When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections

Welcome to the PLOS Writing Center

Your source for scientific writing & publishing essentials.

A collection of free, practical guides and hands-on resources for authors looking to improve their scientific publishing skillset.

ARTICLE-WRITING ESSENTIALS

Your title is the first thing anyone who reads your article is going to see, and for many it will be where they stop reading. Learn how to write a title that helps readers find your article, draws your audience in and sets the stage for your research!

The abstract is your chance to let your readers know what they can expect from your article. Learn how to write a clear, and concise abstract that will keep your audience reading.

A clear methods section impacts editorial evaluation and readers’ understanding, and is also the backbone of transparency and replicability. Learn what to include in your methods section, and how much detail is appropriate.

In many fields, a statistical analysis forms the heart of both the methods and results sections of a manuscript. Learn how to report statistical analyses, and what other context is important for publication success and future reproducibility.

The discussion section contains the results and outcomes of a study. An effective discussion informs readers what can be learned from your experiment and provides context for the results.

Ensuring your manuscript is well-written makes it easier for editors, reviewers and readers to understand your work. Avoiding language errors can help accelerate review and minimize delays in the publication of your research.

The PLOS Writing Toolbox

Delivered to your inbox every two weeks, the Writing Toolbox features practical advice and tools you can use to prepare a research manuscript for submission success and build your scientific writing skillset. 

Discover how to navigate the peer review and publishing process, beyond writing your article.

The path to publication can be unsettling when you’re unsure what’s happening with your paper. Learn about staple journal workflows to see the detailed steps required for ensuring a rigorous and ethical publication.

Reputable journals screen for ethics at submission—and inability to pass ethics checks is one of the most common reasons for rejection. Unfortunately, once a study has begun, it’s often too late to secure the requisite ethical reviews and clearances. Learn how to prepare for publication success by ensuring your study meets all ethical requirements before work begins.

From preregistration, to preprints, to publication—learn how and when to share your study.

How you store your data matters. Even after you publish your article, your data needs to be accessible and useable for the long term so that other researchers can continue building on your work. Good data management practices make your data discoverable and easy to use, promote a strong foundation for reproducibility and increase your likelihood of citations.

You’ve just spent months completing your study, writing up the results and submitting to your top-choice journal. Now the feedback is in and it’s time to revise. Set out a clear plan for your response to keep yourself on-track and ensure edits don’t fall through the cracks.

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher.

Are you actively preparing a submission for a PLOS journal? Select the relevant journal below for more detailed guidelines. 

How to Write an Article  

Share the lessons of the Writing Center in a live, interactive training.

Access tried-and-tested training modules, complete with slides and talking points, workshop activities, and more.

Writing an Introduction for a Scientific Paper

Dr. michelle harris, dr. janet batzli, biocore.

This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question , biological rationale, hypothesis , and general approach . If the Introduction is done well, there should be no question in the reader’s mind why and on what basis you have posed a specific hypothesis.

Broad Question : based on an initial observation (e.g., “I see a lot of guppies close to the shore. Do guppies like living in shallow water?”). This observation of the natural world may inspire you to investigate background literature or your observation could be based on previous research by others or your own pilot study. Broad questions are not always included in your written text, but are essential for establishing the direction of your research.

Background Information : key issues, concepts, terminology, and definitions needed to understand the biological rationale for the experiment. It often includes a summary of findings from previous, relevant studies. Remember to cite references, be concise, and only include relevant information given your audience and your experimental design. Concisely summarized background information leads to the identification of specific scientific knowledge gaps that still exist. (e.g., “No studies to date have examined whether guppies do indeed spend more time in shallow water.”)

Testable Question : these questions are much more focused than the initial broad question, are specific to the knowledge gap identified, and can be addressed with data. (e.g., “Do guppies spend different amounts of time in water <1 meter deep as compared to their time in water that is >1 meter deep?”)

Biological Rationale : describes the purpose of your experiment distilling what is known and what is not known that defines the knowledge gap that you are addressing. The “BR” provides the logic for your hypothesis and experimental approach, describing the biological mechanism and assumptions that explain why your hypothesis should be true.

The biological rationale is based on your interpretation of the scientific literature, your personal observations, and the underlying assumptions you are making about how you think the system works. If you have written your biological rationale, your reader should see your hypothesis in your introduction section and say to themselves, “Of course, this hypothesis seems very logical based on the rationale presented.”

  • A thorough rationale defines your assumptions about the system that have not been revealed in scientific literature or from previous systematic observation. These assumptions drive the direction of your specific hypothesis or general predictions.
  • Defining the rationale is probably the most critical task for a writer, as it tells your reader why your research is biologically meaningful. It may help to think about the rationale as an answer to the questions— how is this investigation related to what we know, what assumptions am I making about what we don’t yet know, AND how will this experiment add to our knowledge? *There may or may not be broader implications for your study; be careful not to overstate these (see note on social justifications below).
  • Expect to spend time and mental effort on this. You may have to do considerable digging into the scientific literature to define how your experiment fits into what is already known and why it is relevant to pursue.
  • Be open to the possibility that as you work with and think about your data, you may develop a deeper, more accurate understanding of the experimental system. You may find the original rationale needs to be revised to reflect your new, more sophisticated understanding.
  • As you progress through Biocore and upper level biology courses, your rationale should become more focused and matched with the level of study e ., cellular, biochemical, or physiological mechanisms that underlie the rationale. Achieving this type of understanding takes effort, but it will lead to better communication of your science.

***Special note on avoiding social justifications: You should not overemphasize the relevance of your experiment and the possible connections to large-scale processes. Be realistic and logical —do not overgeneralize or state grand implications that are not sensible given the structure of your experimental system. Not all science is easily applied to improving the human condition. Performing an investigation just for the sake of adding to our scientific knowledge (“pure or basic science”) is just as important as applied science. In fact, basic science often provides the foundation for applied studies.

Hypothesis / Predictions : specific prediction(s) that you will test during your experiment. For manipulative experiments, the hypothesis should include the independent variable (what you manipulate), the dependent variable(s) (what you measure), the organism or system , the direction of your results, and comparison to be made.

If you are doing a systematic observation , your hypothesis presents a variable or set of variables that you predict are important for helping you characterize the system as a whole, or predict differences between components/areas of the system that help you explain how the system functions or changes over time.

Experimental Approach : Briefly gives the reader a general sense of the experiment, the type of data it will yield, and the kind of conclusions you expect to obtain from the data. Do not confuse the experimental approach with the experimental protocol . The experimental protocol consists of the detailed step-by-step procedures and techniques used during the experiment that are to be reported in the Methods and Materials section.

Some Final Tips on Writing an Introduction

  • As you progress through the Biocore sequence, for instance, from organismal level of Biocore 301/302 to the cellular level in Biocore 303/304, we expect the contents of your “Introduction” paragraphs to reflect the level of your coursework and previous writing experience. For example, in Biocore 304 (Cell Biology Lab) biological rationale should draw upon assumptions we are making about cellular and biochemical processes.
  • Be Concise yet Specific: Remember to be concise and only include relevant information given your audience and your experimental design. As you write, keep asking, “Is this necessary information or is this irrelevant detail?” For example, if you are writing a paper claiming that a certain compound is a competitive inhibitor to the enzyme alkaline phosphatase and acts by binding to the active site, you need to explain (briefly) Michaelis-Menton kinetics and the meaning and significance of Km and Vmax. This explanation is not necessary if you are reporting the dependence of enzyme activity on pH because you do not need to measure Km and Vmax to get an estimate of enzyme activity.
  • Another example: if you are writing a paper reporting an increase in Daphnia magna heart rate upon exposure to caffeine you need not describe the reproductive cycle of magna unless it is germane to your results and discussion. Be specific and concrete, especially when making introductory or summary statements.

Where Do You Discuss Pilot Studies? Many times it is important to do pilot studies to help you get familiar with your experimental system or to improve your experimental design. If your pilot study influences your biological rationale or hypothesis, you need to describe it in your Introduction. If your pilot study simply informs the logistics or techniques, but does not influence your rationale, then the description of your pilot study belongs in the Materials and Methods section.  

How will introductions be evaluated? The following is part of the rubric we will be using to evaluate your papers.

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Turk J Anaesthesiol Reanim
  • v.44(4); 2016 Aug

Logo of tjar

What is Scientific Research and How Can it be Done?

Scientific researches are studies that should be systematically planned before performing them. In this review, classification and description of scientific studies, planning stage randomisation and bias are explained.

Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new information is revealed with respect to diagnosis, treatment and reliability of applications. The purpose of this review is to provide information about the definition, classification and methodology of scientific research.

Before beginning the scientific research, the researcher should determine the subject, do planning and specify the methodology. In the Declaration of Helsinki, it is stated that ‘the primary purpose of medical researches on volunteers is to understand the reasons, development and effects of diseases and develop protective, diagnostic and therapeutic interventions (method, operation and therapies). Even the best proven interventions should be evaluated continuously by investigations with regard to reliability, effectiveness, efficiency, accessibility and quality’ ( 1 ).

The questions, methods of response to questions and difficulties in scientific research may vary, but the design and structure are generally the same ( 2 ).

Classification of Scientific Research

Scientific research can be classified in several ways. Classification can be made according to the data collection techniques based on causality, relationship with time and the medium through which they are applied.

  • Observational
  • Experimental
  • Descriptive
  • Retrospective
  • Prospective
  • Cross-sectional
  • Social descriptive research ( 3 )

Another method is to classify the research according to its descriptive or analytical features. This review is written according to this classification method.

