complex problems with multiple collaborators. The whole purpose of using this technique is to break down a problem to its roots to make finding solutions that much easier. To use the drill down technique, you first need to create a table. The first column of the table will contain the outlined definition of the problem, followed by a second column containing the factors causing this problem. Finally, the third column will contain the cause of the second column's contents, and you’ll continue to drill down on each column until you reach the root of the problem.

Once you reach the root causes of the symptoms, you can begin developing solutions for the bigger problem.

On That Note . . . 4 Essential Skills Every Data Scientist Needs

4. The Cynefin Framework

The Cynefin framework, like the rest of the techniques, works by breaking down a problem into its root causes to reach an efficient solution. We consider the Cynefin framework a higher-level approach because it requires you to place your problem into one of five contexts.

  • Obvious Contexts. In this context, your options are clear, and the cause-and-effect relationships are apparent and easy to point out.
  • Complicated Contexts. In this context, the problem might have several correct solutions. In this case, a clear relationship between cause and effect may exist, but it’s not equally apparent to everyone.
  • Complex Contexts. If it’s impossible to find a direct answer to your problem, then you’re looking at a complex context. Complex contexts are problems that have unpredictable answers. The best approach here is to follow a trial and error approach.
  • Chaotic Contexts. In this context, there is no apparent relationship between cause and effect and our main goal is to establish a correlation between the causes and effects.
  • Disorder. The final context is disorder, the most difficult of the contexts to categorize. The only way to diagnose disorder is to eliminate the other contexts and gather further information.

Get the Job You Want. We Can Help. Apply for Data Science Jobs on Built In

5. The 5 Whys Technique

Our final technique is the 5 Whys or, as I like to call it, the curious child approach. I think this is the most well-known and natural approach to problem solving.

This technique follows the simple approach of asking “why” five times — like a child would. First, you start with the main problem and ask why it occurred. Then you keep asking why until you reach the root cause of said problem. (Fair warning, you may need to ask more than five whys to find your answer.)

Recent Data Science Articles

What Is a Data Center? What Goes on Inside One?

structured problem solving meaning

A Structured Approach to Problem Solving

December 22, 2015 by Connie Siu - CDC Leave a Comment

Facebook

There are many ways to tackle a problem. There are the good as well as the mediocre approaches. Complex problems call for a structured approach. There are many reasons why a structured approach delivers better results:

  • A systematic review of issues provides consistency in sorting out causes
  • The planned assessment engages people who need to be involved
  • A disciplined approach ensures that essential guidelines and rules are followed
  • The steps offer a way to replicate success for similar problems in other areas

There are five components to the framework for structured problem solving.

  • Understand the problem. This is the most important step in assessing the extent of the problem. By identifying the symptoms, root causes, impacts, and significance, you paint a picture on relevance and why the company should care. Without the understanding, it is difficult to assess how much effort the company should devote to solve the problem.
  • Determine the solution requirements. The requirements establish the criteria for the solution. Subject to the availability of resources, the depth of a solution varies the level of automation and how eloquent it performs the task. The segregation of the must-haves and nice-to-haves provide choices when determining where to invest the capital.
  • Articulate options. The options must satisfy the core requirements and address the most significant concerns. Keep an open mind in developing the options. Consult the customers, partners, and subject matter experts for an objective and impartial view on how things could be done better.
  • Evaluate options. In order to do a proper evaluation of the options, there needs to be a well-defined list of assessment criteria. This list comprises all the factors that would be considered in comparing the options. These factors include capital investment, effort, return on investment, timeliness, and others that tie to the solution requirements. Often, weights are assigned to reach the relative importance.
  • Select a solution. The final choice of a solution is made when the proper evaluation is complete. It is important to note that both the quantitative and the qualitative analyses need to be considered. Regulatory requirements that must be met would take priority. The decision maker needs to consider all the pertinent information and select a solution best suited for the problem.

A structured problem-solving approach places the focus on facts, issues, and solutions. This minimizes the tendency to play politics and coercion for support. It also promotes consistency when comparing alternatives in across the company.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Subscribe me to your mailing list

To maximize business results, call Connie at 604-790-1220 or email us today!

SkillsYouNeed

  • INTERPERSONAL SKILLS
  • Problem Solving and Decision Making

Identifying and Structuring Problems

Search SkillsYouNeed:

Interpersonal Skills:

  • A - Z List of Interpersonal Skills
  • Interpersonal Skills Self-Assessment
  • Communication Skills
  • Emotional Intelligence
  • Conflict Resolution and Mediation Skills
  • Customer Service Skills
  • Team-Working, Groups and Meetings
  • Decision-Making and Problem-Solving
  • Effective Decision Making
  • Decision-Making Framework
  • Introduction to Problem Solving
  • Investigating Ideas and Solutions
  • Implementing a Solution and Feedback
  • Creative Problem-Solving
  • Social Problem-Solving
  • Negotiation and Persuasion Skills
  • Personal and Romantic Relationship Skills

Subscribe to our FREE newsletter and start improving your life in just 5 minutes a day.

You'll get our 5 free 'One Minute Life Skills' and our weekly newsletter.