I. Descriptive research

  • Case series
  • Surveillance studies

II. Analytical research

  • Observational studies: cohort, case control and cross- sectional research
  • Interventional research: quasi-experimental and clinical research
  • Case Report: it is the most common type of descriptive study. It is the examination of a single case having a different quality in the society, e.g. conducting general anaesthesia in a pregnant patient with mucopolysaccharidosis.
  • Case Series: it is the description of repetitive cases having common features. For instance; case series involving interscapular pain related to neuraxial labour analgesia. Interestingly, malignant hyperthermia cases are not accepted as case series since they are rarely seen during historical development.
  • Surveillance Studies: these are the results obtained from the databases that follow and record a health problem for a certain time, e.g. the surveillance of cross-infections during anaesthesia in the intensive care unit.

Moreover, some studies may be experimental. After the researcher intervenes, the researcher waits for the result, observes and obtains data. Experimental studies are, more often, in the form of clinical trials or laboratory animal trials ( 2 ).

Analytical observational research can be classified as cohort, case-control and cross-sectional studies.

Firstly, the participants are controlled with regard to the disease under investigation. Patients are excluded from the study. Healthy participants are evaluated with regard to the exposure to the effect. Then, the group (cohort) is followed-up for a sufficient period of time with respect to the occurrence of disease, and the progress of disease is studied. The risk of the healthy participants getting sick is considered an incident. In cohort studies, the risk of disease between the groups exposed and not exposed to the effect is calculated and rated. This rate is called relative risk. Relative risk indicates the strength of exposure to the effect on the disease.

Cohort research may be observational and experimental. The follow-up of patients prospectively is called a prospective cohort study . The results are obtained after the research starts. The researcher’s following-up of cohort subjects from a certain point towards the past is called a retrospective cohort study . Prospective cohort studies are more valuable than retrospective cohort studies: this is because in the former, the researcher observes and records the data. The researcher plans the study before the research and determines what data will be used. On the other hand, in retrospective studies, the research is made on recorded data: no new data can be added.

In fact, retrospective and prospective studies are not observational. They determine the relationship between the date on which the researcher has begun the study and the disease development period. The most critical disadvantage of this type of research is that if the follow-up period is long, participants may leave the study at their own behest or due to physical conditions. Cohort studies that begin after exposure and before disease development are called ambidirectional studies . Public healthcare studies generally fall within this group, e.g. lung cancer development in smokers.

  • Case-Control Studies: these studies are retrospective cohort studies. They examine the cause and effect relationship from the effect to the cause. The detection or determination of data depends on the information recorded in the past. The researcher has no control over the data ( 2 ).

Cross-sectional studies are advantageous since they can be concluded relatively quickly. It may be difficult to obtain a reliable result from such studies for rare diseases ( 2 ).

Cross-sectional studies are characterised by timing. In such studies, the exposure and result are simultaneously evaluated. While cross-sectional studies are restrictedly used in studies involving anaesthesia (since the process of exposure is limited), they can be used in studies conducted in intensive care units.

  • Quasi-Experimental Research: they are conducted in cases in which a quick result is requested and the participants or research areas cannot be randomised, e.g. giving hand-wash training and comparing the frequency of nosocomial infections before and after hand wash.
  • Clinical Research: they are prospective studies carried out with a control group for the purpose of comparing the effect and value of an intervention in a clinical case. Clinical study and research have the same meaning. Drugs, invasive interventions, medical devices and operations, diets, physical therapy and diagnostic tools are relevant in this context ( 6 ).

Clinical studies are conducted by a responsible researcher, generally a physician. In the research team, there may be other healthcare staff besides physicians. Clinical studies may be financed by healthcare institutes, drug companies, academic medical centres, volunteer groups, physicians, healthcare service providers and other individuals. They may be conducted in several places including hospitals, universities, physicians’ offices and community clinics based on the researcher’s requirements. The participants are made aware of the duration of the study before their inclusion. Clinical studies should include the evaluation of recommendations (drug, device and surgical) for the treatment of a disease, syndrome or a comparison of one or more applications; finding different ways for recognition of a disease or case and prevention of their recurrence ( 7 ).

Clinical Research

In this review, clinical research is explained in more detail since it is the most valuable study in scientific research.

Clinical research starts with forming a hypothesis. A hypothesis can be defined as a claim put forward about the value of a population parameter based on sampling. There are two types of hypotheses in statistics.

  • H 0 hypothesis is called a control or null hypothesis. It is the hypothesis put forward in research, which implies that there is no difference between the groups under consideration. If this hypothesis is rejected at the end of the study, it indicates that a difference exists between the two treatments under consideration.
  • H 1 hypothesis is called an alternative hypothesis. It is hypothesised against a null hypothesis, which implies that a difference exists between the groups under consideration. For example, consider the following hypothesis: drug A has an analgesic effect. Control or null hypothesis (H 0 ): there is no difference between drug A and placebo with regard to the analgesic effect. The alternative hypothesis (H 1 ) is applicable if a difference exists between drug A and placebo with regard to the analgesic effect.

The planning phase comes after the determination of a hypothesis. A clinical research plan is called a protocol . In a protocol, the reasons for research, number and qualities of participants, tests to be applied, study duration and what information to be gathered from the participants should be found and conformity criteria should be developed.

The selection of participant groups to be included in the study is important. Inclusion and exclusion criteria of the study for the participants should be determined. Inclusion criteria should be defined in the form of demographic characteristics (age, gender, etc.) of the participant group and the exclusion criteria as the diseases that may influence the study, age ranges, cases involving pregnancy and lactation, continuously used drugs and participants’ cooperation.

The next stage is methodology. Methodology can be grouped under subheadings, namely, the calculation of number of subjects, blinding (masking), randomisation, selection of operation to be applied, use of placebo and criteria for stopping and changing the treatment.

I. Calculation of the Number of Subjects

The entire source from which the data are obtained is called a universe or population . A small group selected from a certain universe based on certain rules and which is accepted to highly represent the universe from which it is selected is called a sample and the characteristics of the population from which the data are collected are called variables. If data is collected from the entire population, such an instance is called a parameter . Conducting a study on the sample rather than the entire population is easier and less costly. Many factors influence the determination of the sample size. Firstly, the type of variable should be determined. Variables are classified as categorical (qualitative, non-numerical) or numerical (quantitative). Individuals in categorical variables are classified according to their characteristics. Categorical variables are indicated as nominal and ordinal (ordered). In nominal variables, the application of a category depends on the researcher’s preference. For instance, a female participant can be considered first and then the male participant, or vice versa. An ordinal (ordered) variable is ordered from small to large or vice versa (e.g. ordering obese patients based on their weights-from the lightest to the heaviest or vice versa). A categorical variable may have more than one characteristic: such variables are called binary or dichotomous (e.g. a participant may be both female and obese).

If the variable has numerical (quantitative) characteristics and these characteristics cannot be categorised, then it is called a numerical variable. Numerical variables are either discrete or continuous. For example, the number of operations with spinal anaesthesia represents a discrete variable. The haemoglobin value or height represents a continuous variable.

Statistical analyses that need to be employed depend on the type of variable. The determination of variables is necessary for selecting the statistical method as well as software in SPSS. While categorical variables are presented as numbers and percentages, numerical variables are represented using measures such as mean and standard deviation. It may be necessary to use mean in categorising some cases such as the following: even though the variable is categorical (qualitative, non-numerical) when Visual Analogue Scale (VAS) is used (since a numerical value is obtained), it is classified as a numerical variable: such variables are averaged.

Clinical research is carried out on the sample and generalised to the population. Accordingly, the number of samples should be correctly determined. Different sample size formulas are used on the basis of the statistical method to be used. When the sample size increases, error probability decreases. The sample size is calculated based on the primary hypothesis. The determination of a sample size before beginning the research specifies the power of the study. Power analysis enables the acquisition of realistic results in the research, and it is used for comparing two or more clinical research methods.

Because of the difference in the formulas used in calculating power analysis and number of samples for clinical research, it facilitates the use of computer programs for making calculations.

It is necessary to know certain parameters in order to calculate the number of samples by power analysis.

  • Type-I (α) and type-II (β) error levels
  • Difference between groups (d-difference) and effect size (ES)
  • Distribution ratio of groups
  • Direction of research hypothesis (H1)

a. Type-I (α) and Type-II (β) Error (β) Levels

Two types of errors can be made while accepting or rejecting H 0 hypothesis in a hypothesis test. Type-I error (α) level is the probability of finding a difference at the end of the research when there is no difference between the two applications. In other words, it is the rejection of the hypothesis when H 0 is actually correct and it is known as α error or p value. For instance, when the size is determined, type-I error level is accepted as 0.05 or 0.01.

Another error that can be made during a hypothesis test is a type-II error. It is the acceptance of a wrongly hypothesised H 0 hypothesis. In fact, it is the probability of failing to find a difference when there is a difference between the two applications. The power of a test is the ability of that test to find a difference that actually exists. Therefore, it is related to the type-II error level.

Since the type-II error risk is expressed as β, the power of the test is defined as 1–β. When a type-II error is 0.20, the power of the test is 0.80. Type-I (α) and type-II (β) errors can be intentional. The reason to intentionally make such an error is the necessity to look at the events from the opposite perspective.

b. Difference between Groups and ES

ES is defined as the state in which statistical difference also has clinically significance: ES≥0.5 is desirable. The difference between groups is the absolute difference between the groups compared in clinical research.

c. Allocation Ratio of Groups

The allocation ratio of groups is effective in determining the number of samples. If the number of samples is desired to be determined at the lowest level, the rate should be kept as 1/1.

d. Direction of Hypothesis (H1)

The direction of hypothesis in clinical research may be one-sided or two-sided. While one-sided hypotheses hypothesis test differences in the direction of size, two-sided hypotheses hypothesis test differences without direction. The power of the test in two-sided hypotheses is lower than one-sided hypotheses.

After these four variables are determined, they are entered in the appropriate computer program and the number of samples is calculated. Statistical packaged software programs such as Statistica, NCSS and G-Power may be used for power analysis and calculating the number of samples. When the samples size is calculated, if there is a decrease in α, difference between groups, ES and number of samples, then the standard deviation increases and power decreases. The power in two-sided hypothesis is lower. It is ethically appropriate to consider the determination of sample size, particularly in animal experiments, at the beginning of the study. The phase of the study is also important in the determination of number of subjects to be included in drug studies. Usually, phase-I studies are used to determine the safety profile of a drug or product, and they are generally conducted on a few healthy volunteers. If no unacceptable toxicity is detected during phase-I studies, phase-II studies may be carried out. Phase-II studies are proof-of-concept studies conducted on a larger number (100–500) of volunteer patients. When the effectiveness of the drug or product is evident in phase-II studies, phase-III studies can be initiated. These are randomised, double-blinded, placebo or standard treatment-controlled studies. Volunteer patients are periodically followed-up with respect to the effectiveness and side effects of the drug. It can generally last 1–4 years and is valuable during licensing and releasing the drug to the general market. Then, phase-IV studies begin in which long-term safety is investigated (indication, dose, mode of application, safety, effectiveness, etc.) on thousands of volunteer patients.

II. Blinding (Masking) and Randomisation Methods

When the methodology of clinical research is prepared, precautions should be taken to prevent taking sides. For this reason, techniques such as randomisation and blinding (masking) are used. Comparative studies are the most ideal ones in clinical research.

Blinding Method

A case in which the treatments applied to participants of clinical research should be kept unknown is called the blinding method . If the participant does not know what it receives, it is called a single-blind study; if even the researcher does not know, it is called a double-blind study. When there is a probability of knowing which drug is given in the order of application, when uninformed staff administers the drug, it is called in-house blinding. In case the study drug is known in its pharmaceutical form, a double-dummy blinding test is conducted. Intravenous drug is given to one group and a placebo tablet is given to the comparison group; then, the placebo tablet is given to the group that received the intravenous drug and intravenous drug in addition to placebo tablet is given to the comparison group. In this manner, each group receives both the intravenous and tablet forms of the drug. In case a third party interested in the study is involved and it also does not know about the drug (along with the statistician), it is called third-party blinding.

Randomisation Method

The selection of patients for the study groups should be random. Randomisation methods are used for such selection, which prevent conscious or unconscious manipulations in the selection of patients ( 8 ).

No factor pertaining to the patient should provide preference of one treatment to the other during randomisation. This characteristic is the most important difference separating randomised clinical studies from prospective and synchronous studies with experimental groups. Randomisation strengthens the study design and enables the determination of reliable scientific knowledge ( 2 ).

The easiest method is simple randomisation, e.g. determination of the type of anaesthesia to be administered to a patient by tossing a coin. In this method, when the number of samples is kept high, a balanced distribution is created. When the number of samples is low, there will be an imbalance between the groups. In this case, stratification and blocking have to be added to randomisation. Stratification is the classification of patients one or more times according to prognostic features determined by the researcher and blocking is the selection of a certain number of patients for each stratification process. The number of stratification processes should be determined at the beginning of the study.

As the number of stratification processes increases, performing the study and balancing the groups become difficult. For this reason, stratification characteristics and limitations should be effectively determined at the beginning of the study. It is not mandatory for the stratifications to have equal intervals. Despite all the precautions, an imbalance might occur between the groups before beginning the research. In such circumstances, post-stratification or restandardisation may be conducted according to the prognostic factors.

The main characteristic of applying blinding (masking) and randomisation is the prevention of bias. Therefore, it is worthwhile to comprehensively examine bias at this stage.

Bias and Chicanery

While conducting clinical research, errors can be introduced voluntarily or involuntarily at a number of stages, such as design, population selection, calculating the number of samples, non-compliance with study protocol, data entry and selection of statistical method. Bias is taking sides of individuals in line with their own decisions, views and ideological preferences ( 9 ). In order for an error to lead to bias, it has to be a systematic error. Systematic errors in controlled studies generally cause the results of one group to move in a different direction as compared to the other. It has to be understood that scientific research is generally prone to errors. However, random errors (or, in other words, ‘the luck factor’-in which bias is unintended-do not lead to bias ( 10 ).

Another issue, which is different from bias, is chicanery. It is defined as voluntarily changing the interventions, results and data of patients in an unethical manner or copying data from other studies. Comparatively, bias may not be done consciously.

In case unexpected results or outliers are found while the study is analysed, if possible, such data should be re-included into the study since the complete exclusion of data from a study endangers its reliability. In such a case, evaluation needs to be made with and without outliers. It is insignificant if no difference is found. However, if there is a difference, the results with outliers are re-evaluated. If there is no error, then the outlier is included in the study (as the outlier may be a result). It should be noted that re-evaluation of data in anaesthesiology is not possible.

Statistical evaluation methods should be determined at the design stage so as not to encounter unexpected results in clinical research. The data should be evaluated before the end of the study and without entering into details in research that are time-consuming and involve several samples. This is called an interim analysis . The date of interim analysis should be determined at the beginning of the study. The purpose of making interim analysis is to prevent unnecessary cost and effort since it may be necessary to conclude the research after the interim analysis, e.g. studies in which there is no possibility to validate the hypothesis at the end or the occurrence of different side effects of the drug to be used. The accuracy of the hypothesis and number of samples are compared. Statistical significance levels in interim analysis are very important. If the data level is significant, the hypothesis is validated even if the result turns out to be insignificant after the date of the analysis.

Another important point to be considered is the necessity to conclude the participants’ treatment within the period specified in the study protocol. When the result of the study is achieved earlier and unexpected situations develop, the treatment is concluded earlier. Moreover, the participant may quit the study at its own behest, may die or unpredictable situations (e.g. pregnancy) may develop. The participant can also quit the study whenever it wants, even if the study has not ended ( 7 ).

In case the results of a study are contrary to already known or expected results, the expected quality level of the study suggesting the contradiction may be higher than the studies supporting what is known in that subject. This type of bias is called confirmation bias. The presence of well-known mechanisms and logical inference from them may create problems in the evaluation of data. This is called plausibility bias.

Another type of bias is expectation bias. If a result different from the known results has been achieved and it is against the editor’s will, it can be challenged. Bias may be introduced during the publication of studies, such as publishing only positive results, selection of study results in a way to support a view or prevention of their publication. Some editors may only publish research that extols only the positive results or results that they desire.

Bias may be introduced for advertisement or economic reasons. Economic pressure may be applied on the editor, particularly in the cases of studies involving drugs and new medical devices. This is called commercial bias.

In recent years, before beginning a study, it has been recommended to record it on the Web site www.clinicaltrials.gov for the purpose of facilitating systematic interpretation and analysis in scientific research, informing other researchers, preventing bias, provision of writing in a standard format, enhancing contribution of research results to the general literature and enabling early intervention of an institution for support. This Web site is a service of the US National Institutes of Health.

The last stage in the methodology of clinical studies is the selection of intervention to be conducted. Placebo use assumes an important place in interventions. In Latin, placebo means ‘I will be fine’. In medical literature, it refers to substances that are not curative, do not have active ingredients and have various pharmaceutical forms. Although placebos do not have active drug characteristic, they have shown effective analgesic characteristics, particularly in algology applications; further, its use prevents bias in comparative studies. If a placebo has a positive impact on a participant, it is called the placebo effect ; on the contrary, if it has a negative impact, it is called the nocebo effect . Another type of therapy that can be used in clinical research is sham application. Although a researcher does not cure the patient, the researcher may compare those who receive therapy and undergo sham. It has been seen that sham therapies also exhibit a placebo effect. In particular, sham therapies are used in acupuncture applications ( 11 ). While placebo is a substance, sham is a type of clinical application.

Ethically, the patient has to receive appropriate therapy. For this reason, if its use prevents effective treatment, it causes great problem with regard to patient health and legalities.

Before medical research is conducted with human subjects, predictable risks, drawbacks and benefits must be evaluated for individuals or groups participating in the study. Precautions must be taken for reducing the risk to a minimum level. The risks during the study should be followed, evaluated and recorded by the researcher ( 1 ).

After the methodology for a clinical study is determined, dealing with the ‘Ethics Committee’ forms the next stage. The purpose of the ethics committee is to protect the rights, safety and well-being of volunteers taking part in the clinical research, considering the scientific method and concerns of society. The ethics committee examines the studies presented in time, comprehensively and independently, with regard to ethics and science; in line with the Declaration of Helsinki and following national and international standards concerning ‘Good Clinical Practice’. The method to be followed in the formation of the ethics committee should be developed without any kind of prejudice and to examine the applications with regard to ethics and science within the framework of the ethics committee, Regulation on Clinical Trials and Good Clinical Practice ( www.iku.com ). The necessary documents to be presented to the ethics committee are research protocol, volunteer consent form, budget contract, Declaration of Helsinki, curriculum vitae of researchers, similar or explanatory literature samples, supporting institution approval certificate and patient follow-up form.

Only one sister/brother, mother, father, son/daughter and wife/husband can take charge in the same ethics committee. A rector, vice rector, dean, deputy dean, provincial healthcare director and chief physician cannot be members of the ethics committee.

Members of the ethics committee can work as researchers or coordinators in clinical research. However, during research meetings in which members of the ethics committee are researchers or coordinators, they must leave the session and they cannot sign-off on decisions. If the number of members in the ethics committee for a particular research is so high that it is impossible to take a decision, the clinical research is presented to another ethics committee in the same province. If there is no ethics committee in the same province, an ethics committee in the closest settlement is found.

Thereafter, researchers need to inform the participants using an informed consent form. This form should explain the content of clinical study, potential benefits of the study, alternatives and risks (if any). It should be easy, comprehensible, conforming to spelling rules and written in plain language understandable by the participant.