We'll never share your email address and you can unsubscribe at any time.

This page continues from Problem Solving an Introduction that introduces problem solving as a concept and outlines the stages used to successfully solve problems.

This page covers the first two stages in the problem solving process: Identifying the Problem and Structuring the Problem .

Stage One: Identifying the Problem

Before being able to confront a problem its existence needs to be identified. This might seem an obvious statement but, quite often, problems will have an impact for some time before they are recognised or brought to the attention of someone who can do anything about them.

In many organisations it is possible to set up formal systems of communication so that problems are reported early on, but inevitably these systems do not always work. Once a problem has been identified, its exact nature needs to be determined: what are the goal and barrier components of the problem?  Some of the main elements of the problem can be outlined, and a first attempt at defining the problem should be made.  This definition should be clear enough for you to be able to easily explain the nature of the problem to others.

Looking at the problem in terms of goals and barriers can offer an effective way of defining many problems and splitting bigger problems into more manageable sub-problems.

Sometimes it will become apparent that what seems to be a single problem, is more accurately a series of sub-problems.  For example, in the problem:

“I have been offered a job that I want, but I don't have the transport to get there and I don't have enough money to buy a car.”

“ I want to take a job ” (main problem)

“ But I don't have transport to get there ” (sub-problem 1)

“ And I don't have enough money to buy a car ” (sub-problem 2)

Useful ways of describing more complex problems are shown in the section, ' Structuring the Problem' , below.

During this first stage of problem solving, it is important to get an initial working definition of the problem.  Although it may need to be adapted at a later stage, a good working definition makes it possible to describe the problem to others who may become involved in the problem solving process.  For example:

Problem Working Definition

Stage Two: Structuring the Problem

The second stage of the problem solving process involves gaining a deeper understanding of the problem. Firstly, facts need to be checked.

Problem Checking Facts
“I want to take a job, but I don’t have the transport to get there
and I don’t have enough money to buy a car.”
“Do I really want a job?”
“Do I really have no access to transport?”
“Can I really not afford to buy a car?”

The questions have to be asked, is the stated goal the real goal?  Are the barriers actual barriers and what other barriers are there?  In this example, the problem at first seems to be:

Goal Barrier 1 Barrier 2
Take the job No transport No money

This is also a good opportunity to look at the relationships between the key elements of the problem .  For example, in the 'Job-Transport-Money' problem, there are strong connections between all the elements.

By looking at all the relationships between the key elements, it appears that the problem is more about how to achieve any one of three things, i.e. job, transport or money, because solving one of these sub-problems will, in turn, solve the others.

This example shows how useful it is to have a representation of a problem.

Problems can be represented in the following ways:

  • Visually: using pictures, models or diagrams.
  • Verbally: describing the problem in words.

Visual and verbal representations include:

  • Chain diagrams
  • Flow charts
  • Tree diagrams

Chain Diagrams

Chain diagrams are powerful and simple ways of representing problems using a combination of diagrams and words.   The elements of the problem are set out in words, usually placed in boxes, and positioned in different places on a sheet of paper, using lines to represent the relationship between them.

Chain Diagrams are the simplest type, where all the elements are presented in an ordered list, each element being connected only with the elements immediately before and after it.  Chain diagrams usually represent a sequence of events needed for a solution.  A simple example of a chain diagram illustrates the job-transport-money example as as follows:

TAKE JOB

Flow Charts

Flow charts allow for inclusion of branches, folds, loops, decision points and many other relationships between the elements.  In practice, flow charts can be quite complicated and there are many conventions as to how they are drawn but, generally, simple diagrams are easier to understand and aid in 'seeing' the problem more readily.

Tree Diagrams

Tree diagrams and their close relative, the Decision Tree , are ways of representing situations where there are a number of choices or different possible events to be considered.  These types of diagram are particularly useful for considering all the possible consequences of solutions.

Remember that the aim of a visualisation is to make the problem clearer.  Over-complicated diagrams will just confuse and make the problem harder to understand.

Listing the elements of a problem can also help to represent priorities, order and sequences in the problem.  Goals can be listed in order of importance and barriers in order of difficulty.  Separate lists could be made of related goals or barriers.  The barriers could be listed in the order in which they need to be solved, or elements of the problem classified in a number of different ways.  There are many possibilities, but the aim is to provide a clearer picture of the problem.

1. Get money
2. Get car
3. Get job

A visual representation and a working definition together makes it far easier to describe a problem to others. Many problems will be far more complex than the example used here.

Continue to: Investigating Ideas and Possible Solutions

See also: Social Problem Solving Project Management Risk Management

Home

  • What's different about BSM?
  • What vice presidents say about BSM
  • Sample Clients
  • Lean in Labs
  • What We Find In Labs
  • Key Lean Labs Concepts
  • Lean in R&D
  • Lean in Regulatory Affairs
  • Lean Manufacturing
  • Global Lean Programs
  • Digital Visual Management
  • Articles and Reports
  • Case Studies
  • Lean R&D
  • Lean Programs
  • Real Lean Blogs

Structured Problem Solving – The key to Lean?

structured problem solving meaning

We are all familiar with the “House of Lean”; with how the twin pillars of Just in Time (JIT) and Jidoka (built-in Quality) fundamentally drive profitability by increasing cashflow and reducing cost. That is why most Lean implementations focus on these two aspects.

house of lean: stability

Companies that have successfully implemented Lean understand that the “Stability” or foundation the House of Lean is built upon is Structured Problem Solving. The iterative improvement loop offered by Structured Problem Solving allows for the correct Lean tools to be used at the correct time and in the correct way.