This form assists the participants in taking a decision regarding participation in the study. It should aim to protect the participants. The participant should be included in the study only after it signs the informed consent form; the participant can quit the study whenever required, even when the study has not ended ( 7 ).

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - C.Ö.Ç., A.D.; Design - C.Ö.Ç.; Supervision - A.D.; Resource - C.Ö.Ç., A.D.; Materials - C.Ö.Ç., A.D.; Analysis and/or Interpretation - C.Ö.Ç., A.D.; Literature Search - C.Ö.Ç.; Writing Manuscript - C.Ö.Ç.; Critical Review - A.D.; Other - C.Ö.Ç., A.D.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

Detail of a painting depicting the landscape of New Mexico with mountains in the distance

Explore millions of high-quality primary sources and images from around the world, including artworks, maps, photographs, and more.

Explore migration issues through a variety of media types

  • Part of The Streets are Talking: Public Forms of Creative Expression from Around the World
  • Part of The Journal of Economic Perspectives, Vol. 34, No. 1 (Winter 2020)
  • Part of Cato Institute (Aug. 3, 2021)
  • Part of University of California Press
  • Part of Open: Smithsonian National Museum of African American History & Culture
  • Part of Indiana Journal of Global Legal Studies, Vol. 19, No. 1 (Winter 2012)
  • Part of R Street Institute (Nov. 1, 2020)
  • Part of Leuven University Press
  • Part of UN Secretary-General Papers: Ban Ki-moon (2007-2016)
  • Part of Perspectives on Terrorism, Vol. 12, No. 4 (August 2018)
  • Part of Leveraging Lives: Serbia and Illegal Tunisian Migration to Europe, Carnegie Endowment for International Peace (Mar. 1, 2023)
  • Part of UCL Press

Harness the power of visual materials—explore more than 3 million images now on JSTOR.

Enhance your scholarly research with underground newspapers, magazines, and journals.

Explore collections in the arts, sciences, and literature from the world’s leading museums, archives, and scholars.

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, 113 great research paper topics.

author image

General Education

feature_pencilpaper

One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily find the best topic for you.

In addition to the list of good research topics, we've included advice on what makes a good research paper topic and how you can use your topic to start writing a great paper.

What Makes a Good Research Paper Topic?

Not all research paper topics are created equal, and you want to make sure you choose a great topic before you start writing. Below are the three most important factors to consider to make sure you choose the best research paper topics.

#1: It's Something You're Interested In

A paper is always easier to write if you're interested in the topic, and you'll be more motivated to do in-depth research and write a paper that really covers the entire subject. Even if a certain research paper topic is getting a lot of buzz right now or other people seem interested in writing about it, don't feel tempted to make it your topic unless you genuinely have some sort of interest in it as well.

#2: There's Enough Information to Write a Paper

Even if you come up with the absolute best research paper topic and you're so excited to write about it, you won't be able to produce a good paper if there isn't enough research about the topic. This can happen for very specific or specialized topics, as well as topics that are too new to have enough research done on them at the moment. Easy research paper topics will always be topics with enough information to write a full-length paper.

Trying to write a research paper on a topic that doesn't have much research on it is incredibly hard, so before you decide on a topic, do a bit of preliminary searching and make sure you'll have all the information you need to write your paper.

#3: It Fits Your Teacher's Guidelines

Don't get so carried away looking at lists of research paper topics that you forget any requirements or restrictions your teacher may have put on research topic ideas. If you're writing a research paper on a health-related topic, deciding to write about the impact of rap on the music scene probably won't be allowed, but there may be some sort of leeway. For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea. No matter what, always get your research paper topic approved by your teacher first before you begin writing.

113 Good Research Paper Topics

Below are 113 good research topics to help you get you started on your paper. We've organized them into ten categories to make it easier to find the type of research paper topics you're looking for.

Arts/Culture

  • Discuss the main differences in art from the Italian Renaissance and the Northern Renaissance .
  • Analyze the impact a famous artist had on the world.
  • How is sexism portrayed in different types of media (music, film, video games, etc.)? Has the amount/type of sexism changed over the years?
  • How has the music of slaves brought over from Africa shaped modern American music?
  • How has rap music evolved in the past decade?
  • How has the portrayal of minorities in the media changed?

music-277279_640

Current Events

  • What have been the impacts of China's one child policy?
  • How have the goals of feminists changed over the decades?
  • How has the Trump presidency changed international relations?
  • Analyze the history of the relationship between the United States and North Korea.
  • What factors contributed to the current decline in the rate of unemployment?
  • What have been the impacts of states which have increased their minimum wage?
  • How do US immigration laws compare to immigration laws of other countries?
  • How have the US's immigration laws changed in the past few years/decades?
  • How has the Black Lives Matter movement affected discussions and view about racism in the US?
  • What impact has the Affordable Care Act had on healthcare in the US?
  • What factors contributed to the UK deciding to leave the EU (Brexit)?
  • What factors contributed to China becoming an economic power?
  • Discuss the history of Bitcoin or other cryptocurrencies  (some of which tokenize the S&P 500 Index on the blockchain) .
  • Do students in schools that eliminate grades do better in college and their careers?
  • Do students from wealthier backgrounds score higher on standardized tests?
  • Do students who receive free meals at school get higher grades compared to when they weren't receiving a free meal?
  • Do students who attend charter schools score higher on standardized tests than students in public schools?
  • Do students learn better in same-sex classrooms?
  • How does giving each student access to an iPad or laptop affect their studies?
  • What are the benefits and drawbacks of the Montessori Method ?
  • Do children who attend preschool do better in school later on?
  • What was the impact of the No Child Left Behind act?
  • How does the US education system compare to education systems in other countries?
  • What impact does mandatory physical education classes have on students' health?
  • Which methods are most effective at reducing bullying in schools?
  • Do homeschoolers who attend college do as well as students who attended traditional schools?
  • Does offering tenure increase or decrease quality of teaching?
  • How does college debt affect future life choices of students?
  • Should graduate students be able to form unions?

body_highschoolsc

  • What are different ways to lower gun-related deaths in the US?
  • How and why have divorce rates changed over time?
  • Is affirmative action still necessary in education and/or the workplace?
  • Should physician-assisted suicide be legal?
  • How has stem cell research impacted the medical field?
  • How can human trafficking be reduced in the United States/world?
  • Should people be able to donate organs in exchange for money?
  • Which types of juvenile punishment have proven most effective at preventing future crimes?
  • Has the increase in US airport security made passengers safer?
  • Analyze the immigration policies of certain countries and how they are similar and different from one another.
  • Several states have legalized recreational marijuana. What positive and negative impacts have they experienced as a result?
  • Do tariffs increase the number of domestic jobs?
  • Which prison reforms have proven most effective?
  • Should governments be able to censor certain information on the internet?
  • Which methods/programs have been most effective at reducing teen pregnancy?
  • What are the benefits and drawbacks of the Keto diet?
  • How effective are different exercise regimes for losing weight and maintaining weight loss?
  • How do the healthcare plans of various countries differ from each other?
  • What are the most effective ways to treat depression ?
  • What are the pros and cons of genetically modified foods?
  • Which methods are most effective for improving memory?
  • What can be done to lower healthcare costs in the US?
  • What factors contributed to the current opioid crisis?
  • Analyze the history and impact of the HIV/AIDS epidemic .
  • Are low-carbohydrate or low-fat diets more effective for weight loss?
  • How much exercise should the average adult be getting each week?
  • Which methods are most effective to get parents to vaccinate their children?
  • What are the pros and cons of clean needle programs?
  • How does stress affect the body?
  • Discuss the history of the conflict between Israel and the Palestinians.
  • What were the causes and effects of the Salem Witch Trials?
  • Who was responsible for the Iran-Contra situation?
  • How has New Orleans and the government's response to natural disasters changed since Hurricane Katrina?
  • What events led to the fall of the Roman Empire?
  • What were the impacts of British rule in India ?
  • Was the atomic bombing of Hiroshima and Nagasaki necessary?
  • What were the successes and failures of the women's suffrage movement in the United States?
  • What were the causes of the Civil War?
  • How did Abraham Lincoln's assassination impact the country and reconstruction after the Civil War?
  • Which factors contributed to the colonies winning the American Revolution?
  • What caused Hitler's rise to power?
  • Discuss how a specific invention impacted history.
  • What led to Cleopatra's fall as ruler of Egypt?
  • How has Japan changed and evolved over the centuries?
  • What were the causes of the Rwandan genocide ?

main_lincoln

  • Why did Martin Luther decide to split with the Catholic Church?
  • Analyze the history and impact of a well-known cult (Jonestown, Manson family, etc.)
  • How did the sexual abuse scandal impact how people view the Catholic Church?
  • How has the Catholic church's power changed over the past decades/centuries?
  • What are the causes behind the rise in atheism/ agnosticism in the United States?
  • What were the influences in Siddhartha's life resulted in him becoming the Buddha?
  • How has media portrayal of Islam/Muslims changed since September 11th?

Science/Environment

  • How has the earth's climate changed in the past few decades?
  • How has the use and elimination of DDT affected bird populations in the US?
  • Analyze how the number and severity of natural disasters have increased in the past few decades.
  • Analyze deforestation rates in a certain area or globally over a period of time.
  • How have past oil spills changed regulations and cleanup methods?
  • How has the Flint water crisis changed water regulation safety?
  • What are the pros and cons of fracking?
  • What impact has the Paris Climate Agreement had so far?
  • What have NASA's biggest successes and failures been?
  • How can we improve access to clean water around the world?
  • Does ecotourism actually have a positive impact on the environment?
  • Should the US rely on nuclear energy more?
  • What can be done to save amphibian species currently at risk of extinction?
  • What impact has climate change had on coral reefs?
  • How are black holes created?
  • Are teens who spend more time on social media more likely to suffer anxiety and/or depression?
  • How will the loss of net neutrality affect internet users?
  • Analyze the history and progress of self-driving vehicles.
  • How has the use of drones changed surveillance and warfare methods?
  • Has social media made people more or less connected?
  • What progress has currently been made with artificial intelligence ?
  • Do smartphones increase or decrease workplace productivity?
  • What are the most effective ways to use technology in the classroom?
  • How is Google search affecting our intelligence?
  • When is the best age for a child to begin owning a smartphone?
  • Has frequent texting reduced teen literacy rates?

body_iphone2

How to Write a Great Research Paper

Even great research paper topics won't give you a great research paper if you don't hone your topic before and during the writing process. Follow these three tips to turn good research paper topics into great papers.