Despite this, Structured Problem Solving is underutilized and laboratories are especially slow to embrace it.

So, what is Structured Problem Solving? Toyota defines the following 8-steps:

  • Clarify the Problem
  • Breakdown the Problem
  • Set the Target
  • Analyze the Root Cause
  • Develop Countermeasures
  • Implement Countermeasures
  • Monitor Results and Process
  • Standardize and Share Success

The irony is that most laboratories will be using a similar set of steps (or a sub-set) everyday as part of their deviation process. So why the resistance to applying Structured Problem Solving to their business processes?

I would argue that the underutilization of the 8-step process is analogous to why Lean implementations all too often fail. A focus and reliance on the tools with a lack of understanding of the core foundations that guide their use. The power and efficacy of 8-step problem solving lies not in the use of root cause analysis tools – the Ishikawa diagrams or the 5-whys – to develop and implement counter measures. Rather, it lies in the first three steps – to develop a shared, concise understanding of the problem and more importantly, alignment on what would be considered solving it.

Unfortunately, these first, critical steps are often rushed or neglected entirely. Whether due to the flawed assumption that everyone’s understanding of the problem is the same (it very rarely is), a lack of time or resources available to collect the necessary data, or an enthusiastic team who want to launch directly into the root cause analysis, the end result is often the same; ineffective, box ticking CAPAs that fail to address the underlying issue.

BSM’s methodology inherently supports good Structured Problem Solving. The visual management systems developed as part of our Lean Lab implementations allow the perfect framework to facilitate the 8-steps. The use of Short Interval Control and properly developed KPI’s ensure that first three steps are easy to complete as the data and targets are readily available, while also serving as triggers themselves. As such a complete Lean Lab solution will make it easy to identify when failures are occurring and will provide the information to support Structured Problem Solving. Also, as Lean Lab solutions are developed and owned by lab members the process can help embolden the lab to tackle and solve the problems they face.

Our consultants can provide further information on the above and discuss any aspect of Real Lean Transformation, simply set-up a call today.

Efeso

Instructional design models for well-structured and III-structured problem-solving learning outcomes

  • Development
  • Published: March 1997
  • Volume 45 , pages 65–94, ( 1997 )

Cite this article

structured problem solving meaning

  • David H. Jonassen 1  

10k Accesses

797 Citations

10 Altmetric

Explore all metrics

Although problem solving is regarded by most educators as among the most important learning outcomes, few instructional design prescriptions are available for designing problem-solving instruction and engaging learners. This paper distinguishes between well-structured problems and ill-structured problems. Well-structured problems are constrained problems with convergent solutions that engage the application of a limited number of rules and principles within well-defined parameters. Ill-structured problems possess multiple solutions, solution paths, fewer parameters which are less manipulable, and contain uncertainty about which concepts, rules, and principles are necessary for the solution or how they are organized and which solution is best. For both types of problems, this paper presents models for how learners solve them and models for designing instruction to support problem-solving skill development. The model for solving well-structured problems is based on information processing theories of learning, while the model for solving ill-structured problems relies on an emerging theory of ill-structured problem solving and on constructivist and situated cognition approaches to learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Similar content being viewed by others

structured problem solving meaning

Developing real life problem-solving skills through situational design: a pilot study

structured problem solving meaning

Designing Problem-Solving for Meaningful Learning: A Discussion of Asia-Pacific Research

structured problem solving meaning

An Instructional Design Model for Information Science

Anderson, J.R., Farrell, R. & Sauers, R. (1984). Learning to program in LISP. Cognitive Science, 8 , 87–129.

Article   Google Scholar  

Arlin, P.K. (1989). The problem of the problem. In J.D. Sinnott (Ed.), Everyday problem solving: Theory and applications (pp. 229–237). New York: Praeger.

Google Scholar  

Bloom, B.S., Englehart, M.D., Furst, E.J., Hill, W.H., & Krathwohl, D.R. (1956). Taxonomy of educational objectives: The classification of educational goals: Handbook 1; The cognitive domain . New York: Longman.

Bodker, S. (1991). Activity theory as a challenge to systems design. In H.E. Nissen, H.K. Klein, & R. Hirschheim (Eds.), Information systems research: Contemporary approaches and emergent traditions . Amsterdam: Elsevier.

Bransford, J. (1994). Who ya gonna call? Thoughts about teaching problem solving. In P. Hallinger, K. Lithwood, & J. Murphy (Eds.), Cognitive perspectives on educational leadership . New York: Teacher's College Press.

Bransford, J., & Stein, B.S. (1984). The IDEAL problem solver: A guide for improving thinking, learning, and creativity . New York : W.H. Freeman .

Charney, D., Reder, L., & Kusbit, G.W. (1990). Goal setting and procedure selection in acquiring computer skills: A comparison of tutorials, problem solving, and learner exploration. Cognition & Instruction, 7 (4) 323–342.

Chi, M.T.H., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5 , 121–152.

Chi, M.T.H. & Glaser, R. (1985). Problem solving ability. In R.J. Sternberg (Ed.), Human abilities: An information processing approach . New York: W.H. Freeman.

Chi, M.T.H. & Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R.J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7–77). Hillsdale, NJ: Lawrence Erlbaum.

Churchman, C.W. (1971). The design of inquiring systems: Basic concepts of systems and organizations . New York: Basic Books.

Cognition Technology Group at Vanderbilt (1992). Technology and the design of generative learning environments. In T.M. Duffy & D.H. Jonassen (Eds.), Constructivism and the technology of instruction: A conversation (pp. 77–89). Hillsdale, NJ: Lawrence Erlbaum Associates.

Cooper, G., & Sweller, J. (1987). The effects of schema acquisition and rule automation of mathematical problem-solving transfer. Journal of Educational Psychology, 79 , 347–362.

Covington, M.C., Crutchfield, R.S., Daves, L.B., & Olton, R.M. (1974). The productive thinking program: A course in learning to think . Columbus, Ohio: Charles Merrill.

de Jong, T., & Ferguson-Hessler, M.G.M. (1986). Cognitive structures of good an poor novice problem solvers in physics. Journal of Educational Psychology, 78 , 279–288.

deBono, E. (1974). CoRT thinking materials . London: Direct Educational Services.

Dunkle, M.E., Schraw, G., & Bendixen, L.D. (1995, April). Cognitive processes in well-defined and ill-defined problem solving . Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.

Ernst, G.W., & Newell, A. (1969). GPS: A case study in generality and problem solving . New York: Academic Press.

Gagné, R.M. (1966). The conditions of learning (1st ed.). New York: Holt, Rinehart and Winston.

Gagné, R.M. (1977). The conditions of learning (3rd ed.). New York: Holt, Rinehart and Winston.

Gagné, R.M. (1985). The conditions of learning (4th ed.). New York: Holt, Rinehart and Winston.

Gagné, R.M., Briggs, L.J., & Wager, W.W. (1992). Principles of instructional design (4th ed.). New York: Harcourt, Brace, & Jovanovich.

Gick, M.L. (1986). Problem-solving strategies. Educational Psychologist, 21 , 99–120.

Gick, M.L., & Holyoak, K.J. (1980). Analogical problem solving. Cognitive Psychology, 12 , 306–355.

Gordon, S.E., & Gill, R.T.. (1989). The formation and use of knowledge structures in problem solving domains. Tech. Report AFOSR-88-0063. Washington, DC: Bolling AFB.

Greeno, J. (1978). Natures of problem-solving abilities. In W. Estes (Ed.), Handbook of learning and cognitive processes (pp. 239–270). Hillsdale, NJ: Lawrence Erlbaum Associates.

Hayes, J.R. (1981) The compleat problem solver . Philadelphia: Franklin Institute Press.

Jacobson, M.J. (1990). Knowledge acquisition, cognitive flexibility, and the instructional applications of hypertext: A comparison of contrasting designs for computer-enhanced learning environments . (Doctoral dissertation, University of Illinois).

Jonassen, D.H. (1996). Scaffolding diagnostic reasoning in case-based learning environments. Journal of Computing in Higher Education .

Jonassen, D.H., Ambruso, D.R., & Olesen, J. (1992). Designing a hypertext on transfusion medicine using cognitive flexibility theory. Journal of Educational Hypermedia and Multimedia, 1 (3), 309–322.

Jonassen, D.H., Beissner, K., & Yacci, M.A. (1993). Structural knowledge . Hillsdale, NJ: Erlbaum.

Jonassen, D.H., Doricott, D., & Engels, R. (1995). Comparing the effectiveness of worked examples and trial-and-error learning methods in an engineering microworld . American Educational Research Association, San Francisco, CA.

Jonassen, D.H., Mann, E., & Ambruso, D.J. (1996). Causal modeling for structuring case-based learning environments. Intelligent Tutoring Media, 6 (3/4), 103–112.

Jonassen, D.H., & Tessmer, M. (1996). An outcomes-based taxonomy for the design, evaluation, and research of instructional systems. Training Research Journal .

Kosonen, P., & Winne, P.H. (1995). Effects of teaching statistical laws on reasoning about everyday problems. Journal of Educational Psychology, 87 , 33–46.

Kitchner, K.S. (1983). Cognition, metacognition, and epistemic cognition: A three-level model of cognitive processing. Human Development, 26 , 222–232.

Kitchner, K.S., & King, P.M. (1981). Reflective judgment: Concepts of justification and their relationship to age and education. Journal of Applied Developmental Psychology, 2 , 89–116.

Kluwe, R.H., & Friedrichsen, G. (1985), Mechanisms of control and regulation and problem solving. In J. Kuhl & J. Beckman (Eds.), Action control (pp. 203–217). Berlin: Springer-Verlag.