#1: Figure Out Your Thesis Early

Before you start writing a single word of your paper, you first need to know what your thesis will be. Your thesis is a statement that explains what you intend to prove/show in your paper. Every sentence in your research paper will relate back to your thesis, so you don't want to start writing without it!

As some examples, if you're writing a research paper on if students learn better in same-sex classrooms, your thesis might be "Research has shown that elementary-age students in same-sex classrooms score higher on standardized tests and report feeling more comfortable in the classroom."

If you're writing a paper on the causes of the Civil War, your thesis might be "While the dispute between the North and South over slavery is the most well-known cause of the Civil War, other key causes include differences in the economies of the North and South, states' rights, and territorial expansion."

#2: Back Every Statement Up With Research

Remember, this is a research paper you're writing, so you'll need to use lots of research to make your points. Every statement you give must be backed up with research, properly cited the way your teacher requested. You're allowed to include opinions of your own, but they must also be supported by the research you give.

#3: Do Your Research Before You Begin Writing

You don't want to start writing your research paper and then learn that there isn't enough research to back up the points you're making, or, even worse, that the research contradicts the points you're trying to make!

Get most of your research on your good research topics done before you begin writing. Then use the research you've collected to create a rough outline of what your paper will cover and the key points you're going to make. This will help keep your paper clear and organized, and it'll ensure you have enough research to produce a strong paper.

What's Next?

Are you also learning about dynamic equilibrium in your science class? We break this sometimes tricky concept down so it's easy to understand in our complete guide to dynamic equilibrium .

Thinking about becoming a nurse practitioner? Nurse practitioners have one of the fastest growing careers in the country, and we have all the information you need to know about what to expect from nurse practitioner school .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa).

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

author image

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

Follow us on Facebook (icon)

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”
  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

May 13, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Study shows ChatGPT can accurately analyze medical charts for clinical research, other applications

by UT Southwestern Medical Center

ChatGPT can accurately analyze medical charts for clinical research, other applications

ChatGPT, the artificial intelligence (AI) chatbot designed to assist with language-based tasks, can effectively extract data for research purposes from physicians' clinical notes, UT Southwestern Medical Center researchers report in a new study.

Their findings , published in npj Digital Medicine , could significantly accelerate clinical research and lead to new innovations in computerized clinical decision-making aids.

"By transforming oceans of free-text health care data into structured knowledge, this work paves the way for leveraging artificial intelligence to derive insights, improve clinical decision-making, and ultimately enhance patient outcomes ," said study leader Yang Xie, Ph.D., Professor in the Peter O'Donnell Jr. School of Public Health and the Lyda Hill Department of Bioinformatics at UT Southwestern.

Dr. Xie is also Associate Dean of Data Sciences at UT Southwestern Medical School, Director of the Quantitative Biomedical Research Center, and a member of the Harold C. Simmons Comprehensive Cancer Center.

Much of the research in the Xie Lab focuses on developing and using data science and AI tools to improve biomedical research and health care. She and her colleagues wondered whether ChatGPT might speed the process of analyzing clinical notes—the memos physicians write to document patients' visits, diagnoses, and statuses as part of their medical record—to find relevant data for clinical research and other uses.

Clinical notes are a treasure trove of information, Dr. Xie explained; however, because they are written in free text, extracting structured data typically involves having a trained medical professional read and annotate them. This process requires a huge investment of time and often resources—and can also introduce human bias.

Existing programs that use natural language processing require extensive human annotation and model training. As a result, clinical notes are largely underused for research purposes.

To determine whether ChatGPT could convert clinical notes to structured data, Dr. Xie and her colleagues had it analyze more than 700 sets of pathology notes for lung cancer patients to find the major features of primary tumors, whether lymph nodes were involved, and the cancer stage and subtype.

Overall, Dr. Xie said, the average accuracy of ChatGPT to make these determinations was 89%, based on reviews by human readers.

Their analysis took several weeks of full-time work compared with the few days it took to fine-tune data extraction from the ChatGPT model. This accuracy was significantly better than other traditional natural language processing methods tested for this use.

To test whether this approach is applicable to other diseases, Dr. Xie and her colleagues used ChatGPT to extract information about cancer grade and margin status from 191 clinical notes on patients from Children's Health with osteosarcoma, the most common type of bone cancer in children and adolescents. Here, ChatGPT returned information with nearly 99% accuracy on grade and 100% accuracy on margin status.

Dr. Xie noted that the results were strongly influenced by what prompts ChatGPT was given to perform each task—a phenomenon called prompt engineering. Providing multiple options to choose from, giving examples of appropriate responses, and directing ChatGPT to rely on evidence to draw conclusions improved its performance.

She added that using ChatGPT or other large language models to extract structured data from clinical notes could not only speed clinical research but also help clinical trial enrollment by matching patients' information to clinical trial protocols. However, she said, ChatGPT won't replace the need for human physicians.

"Even though this technology is an extremely promising way to save time and effort, we should always use it with caution. Rigorous and continuous evaluation is very important," Dr. Xie said.

Explore further

Feedback to editors

scientific research essays

Likelihood of kids and young people smoking and vaping linked to social media use

3 hours ago

scientific research essays

Primary health coverage found to have prevented more than 300,000 child deaths in four Latin American countries

scientific research essays

Global life expectancy projected to increase by nearly 5 years by 2050 despite various threats

scientific research essays

Number of people experiencing poor health, early death from metabolism-related risk factors has increased since 2000

scientific research essays

Men at greater risk of major health effects of diabetes than women, study suggests

scientific research essays

Discovery of a master neuron that controls movement in worms has implications for human disease

5 hours ago

scientific research essays

First US trial of varenicline for e-cigarette cessation shows positive results

scientific research essays

Examining the mechanisms and clinical potential of a promising non-opioid pain therapy candidate

scientific research essays

Machine learning method for predicting glioma mutations shows promise for personalized treatment

scientific research essays

Study finds brain wiring predicted adolescents' emotional health during COVID-19 pandemic

6 hours ago

Related Stories

scientific research essays

ChatGPT found to display lower concern for child development 'warning signs' than physicians

May 3, 2024

scientific research essays

Study: ChatGPT extracts data for ischemic stroke almost perfectly, is useful for thrombectomy data transfer

Apr 19, 2024

scientific research essays

Good evidence confuses ChatGPT when used for health information, study finds

Apr 3, 2024

scientific research essays

Study shows ChatGPT can produce medical record notes 10 times faster than doctors without compromising quality

Mar 26, 2024

scientific research essays

ChatGPT shows poor performance in answering drug-related questions

Dec 12, 2023

scientific research essays

Study shows ChatGPT can be helpful for Black women's self-education about HIV, PrEP

Recommended for you.

scientific research essays

AI may improve doctor–patient interactions for older adults with cancer

May 15, 2024

scientific research essays

New tool can help surgeons quickly search videos and create interactive feedback

scientific research essays

Artificial intelligence tool detects sex-related differences in brain structure

May 14, 2024

scientific research essays

Machine learning sheds light on gene transcription

scientific research essays

Study traces an infectious language epidemic

May 11, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Tchiki Davis, Ph.D.

Growth Mindset

What is manifestation science-based ways to manifest, here's what the research says about manifestation..

Updated December 3, 2023 | Reviewed by Jessica Schrader

Pixabay

What is manifestation?

The word " manifestation " means to turn an idea into a reality. Usually, we want to manifest things that improve our happiness and well-being (take this well-being quiz to check your current level of well-being). People generally talk about manifestation as the process of using thoughts, feelings, and beliefs to bring something into reality, but given the science behind manifestation, it seems important to also include actions as a key part of the manifestation process.

What does manifestation really mean?

Manifestation has become popular thanks to books like The Secret and The Law of Attraction . Unfortunately, most psychological scientists will tell you that these books are based on pseudoscience—they claim to be scientific and factual, but they're not actually based on scientific evidence.

So as a psychological scientist I can't, in good conscience , recommend these books. However, I feel like many psychologists throw out the baby with the bathwater when it comes to the idea of "manifestation." They'll often say it's junk science. But I say: Of course we can manifest positive things in our lives—if we couldn't then what would be the point of therapy , wellness interventions, or any of the tools we use to help people?

So what does the science actually say about manifestation ? How can we take a goal or idea we have in our heads and make it real?

What is the science behind manifestation?

There actually is science behind the idea of manifestation—that is, turning an idea into a real thing. Here are some areas of research and how they lend support to manifestation:

A growth mindset can help you manifest your dreams and reach your goals

Research by Dr. Carol Dweck clearly shows that believing you can do something makes it more likely that you'll successfully do it. That means that our beliefs about our ability to learn, grow, and succeed—our growth mindset —can indeed affect whether we effectively manifest what we desire.

Importantly, this research suggests that if we truly believe we can achieve something, we are willing to do the hard work to achieve it. This is in contrast to law-of-attraction style manifestation which suggests that belief alone is enough to bring about manifestation. Ultimately, the science suggests that our beliefs bring about behaviors (and responses from others) that lead to the outcomes we desire.

Self-fulfilling prophecies may explain manifestation

Research shows that our expectations, positive or negative, tend to be confirmed. This is what is known as a self-fulfilling prophecy. So if we expect to bring our idea to life or reach our goal, we're more likely to.

For example, if you don't think you can succeed in some goal, let's say getting your dream job, you'll set in motion events that will actually make it more likely that you won't get your dream job. Maybe you'll be cold or grumpy during a job interview. Maybe you'll engage in negative self-talk with someone who could help you. Or maybe you'll just feel angry and not spend the necessary time required to reach your goal. Your beliefs set in motion circumstances that affect your ability to manifest an outcome.

Negativity bias may explain perceptions about manifestation

Research shows that if we're already feeling bad, we're more likely to interpret neutral circumstances in a negative way. It may be that someone with a more positive attitude just pays more attention to the ways in which they have successfully manifested parts of their dreams. Another person with a more negative outlook may experience the exact same things and only see where they failed to manifest what they desired. That's how bias may affect manifestation .

Upward spirals of positive emotion may explain manifestation success

Dr. Barbara Fredrickson's research has also shown that positive emotions enable us to think more creatively. Similarly, Dr. Sonja Lyubomirsky has shown that happiness leads to success and not the other way around. People who are generally happy and positive attract more opportunities, have better relationships, and seem to be able to manifest what they set their minds to more easily.

It makes sense when you think about it, right? We prefer to be around positive, optimistic people. And being around people with a negative attitude? It's off-putting and doesn't lead us to want to help these people.

How do we use science to manifest what we want?

1. Get clear on what you want to manifest

scientific research essays

What do you actually want? Spend some time focusing to get clarity on your manifestation goal. Mindful meditation can be a useful tool for this—it quiets the mind and helps increase self-awareness . Or, you could talk to a friend. Sometimes just talking can help you gain the clarity you need to manifest something.

2. Manifest what matters to you

When deciding what to manifest, ask yourself a few reflection questions:

  • Will this make me happy and fulfilled?
  • Does it feel right for me? (Or is there something or someone influencing me?)
  • Will this do any harm to myself or others?

By asking yourself these questions you can choose the right things to manifest—things that you will be more likely to believe in, things that you have positive expectations about, and things that make you feel more positive. As a result, you'll be more likely to manifest them.

3. Visualize your manifestation to generate positive emotions

Visualizing what you desire can help you feel positive emotions related to it more strongly. And those emotions can help you believe in yourself more. Just close your eyes, take a few deep breaths, and imagine a scene from your future life as you desire it. Here's a future visualization exercise if you need more help.

Created with content from The Berkeley Well-Being Institute.

Tchiki Davis, Ph.D.

Tchiki Davis, Ph.D. , is a consultant, writer, and expert on well-being technology.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience
  • Skip to main content
  • Keyboard shortcuts for audio player

Shots - Health News

Your Health

  • Treatments & Tests
  • Health Inc.
  • Public Health

Why writing by hand beats typing for thinking and learning

Jonathan Lambert

A close-up of a woman's hand writing in a notebook.

If you're like many digitally savvy Americans, it has likely been a while since you've spent much time writing by hand.

The laborious process of tracing out our thoughts, letter by letter, on the page is becoming a relic of the past in our screen-dominated world, where text messages and thumb-typed grocery lists have replaced handwritten letters and sticky notes. Electronic keyboards offer obvious efficiency benefits that have undoubtedly boosted our productivity — imagine having to write all your emails longhand.

To keep up, many schools are introducing computers as early as preschool, meaning some kids may learn the basics of typing before writing by hand.

But giving up this slower, more tactile way of expressing ourselves may come at a significant cost, according to a growing body of research that's uncovering the surprising cognitive benefits of taking pen to paper, or even stylus to iPad — for both children and adults.

Is this some kind of joke? A school facing shortages starts teaching standup comedy

In kids, studies show that tracing out ABCs, as opposed to typing them, leads to better and longer-lasting recognition and understanding of letters. Writing by hand also improves memory and recall of words, laying down the foundations of literacy and learning. In adults, taking notes by hand during a lecture, instead of typing, can lead to better conceptual understanding of material.

"There's actually some very important things going on during the embodied experience of writing by hand," says Ramesh Balasubramaniam , a neuroscientist at the University of California, Merced. "It has important cognitive benefits."

While those benefits have long been recognized by some (for instance, many authors, including Jennifer Egan and Neil Gaiman , draft their stories by hand to stoke creativity), scientists have only recently started investigating why writing by hand has these effects.

A slew of recent brain imaging research suggests handwriting's power stems from the relative complexity of the process and how it forces different brain systems to work together to reproduce the shapes of letters in our heads onto the page.

Your brain on handwriting

Both handwriting and typing involve moving our hands and fingers to create words on a page. But handwriting, it turns out, requires a lot more fine-tuned coordination between the motor and visual systems. This seems to more deeply engage the brain in ways that support learning.

Feeling Artsy? Here's How Making Art Helps Your Brain

Shots - Health News

Feeling artsy here's how making art helps your brain.

"Handwriting is probably among the most complex motor skills that the brain is capable of," says Marieke Longcamp , a cognitive neuroscientist at Aix-Marseille Université.

Gripping a pen nimbly enough to write is a complicated task, as it requires your brain to continuously monitor the pressure that each finger exerts on the pen. Then, your motor system has to delicately modify that pressure to re-create each letter of the words in your head on the page.

"Your fingers have to each do something different to produce a recognizable letter," says Sophia Vinci-Booher , an educational neuroscientist at Vanderbilt University. Adding to the complexity, your visual system must continuously process that letter as it's formed. With each stroke, your brain compares the unfolding script with mental models of the letters and words, making adjustments to fingers in real time to create the letters' shapes, says Vinci-Booher.

That's not true for typing.

To type "tap" your fingers don't have to trace out the form of the letters — they just make three relatively simple and uniform movements. In comparison, it takes a lot more brainpower, as well as cross-talk between brain areas, to write than type.

Recent brain imaging studies bolster this idea. A study published in January found that when students write by hand, brain areas involved in motor and visual information processing " sync up " with areas crucial to memory formation, firing at frequencies associated with learning.

"We don't see that [synchronized activity] in typewriting at all," says Audrey van der Meer , a psychologist and study co-author at the Norwegian University of Science and Technology. She suggests that writing by hand is a neurobiologically richer process and that this richness may confer some cognitive benefits.

Other experts agree. "There seems to be something fundamental about engaging your body to produce these shapes," says Robert Wiley , a cognitive psychologist at the University of North Carolina, Greensboro. "It lets you make associations between your body and what you're seeing and hearing," he says, which might give the mind more footholds for accessing a given concept or idea.

Those extra footholds are especially important for learning in kids, but they may give adults a leg up too. Wiley and others worry that ditching handwriting for typing could have serious consequences for how we all learn and think.

What might be lost as handwriting wanes

The clearest consequence of screens and keyboards replacing pen and paper might be on kids' ability to learn the building blocks of literacy — letters.

"Letter recognition in early childhood is actually one of the best predictors of later reading and math attainment," says Vinci-Booher. Her work suggests the process of learning to write letters by hand is crucial for learning to read them.

"When kids write letters, they're just messy," she says. As kids practice writing "A," each iteration is different, and that variability helps solidify their conceptual understanding of the letter.

Research suggests kids learn to recognize letters better when seeing variable handwritten examples, compared with uniform typed examples.

This helps develop areas of the brain used during reading in older children and adults, Vinci-Booher found.

"This could be one of the ways that early experiences actually translate to long-term life outcomes," she says. "These visually demanding, fine motor actions bake in neural communication patterns that are really important for learning later on."

Ditching handwriting instruction could mean that those skills don't get developed as well, which could impair kids' ability to learn down the road.

"If young children are not receiving any handwriting training, which is very good brain stimulation, then their brains simply won't reach their full potential," says van der Meer. "It's scary to think of the potential consequences."

Many states are trying to avoid these risks by mandating cursive instruction. This year, California started requiring elementary school students to learn cursive , and similar bills are moving through state legislatures in several states, including Indiana, Kentucky, South Carolina and Wisconsin. (So far, evidence suggests that it's the writing by hand that matters, not whether it's print or cursive.)

Slowing down and processing information

For adults, one of the main benefits of writing by hand is that it simply forces us to slow down.

During a meeting or lecture, it's possible to type what you're hearing verbatim. But often, "you're not actually processing that information — you're just typing in the blind," says van der Meer. "If you take notes by hand, you can't write everything down," she says.

The relative slowness of the medium forces you to process the information, writing key words or phrases and using drawing or arrows to work through ideas, she says. "You make the information your own," she says, which helps it stick in the brain.

Such connections and integration are still possible when typing, but they need to be made more intentionally. And sometimes, efficiency wins out. "When you're writing a long essay, it's obviously much more practical to use a keyboard," says van der Meer.

Still, given our long history of using our hands to mark meaning in the world, some scientists worry about the more diffuse consequences of offloading our thinking to computers.

"We're foisting a lot of our knowledge, extending our cognition, to other devices, so it's only natural that we've started using these other agents to do our writing for us," says Balasubramaniam.

It's possible that this might free up our minds to do other kinds of hard thinking, he says. Or we might be sacrificing a fundamental process that's crucial for the kinds of immersive cognitive experiences that enable us to learn and think at our full potential.

Balasubramaniam stresses, however, that we don't have to ditch digital tools to harness the power of handwriting. So far, research suggests that scribbling with a stylus on a screen activates the same brain pathways as etching ink on paper. It's the movement that counts, he says, not its final form.

Jonathan Lambert is a Washington, D.C.-based freelance journalist who covers science, health and policy.

  • handwriting

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • CAREER FEATURE
  • 08 May 2024

Illuminating ‘the ugly side of science’: fresh incentives for reporting negative results

  • Rachel Brazil 0

Rachel Brazil is a freelance journalist in London, UK.