Kuutti, K. (1996). Activity theory as a potential framework for human-computer interaction research. In B.A Nardi (Ed.), Context and consciousness: Activity theory and human-computer interaction . Cambridge, MA: MIT Press.

Lave, J. (1988). Cognition in practice . Cambridge, UK: Cambridge University Press.

LeBlanc, S.E., & Fogler, H.S. (1995). Strategies for creative problem solving . Englewood Cliffs, NJ: Prentice-Hall.

Leont'ev, A.N. (1978). Activity, consciousness, and personality . Englewood Cliffs, NJ: Prentice-Hall.

Mayer, R.E. (1989). Models for understanding. Review of Educational Research, 59 (1), 43–64.

McCombs, B.L. (1986). The instructional systems development model: A review of those factors critical to its implementation. Educational Communications and Technology Journal, 34 , 67–81.

Meacham, J.A., & Emont, N.C. (1989). The interpersonal basis of everyday problem solving. In J.D. Sinnott (Ed.), Everyday problem solving: Theory and applications (pp. 7–23). New York: Praeger.

Merrill, M.D. (1983). Component display theory. In C.M. Reigeluth (Ed.), Instructional design theories and models . Hillsdale, NJ: Lawrence Erlbaum.

Nardi, B.A. (1996). Context and consciousness: Activity theory and human-computer interaction . Cambridge, MA: MIT Press.

Newell, A. (1980). Reasoning, problem solving and decision processes: The problem space as a fundamental category. In R.S. Nickerson (Ed.), Attention and performance: Proceedings of the International Symposium on Attention and Performance, VIII . Hillsdale, NJ: Lawrence Erlbaum.

Newell, A. & Simon, H. (1972). Human problem solving . Englewood Cliffs, NJ: Prentice Hall.

Polson. P., & Jeffries, R. (1985). Instruction in problem solving skills: An analysis of four approaches. In J.W. Segal, S. F. Chipman, & R. Glaser (Eds.), Thinking and learning skills (Vol. 1, pp. 417–455). Hillsdale, NJ: Lawrence Erlbaum Associates.

Polya, M. (1957). How to solve it (2nd Ed.). New York: Doubleday.

Reed, S. K. (1992). Cognition: Theory and applications . Pacific Grove, CA: Brooks/Cole.

Reitman, W. (1965). Cognition and thought . New York: Wiley.

Robertson, W.C. (1990). Detection of cognitive structure with protocol data: Predicting performance on physics transfer problems. Cognitive Science, 14 , 253–280.

Rubinstein, M. (1975). Patterns of problem solving . Englewood Cliffs, NJ: Prentice-Hall.

Scandura, J.M. (1964). An analysis of exposition and discovery modes of problem solving instruction. Journal of Experimental Education, 33 (2), 149–159.

Schank, R., & Cleary, C. (1995). Engines for education . Hillsdale, NJ: Lawrence Erlbaum Associates.

Schön, D.A. (1990). The design process. In V.A. Howard (Ed.), Varieties of thinking: Essays from Harvard's philosophy of education center (pp. 110–141). New York: Routledge.

Simon, H.A. (1976). Identifying basic abilities underlying intelligent performance on complex tasks. In L.B. Resnick (Ed.), The nature of intelligence . Hillsdale, NJ: Lawrence Erlbaum Associates.

Simon, D.P. (1978). Information processing theory of human problem solving. In D. Estes (Ed.), Handbook of learning and cognitive process . Hillsdale, NJ: Lawrence Erlbaum Associates.

Simon, D.P., & Simon, H.A. (1978). Individual differences in solving physics problems. In R. Siegler (Ed.), Children's thinking: What develops . Hillsdale, NJ: Lawrence Erlbaum.

Sinnott, J.D. (1989). A model for solution of ill-structured problems: Implications for everyday and abstract problem solving. In J.D. Sinnott (Ed.), Everyday problem solving: Theory and applications (pp. 72–99). New York: Praeger.

Smith, P.L., & Ragan, T.J. (1993). Instructional design . Columbus, OH: Merrill.

Spiro, R.J., Feltovich, P.J., Jacobson, M.J., & Coulson, R.L. (1992). Cognitive flexibility, constructivism, and hypertext: Random access instruction for advanced knowledge acquisition in ill-structured domains. In T.M. Duffy & D.H. Jonassen (Eds.), Constructivism and the technology of instruction: A conversation (pp. 57–76). Hillsdale, NJ: Lawrence Erlbaum Associates.

Spiro, R.J., Vispoel, W., Schmitz, J., Samarapungavan, A., & Boerger, A. (1987). Knowledge acquisition for application: Cognitive flexibility and transfer in complex content domains. In B.C. Britton (Ed.), Executive control processes . Hillsdale, NJ: Lawrence Erlbaum Associates.

Spiro, R.J., Coulson, R.L., Feltovich, P.J., & Anderson, D.K. (1988). Cognitive flexibility theory: Advanced knowledge acquisition in ill-structured domains . Tech Report No. 441. Champaign, IL: University of Illinois, Center for the Study of Reading.

Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12 , 257–285.

Sweller, J., & Cooper, G. (1985) The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2 , 59–89.

Tarmizi, R., & Sweller, J. (1988). Guidance during mathematical problem solving. Journal of Educational Psychology, 80 , 424–436.

Voss, J.F. (1988). Learning and transfer in subject-matter learning: A problem solving model. International Journal of Educational Research, 11 , 607–622.

Voss, J.F., & Post, T.A. (1989). On the solving of ill-structured problems. In M.T.H. Chi, R. Glaser, & M.J. Farr (Eds.), The nature of expertise . Hillsdale, NJ: Lawrence Erlbaum Associates.

Voss, J.F., Wolfe, C.R., Lawrence, J.A., & Engle, R.A. (1991). From representation to decision: An analysis of problem solving in international relations. In R.J. Sternberg (Ed.), Complex problem solving . Hillsdale, NJ: Lawrence Erlbaum Associates.

Ward, M., & Sweller, J. (1990). Structuring effective worked examples. Cognition and Instruction, 7 (1), 1–39.

Wickelgren, W.A., (1973). How to solve problems: Elements of a theory of problems and problem solving . San Francisco, CA: W.H. Freeman.

Wood, P.K. (1983). Inquiring systems and problem structures: Implications for cognitive development. Human Development, 26 , 249–265.

Download references

Author information

Authors and affiliations.

the Pennsylvania State University, USA

David H. Jonassen ( Professor and head of the Instructional Systems program )

You can also search for this author in PubMed   Google Scholar

Additional information

His publications include the recently completed Handbook of Research for Educational Communications and Technology , reviewed in this issue.

Rights and permissions

Reprints and permissions

About this article

Jonassen, D.H. Instructional design models for well-structured and III-structured problem-solving learning outcomes. ETR&D 45 , 65–94 (1997). https://doi.org/10.1007/BF02299613

Download citation

Issue Date : March 1997

DOI : https://doi.org/10.1007/BF02299613

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Educational Technology
  • Learning Outcome
  • Instructional Design
  • Processing Theory
  • Solution Path
  • Find a journal
  • Publish with us
  • Track your research

Physics Network

What is structured problem-solving?

Structured Problem Solving (SPS) is a learned skill that helps you to step back and evaluate your problems, big or small, in a clearer, more structured way. It’s a “thinking skill” commonly used in personal coaching and has proven to be helpful in managing mild to moderate depression.

Table of Contents

What is problem-solving method in physics?

The strategy we would like you to learn has five major steps: Focus the Problem, Physics Description, Plan a Solution, Execute the Plan, and Evaluate the Solution. Let’s take a detailed look at each of these steps and then do an sample problem following the strategy.

What are the 8 steps of problem-solving in physics?

  • Read the problem.
  • Draw a diagram.
  • State the known and unknown variables.
  • State the equations (formulae).
  • Solve the equation(s).
  • Substitute known values into the solved equation.
  • Calculate unknown from known values.
  • Check final answer for reasonability.

What is a structured problem example?

In other words, solving a well-structured problem is accomplished by recalling procedures and performing them exactly as taught. Examples of well-structured problems that people perform at work include using a coffee machine, turning on and logging into their computer, and accessing email.

What are the steps to structured problem-solving?

  • Define the Problem.
  • Describe the Current Situation.
  • Identify Possible Causes.
  • Verify Root Cause.
  • Implement Solution.
  • Monitor for Success.

What are the benefits of structured problem-solving?

Problem-solving is a repeatable process with predictable end products for most common problems. A structured approach to problem-solving ensures you fully understand the problem and are comprehensive in your search for solutions. The structured approach is also efficient.

How do you solve physics Numericals fast?

First, determine the units of the quantity you’re trying to find and the quantities you have. Only use base units (meters, kilograms, seconds, charge), not compound units (Force is measured in Newtons, which are just kg*m/s2). Multiply and divide the quantities until the units match the units of the answer quantity.

Who is the father of problem solving method?

George Polya, known as the father of modern problem solving, did extensive studies and wrote numerous mathematical papers and three books about problem solving.

What is the last thing you should do when solving a problem physics?

Answer and Explanation: The last thing that we do is rechecking of the answer, our answer should be correct and full fill all the requirements. Also, at last, recheck the unit and if there is not the unit, then provide the sign for the answer, checking all these things, at last, improve the accuracy of the answer.

What are the four problem-solving techniques?

  • Define the problem.
  • Generate alternative solutions.
  • Evaluate and select an alternative.
  • Implement and follow up on the solution.

How do you think logically in physics?

The best way to deal with this is to “start with the basics” of any subject you are studying. In physics, go back to main principles. Acceleration is velocity/time because acceleration is the rate at which velocity changes. Just like that, take a basic principle that you do understand and move forward from there.

How do you do physics equations?

YouTube video

What are examples of structured and unstructured problems?

At operational levels, the structured problems are sales order processing and approving customer credit, semi-structured problem is product scheduling while unstructured problem is selecting media devices for advertising.

How many solutions do structured problems?

In well-structured problems, there is only one correct, guaranteed solution, achieved by using specific pre established rules and procedures.

What are the 3 elements that distinguish the structured and unstructured problems?

The three elements that distinguish structured and unstructured problems are data, procedures and objectives.