You can also search for this author in PubMed   Google Scholar

Sarahanne Field giving a talk

The editor-in-chief of the Journal of Trial & Error , Sarahanne Field wants to publish the messy, null and negative results sitting in researchers’ file drawers. Credit: Sander Martens

Editor-in-chief Sarahanne Field describes herself and her team at the Journal of Trial & Error as wanting to highlight the “ugly side of science — the parts of the process that have gone wrong”.

She clarifies that the editorial board of the journal, which launched in 2020 , isn’t interested in papers in which “you did a shitty study and you found nothing. We’re interested in stuff that was done methodologically soundly, but still yielded a result that was unexpected.” These types of result — which do not prove a hypothesis or could yield unexplained outcomes — often simply go unpublished, explains Field, who is also an open-science researcher at the University of Groningen in the Netherlands. Along with Stefan Gaillard, one of the journal’s founders, she hopes to change that.

Calls for researchers to publish failed studies are not new. The ‘file-drawer problem’ — the stacks of unpublished, negative results that most researchers accumulate — was first described in 1979 by psychologist Robert Rosenthal . He argued that this leads to publication bias in the scientific record: the gap of missing unsuccessful results leads to overemphasis on the positive results that do get published.

scientific research essays

Careers Collection: Publishing

Over the past 30 years, the proportion of negative results being published has decreased further. A 2012 study showed that, from 1990 to 2007, there was a 22% increase in positive conclusions in papers; by 2007, 85% of papers published had positive results 1 . “People fail to report [negative] results, because they know they won’t get published — and when people do attempt to publish them, they get rejected,” says Field. A 2022 survey of researchers in France in chemistry, physics, engineering and environmental sciences showed that, although 81% had produced relevant negative results and 75% were willing to publish them, only 12.5% had the opportunity to do so 2 .

One factor that is leading some researchers to revisit the problem is the growing use of predictive modelling using machine-learning tools in many fields. These tools are trained on large data sets that are often derived from published work, and scientists have found that the absence of negative data in the literature is hampering the process. Without a concerted effort to publish more negative results that artificial intelligence (AI) can be trained on, the promise of the technology could be stifled.

“Machine learning is changing how we think about data,” says chemist Keisuke Takahashi at Hokkaido University in Japan, who has brought the issue to the attention of the catalysis-research community . Scientists in the field have typically relied on a mixture of trial and error and serendipity in their experiments, but there is hope that AI could provide a new route for catalyst discovery. Takahashi and his colleagues mined data from 1,866 previous studies and patents to train a machine-learning model to predict the best catalyst for the reaction between methane and oxygen to form ethane and ethylene, both of which are important chemicals used in industry 3 . But, he says, “over the years, people have only collected the good data — if they fail, they don’t report it”. This led to a skewed model that, in some cases, enhanced the predicted performance of a material, rather than realistically assessing its properties.

Portrait of Felix Strieth-Kalthoff in the lab

Synthetic organic chemist Felix Strieth-Kalthoff found that published data were too heavily biased toward positive results to effectively train an AI model to optimize chemical reaction yields. Credit: Cindy Huang

Alongside the flawed training of AI models, the huge gap of negative results in the scientific record continues to be a problem across all disciplines. In areas such as psychology and medicine, publication bias is one factor exacerbating the ongoing reproducibility crisis — in which many published studies are impossible to replicate. Without sharing negative studies and data, researchers could be doomed to repeat work that led nowhere. Many scientists are calling for changes in academic culture and practice — be it the creation of repositories that include positive and negative data, new publication formats or conferences aimed at discussing failure. The solutions are varied, but the message is the same: “To convey an accurate picture of the scientific process, then at least one of the components should be communicating all the results, [including] some negative results,” says Gaillard, “and even where you don’t end up with results, where it just goes wrong.”

Science’s messy side

Synthetic organic chemist Felix Strieth-Kalthoff, who is now setting up his own laboratory at the University of Wuppertal, Germany, has encountered positive-result bias when using data-driven approaches to optimize the yields of certain medicinal-chemistry reactions. His PhD work with chemist Frank Glorius at the University of Münster, Germany, involved creating models that could predict which reactants and conditions would maximize yields. Initially, he relied on data sets that he had generated from high-throughput experiments in the lab, which included results from both high- and low-yield reactions, to train his AI model. “Our next logical step was to do that based on the literature,” says Strieth-Kalthoff. This would allow him to curate a much larger data set to be used for training.

But when he incorporated real data from the reactions database Reaxys into the training process, he says, “[it] turned out they don’t really work at all”. Strieth-Kalthoff concluded the errors were due the lack of low-yield reactions 4 ; “All of the data that we see in the literature have average yields of 60–80%.” Without learning from the messy ‘failed’ experiments with low yields that were present in the initial real-life data, the AI could not model realistic reaction outcomes.

Although AI has the potential to spot relationships in complex data that a researcher might not see, encountering negative results can give experimentalists a gut feeling, says molecular modeller Berend Smit at the Swiss Federal Institute of Technology Lausanne. The usual failures that every chemist experiences at the bench give them a ‘chemical intuition’ that AI models trained only on successful data lack.

Smit and his team attempted to embed something similar to this human intuition into a model tasked with designing a metal-organic framework (MOF) with the largest known surface area for this type of material. A large surface area allows these porous materials to be used as reaction supports or molecular storage reservoirs. “If the binding [between components] is too strong, it becomes amorphous; if the binding is too weak, it becomes unstable, so you need to find the sweet spot,” Smit says. He showed that training the machine-learning model on both successful and unsuccessful reaction conditions created better predictions and ultimately led to one that successfully optimized the MOF 5 . “When we saw the results, we thought, ‘Wow, this is the chemical intuition we’re talking about!’” he says.

According to Strieth-Kalthoff, AI models are currently limited because “the data that are out there just do not reflect all of our knowledge”. Some researchers have sought statistical solutions to fill the negative-data gap. Techniques include oversampling, which means supplementing data with several copies of existing negative data or creating artificial data points, for example by including reactions with a yield of zero. But, he says, these types of approach can introduce their own biases.

Portrait of Ella Peltonen

Computer scientist Ella Peltonen helped to organize the first International Workshop on Negative Results in Pervasive Computing in 2022 to give researchers an opportunity to discuss failed experiments. Credit: University of Oulu

Capturing more negative data is now a priority for Takahashi. “We definitely need some sort of infrastructure to share the data freely.” His group has created a website for sharing large amounts of experimental data for catalysis reactions . Other organizations are trying to collect and publish negative data — but Takahashi says that, so far, they lack coordination, so data formats aren’t standardized. In his field, Strieth-Kalthoff says, there are initiatives such as the Open Reaction Database , launched in 2021 to share organic-reaction data and enable training of machine-learning applications. But, he says, “right now, nobody’s using it, [because] there’s no incentive”.

Smit has argued for a modular open-science platform that would directly link to electronic lab notebooks to help to make different data types extractable and reusable . Through this process, publication of negative data in peer-reviewed journals could be skipped, but the information would still be available for researchers to use in AI training. Strieth-Kalthoff agrees with this strategy in theory, but thinks it’s a long way off in practice, because it would require analytical instruments to be coupled to a third-party source to automatically collect data — which instrument manufacturers might not agree to, he says.

Publishing the non-positive

In other disciplines, the emphasis is still on peer-reviewed journals that will publish negative results. Gaillard, a science-studies PhD student at Radboud University in Nijmegen, the Netherlands, co-founded the Journal of Trial & Error after attending talks on how science can be made more open. Gaillard says that, although everyone whom they approached liked the idea of the journal, nobody wanted to submit articles at first. He and the founding editorial team embarked on a campaign involving cold calls and publicity at open-science conferences. “Slowly, we started getting our first submissions, and now we just get people sending things in [unsolicited],” he says. Most years the journal publishes one issue of about 8–14 articles, and it is starting to publish more special issues. It focuses mainly on the life sciences and data-based social sciences.

In 2008, David Alcantara, then a chemistry PhD student at the University of Seville in Spain who was frustrated by the lack of platforms for sharing negative results, set up The All Results journals, which were aimed at disseminating results regardless of the outcome . Of the four disciplines included at launch, only the biology journal is still being published. “Attracting submissions has always posed a challenge,” says Alcantara, now president at the consultancy and training organization the Society for the Improvement of Science in Seville.

But Alcantara thinks there has been a shift in attitudes: “More established journals [are] becoming increasingly open to considering negative results for publication.” Gaillard agrees: “I’ve seen more and more journals, like PLoS ONE , for example, that explicitly mentioned that they also publish negative results.” ( Nature welcomes submissions of replication studies and those that include null results, as described in this 2020 editorial .)

Journals might be changing their publication preferences, but there are still significant disincentives that stop researchers from publishing their file-drawer studies. “The current academic system often prioritizes high-impact publications and ground-breaking discoveries for career advancement, grants and tenure,” says Alcantara, noting that negative results are perceived as contributing little to nothing to these endeavours. Plus, there is still a stigma associated with any kind of failure . “People are afraid that this will look negative on their CV,” says Gaillard. Smit describes reporting failed experiments as a no-win situation: “It’s more work for [researchers], and they don’t get anything in return in the short term.” And, jokes Smit, what’s worse is that they could be providing data for an AI tool to take over their role.

Ultimately, most researchers conclude that publishing their failed studies and negative data is just not worth the time and effort — and there’s evidence that they judge others’ negative research more harshly than positive outcomes. In a study published in August, 500 researchers from top economics departments around the world were randomized to two groups and asked to judge a hypothetical research paper. Half of the participants were told that the study had a null conclusion, and the other half were told the results were sizeably significant. The null results were perceived to be 25% less likely to be published, of lower quality and less important than were the statistically significant findings 6 .