What are the 7 steps of problem-solving?

  • 7 Steps for Effective Problem Solving.
  • Step 1: Identifying the Problem.
  • Step 2: Defining Goals.
  • Step 3: Brainstorming.
  • Step 4: Assessing Alternatives.
  • Step 5: Choosing the Solution.
  • Step 6: Active Execution of the Chosen Solution.
  • Step 7: Evaluation.

What are the 5 problem-solving techniques?

  • Step 1: Identify the Problem.
  • Step 2: Generate potential solutions.
  • Step 3: Choose one solution.
  • Step 4: Implement the solution you’ve chosen.
  • Step 5: Evaluate results.
  • Next Steps.

What is problem-solving method with example?

Problem solving is a highly sought-after skill. There are many techniques to problem solving. Examples include trial and error, difference reduction, means-ends analysis, working backwards, and analogies.

Why is it important to use a structured approach?

There are many reasons why a structured approach delivers better results: A systematic review of issues provides consistency in sorting out causes. The planned assessment engages people who need to be involved. A disciplined approach ensures that essential guidelines and rules are followed.

What are the disadvantages of problem-solving?

  • Increased competition:
  • Level of confirmation:
  • Lack of objective guidelines:
  • Time constraints:
  • Unequal participation:
  • Unwillingness to participate:

What does structured approach mean?

Structural approach teaches to learn sentences in a systematic manner which involves the structure, sequencing and pattern arrangement of a words to make a proper and complete sentences with meaning.

How can I improve my problem solving skills in physics?

  • Focus on the Problem. Establish a clear mental image of the problem. A.
  • Describe the Physics. Refine and quantify your mental image of the problem. A.
  • Plan a Solution. Turn the concepts into math. A.
  • Execute the Plan. This is the easiest step – it’s just the algebra/calculus/etc. A.
  • Evaluate the Answer. Be skeptical.

How can I become strong in physics?

  • Master the Basics.
  • Learn How to Basic Equations Came About.
  • Always Account For Small Details.
  • Work on Improving Your Math Skills.
  • Simplify the Situations.
  • Use Drawings.
  • Always Double-Check Your Answers.
  • Use Every Source of Physics Help Available.

Is physics easy or hard?

Students and researchers alike have long understood that physics is challenging. But only now have scientists managed to prove it. It turns out that one of the most common goals in physics—finding an equation that describes how a system changes over time—is defined as “hard” by computer theory.

What are the 4 common barriers to problem-solving?

Some barriers do not prevent us from finding a solution, but do prevent us from finding the most efficient solution. Four of the most common processes and factors are mental set, functional fixedness, unnecessary constraints and irrelevant information.

Craving More Content?

Read our latest blog posts

What causes the standing waves on a violin.

The energy of a vibrating string is transmitted through the bridge to the body of the violin, which allows the sound to radiate into the surrounding…

What is a vertical loop in a roller coaster?

The generic roller coaster vertical loop, where a section of track causes the riders to complete a 360 degree turn, is the most basic of roller…

How do you calculate force in tug of war?

The resultant or net force will be = (100 – 80) N = 20 N. Q. In a game of tug of war, three girls of…

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    structured problem solving meaning

  2. Introducing Students to Structured Problem-Solving

    structured problem solving meaning

  3. Structured Problem-Solving

    structured problem solving meaning

  4. 5 Step Problem Solving Process

    structured problem solving meaning

  5. Technique 6.1: Structured Problem Solving

    structured problem solving meaning

  6. PPT

    structured problem solving meaning

VIDEO

  1. Solving Meaning In English

  2. Structured thinking for everyday problems

  3. A Guide to Effective Problem Identification Techniques

  4. Problem solving-meaning ,process

  5. Structured thinking for everyday problems

  6. Math For Beginners || Solving Math At The Speed Of Light

COMMENTS

  1. The Basics of Structured Problem-Solving Methodologies: DMAIC ...

    This methodology provides a structured five-phase framework when working on an improvement project. It focuses on improving an existing process, rather than creating a new product or process. DMAIC is best suited for a complex problem, or if the risk is high. 8D. 8D is known as the Eight Disciplines of problem-solving.

  2. Structured problem solving strategies can help break down problems to

    Structured problem solving strategies can be used to address almost any complex challenge in business or public policy. ... In the problem definition, when you're defining the context, you need to understand those sources of uncertainty and whether they're important or not important. It becomes important in the definition of the tree.

  3. McKinsey Problem Solving: Six Steps To Think Like A ...

    The McKinsey problem solving process is a series of mindset shifts and structured approaches to thinking about and solving challenging problems. ... collectively exhaustive — meaning all points listed cover the entire range of ideas while also being ... The pyramid principle is an approach popularized by Barbara Minto and essential to the ...

  4. Problem-Solving Therapy: Definition, Techniques, and Efficacy

    Problem-solving therapy is a brief intervention that provides people with the tools they need to identify and solve problems that arise from big and small life stressors. It aims to improve your overall quality of life and reduce the negative impact of psychological and physical illness. Problem-solving therapy can be used to treat depression ...

  5. Guide: A3 Problem Solving

    A3 Problem solving or A3 Structured Problem Solving as it is often referred to, is a systematic approach to identifying, analyzing, and solving complex business problems. It was originally developed by Toyota as part of its lean methodology. The A3 is a problem-solving tool that encourages a collaborative and systematic approach to problem-solving.

  6. The Complete Guide to Structured Problem Solving

    Structured problem solving allows you to explore the problem, get to the heart of the issue, and develop a creative solution that finally solves the issue. Photo by Kaleidico on Unsplash. To illustrate this example, Takashi Amano was a nature photographer and avid aquarist. He started developing art in the form of fish tanks - which he called ...

  7. Structured Approach to Problem Solving

    By the end of this course, you will be able to: 1. Explain the different stages of a data science project 2. Discuss some of the tools and techniques used in data science. 3. Apply structured thinking to solving problems and avoid the common traps while doing so 4. Apply human-centric design in problem-solving.

  8. Structured Thinking 101: How to Apply It to Everything You Do

    Execute your plan. Make the bookings and visualize your timeline. This is where everything comes together and you see the benefits of your planning. Let's recap: we started with a clear goal and broke it into smaller, manageable tasks. This is structured thinking, and we just created a framework for planning a trip.

  9. Structured Problem Solving Methods : eLearning Skills 2030

    2. DMAIC. The DMAIC process is a data-driven structured problem-solving approach used to identify bottlenecks and improve processes. While the DMAIC process originated in the Six Sigma methodology, it can be used as a stand-alone process to solve a problem. DMAIC includes five steps: define, measure, analyze, improve, and control.

  10. Six Steps to Structured Problem Solving

    This is the most time-consuming, but one of the most vital steps in the process as we take each potential cause and work to rule it out. We must keep working until we have eliminated everything but the root cause. 4. Verify Root Cause. When we think that we have identified the true root cause, we need verify that it is the root cause by testing ...

  11. What is Problem Solving? (Steps, Techniques, Examples)

    Definition and Importance. Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional ...

  12. STRUCTURED PROBLEM SOLVING TOOLS

    Discover the structured problem solving tools used by top organizations. Our guide covers the Six-Step Problem Solving Model, Drill Down Technique, Four Frame Model, Eight Disciplines, and more. ... Most problem solving methods follow a common pattern, beginning with a definition of the problem, moving on to the consideration of potential ...

  13. Problem Solving: A Structured Approach

    Problem solving is a skill that is essential for success in both personal and professional life. It is the ability to identify and articulate problems, gather information, generate solutions, and implement those solutions effectively. There are many different approaches to problem solving, but one of the most effective is the 8-step problem ...

  14. 35 problem-solving techniques and methods for solving complex problems

    Every effective problem solving process begins with an agenda. A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution. In SessionLab, it's easy to go from an idea to a complete agenda. Start by dragging and dropping your core problem solving activities into ...

  15. 5 Structured Thinking Techniques for Data Scientists

    1. Six Step Problem Solving Model. This technique is the simplest and easiest to use. As the name suggests, this technique uses six steps to solve a problem, which are: Have a clear and concise problem definition. Study the roots of the problem. Brainstorm possible solutions to the problem. Examine the possible solution and choose the best one.

  16. A Structured Approach to Problem Solving

    A disciplined approach ensures that essential guidelines and rules are followed. The steps offer a way to replicate success for similar problems in other areas. There are five components to the framework for structured problem solving. Understand the problem. This is the most important step in assessing the extent of the problem.

  17. Problem Solving

    This page continues from Problem Solving an Introduction that introduces problem solving as a concept and outlines the stages used to successfully solve problems.. This page covers the first two stages in the problem solving process: Identifying the Problem and Structuring the Problem. Stage One: Identifying the Problem. Before being able to confront a problem its existence needs to be identified.

  18. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  19. The McKinsey guide to problem solving

    The McKinsey guide to problem solving. Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more. Become a better problem solver with insights and advice from leaders around the world ...

  20. Structured Problem Solving

    BSM's methodology inherently supports good Structured Problem Solving. The visual management systems developed as part of our Lean Lab implementations allow the perfect framework to facilitate the 8-steps. The use of Short Interval Control and properly developed KPI's ensure that first three steps are easy to complete as the data and ...

  21. Problem structuring methods

    Problem structuring methods (PSMs) are a group of techniques used to model or to map the nature or structure of a situation or state of affairs that some people want to change. PSMs are usually used by a group of people in collaboration (rather than by a solitary individual) to create a consensus about, or at least to facilitate negotiations ...

  22. Instructional design models for well-structured and III-structured

    Although problem solving is regarded by most educators as among the most important learning outcomes, few instructional design prescriptions are available for designing problem-solving instruction and engaging learners. This paper distinguishes between well-structured problems and ill-structured problems. Well-structured problems are constrained problems with convergent solutions that engage ...

  23. What is structured problem-solving? [Facts!]

    Structured Problem Solving (SPS) is a learned skill that helps you to step back and evaluate your problems, big or small, in a clearer, more structured way. It's a "thinking skill" commonly used in personal coaching and has proven to be helpful in managing mild to moderate depression. Table of Contents hide. 1.