Some researchers have had positive experiences sharing their unsuccessful findings. For example, in 2021, psychologist Wendy Ross at the London Metropolitan University published her negative results from testing a hypothesis about human problem-solving in the Journal of Trial & Error 7 , and says the paper was “the best one I have published to date”. She adds, “Understanding the reasons for null results can really test and expand our theoretical understanding.”

Fields forging solutions

The field of psychology has introduced one innovation that could change publication biases — registered reports (RRs). These peer-reviewed reports , first published in 2014, came about largely as a response to psychology’s replication crisis, which began in around 2011. RRs set out the methodology of a study before the results are known, to try to prevent selective reporting of positive results. Daniël Lakens, who studies science-reward structures at Eindhoven University of Technology in the Netherlands, says there is evidence that RRs increase the proportion of negative results in the psychology literature.

In a 2021 study, Lakens analysed the proportion of published RRs whose results eventually support the primary hypothesis. In a random sample of hypothesis-testing studies from the standard psychology literature, 96% of the results were positive. In RRs, this fell to only 44% 8 . Lakens says the study shows “that if you offer this as an option, many more null results enter the scientific literature, and that is a desirable thing”. At least 300 journals, including Nature , are now accepting RRs, and the format is spreading to journals in biology, medicine and some social-science fields.

Yet another approach has emerged from the field of pervasive computing, the study of how computer systems are integrated into physical surroundings and everyday life. About four years ago, members of the community started discussing reproducibility, says computer scientist Ella Peltonen at the University of Oulu in Finland. Peltonen says that researchers realized that, to avoid the repetition of mistakes, there was a need to discuss the practical problems with studies and failed results that don’t get published. So in 2022, Peltonen and her colleagues held the first virtual International Workshop on Negative Results in Pervasive Computing (PerFail) , in conjunction with the field’s annual conference, the International Conference on Pervasive Computing and Communications.

Peltonen explains that PerFail speakers first present their negative results and then have the same amount of time for discussion afterwards, during which participants tease out how failed studies can inform future work. “It also encourages the community to showcase that things require effort and trial and error, and there is value in that,” she adds. Now an annual event, the organizers invite students to attend so they can see that failure is a part of research and that “you are not a bad researcher because you fail”, says Peltonen.

In the long run, Alcantara thinks a continued effort to persuade scientists to share all their results needs to be coupled with policies at funding agencies and journals that reward full transparency. “Criteria for grants, promotions and tenure should recognize the value of comprehensive research dissemination, including failures and negative outcomes,” he says. Lakens thinks funders could be key to boosting the RR format, as well. Funders, he adds, should say, “We want the research that we’re funding to appear in the scientific literature, regardless of the significance of the finding.”

There are some positive signs of change about sharing negative data: “Early-career researchers and the next generation of scientists are particularly receptive to the idea,” says Alcantara. Gaillard is also optimistic, given the increased interest in his journal, including submissions for an upcoming special issue on mistakes in the medical domain. “It is slow, of course, but science is a bit slow.”

doi: https://doi.org/10.1038/d41586-024-01389-7

Fanelli, D. Scientometrics 90 , 891–904 (2012).

Article   Google Scholar  

Herbet, M.-E., Leonard, J., Santangelo, M. G. & Albaret, L. Learned Publishing 35 , 16–29 (2022).

Fujima, J., Tanaka, Y., Miyazato, I., Takahashi, L. & Takahashi, K. Reaction Chem. Eng. 5 , 903–911 (2020).

Strieth-Kalthoff, F. et al. Angew. Chem. Int. Edn 61 , e202204647 (2022).

Moosavi, S. M. et al. Nature Commun. 10 , 539 (2019).

Article   PubMed   Google Scholar  

Chopra, F., Haaland, I., Roth, C. & Stegmann, A. Econ. J. 134 , 193–219 (2024).

Ross, W. & Vallée-Tourangeau, F. J. Trial Error https://doi.org/10.36850/e4 (2021).

Scheel, A. M., Schijen, M. R. M. J. & Lakens, D. Adv. Methods Pract. Psychol. Sci . https://doi.org/10.1177/25152459211007467 (2021).

Download references

Related Articles

scientific research essays

  • Scientific community

I’m worried I’ve been contacted by a predatory publisher — how do I find out?

I’m worried I’ve been contacted by a predatory publisher — how do I find out?

Career Feature 15 MAY 24

How I fled bombed Aleppo to continue my career in science

How I fled bombed Aleppo to continue my career in science

Career Feature 08 MAY 24

Hunger on campus: why US PhD students are fighting over food

Hunger on campus: why US PhD students are fighting over food

Career Feature 03 MAY 24

Mount Etna’s spectacular smoke rings and more — April’s best science images

Mount Etna’s spectacular smoke rings and more — April’s best science images

News 03 MAY 24

Plagiarism in peer-review reports could be the ‘tip of the iceberg’

Plagiarism in peer-review reports could be the ‘tip of the iceberg’

Nature Index 01 MAY 24

Algorithm ranks peer reviewers by reputation — but critics warn of bias

Algorithm ranks peer reviewers by reputation — but critics warn of bias

Nature Index 25 APR 24

Researchers want a ‘nutrition label’ for academic-paper facts

Researchers want a ‘nutrition label’ for academic-paper facts

Nature Index 17 APR 24

Research Associate - Metabolism

Houston, Texas (US)

Baylor College of Medicine (BCM)

scientific research essays

Postdoc Fellowships

Train with world-renowned cancer researchers at NIH? Consider joining the Center for Cancer Research (CCR) at the National Cancer Institute

Bethesda, Maryland

NIH National Cancer Institute (NCI)

Faculty Recruitment, Westlake University School of Medicine

Faculty positions are open at four distinct ranks: Assistant Professor, Associate Professor, Full Professor, and Chair Professor.

Hangzhou, Zhejiang, China

Westlake University

scientific research essays

PhD/master's Candidate

PhD/master's Candidate    Graduate School of Frontier Science Initiative, Kanazawa University is seeking candidates for PhD and master's students i...

Kanazawa University

scientific research essays

Senior Research Assistant in Human Immunology (wet lab)

Senior Research Scientist in Human Immunology, high-dimensional (40+) cytometry, ICS and automated robotic platforms.

Boston, Massachusetts (US)

Boston University Atomic Lab

scientific research essays

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

share this!

May 14, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

written by researcher(s)

Our research shows children produce better pieces of writing by hand. But they need keyboard skills too

by Anabela Malpique, Deborah Pino Pasternak and Susan Ledger, The Conversation

Our research shows children produce better pieces of writing by hand. But they need keyboard skills too

Children today are growing up surrounded by technology. So it's easy to assume they will be able to write effectively using a keyboard.

But our research suggests this is not necessarily true.

We need to actively teach students to be able to type as well as write using paper and pen or pencil.

Our research

Our research team has published two recent studies investigating children's handwriting and typing.

In a study published last month we looked at Year 2 students and their handwriting and keyboard writing. This study involved 544 students from 17 primary schools in Perth, Western Australia.

We assessed how easily students wrote stories using paper and pencil compared to writing stories using a laptop. We found they produced longer and higher-quality handwritten texts. This was based on ten criteria, including ideas, vocabulary, spelling and punctuation.

These findings echoed our December 2023 study where we did a meta-analysis of studies published between 2000–2022. These compared the effects of writing by hand or keyboard on primary students' writing.

We looked at 22 international studies involving 6,168 participants from across different countries, including the United States, United Kingdom, Canada and other non-native English-speaking countries, such as Germany and Portugal.

Our analysis showed primary students produce higher quality texts using paper and pen or pencil than when using a keyboard.

Why are kids stronger in handwriting?

In Australia—as in many other countries—children are taught to write by hand first. Keyboard writing is only added as an extra skill once handwriting has been mastered .

We know it is very important to continue to teach children to write by hand, despite so many advances in technology.

Studies show teaching handwriting in the first years of schooling is connected to improved spelling and greater capacity to write well and quickly in primary and later years of schooling.

Other studies show using handwriting to create texts (such as notes) promotes our capacity to learn and memorize information.

But they also need to learn how to use keyboards

We know it is also important for students be able to write quickly and accurately using a keyboard.

They will need to use keyboards to write for study, work and life as they get older. This process needs to become automatic so they can concentrate on the content of what they are writing.

Our research has consistently shown young people who can spell and write quickly and accurately are able to produce longer and higher quality pieces of writing. Other studies have shown when children face difficulties in handwriting or typing, they may often avoid writing altogether and develop a negative mindset toward writing.

Learning to type is complex

As our research suggests, students also need to be taught how to use a keyboard. Much like handwriting, it requires a complex set of cognitive, visual and motor processes, requiring frequent practice and instruction.

It involves learning the location of the keys on a keyboard, combined with spatial skills of positioning, and moving fingers to press the keys in the correct sequence. Students need time to practice so they can move beyond the " hunt and peck " motion (where you have to hunt visually for each key).

Research also suggests teaching about keyboards is more effective when spread out over several years.

First, children need to understand letter locations on the keyboard and the position of their hands, which can be developed via online practice exercises monitored by teachers. Accuracy and speed should not be emphasized until students have mastered where letters are.

Which comes first?

While students ultimately need to be able to write both on paper and using digital devices , there are unanswered questions about the order in which handwriting and typing should be taught or whether they should be taught together.

We also don't yet know if it matters whether students are learning to write via keyboards, touch typing on tablets or by using stylus pens (devices that look like pencils and write via screens).

More research is needed to support teachers, students and families.

How to help your child

Despite these unknowns, there are many things we can do to help students learn how to write on paper and using a keyboard. These include:

dedicating time for practice : teachers can build regular times in class to write and send home small tasks (such as writing a shopping list, finishing a story or describing a monster)

joining in : instead of "policing" your child's writing, show them what you write in your everyday life. As you write, you can talk about what you will write (planning) and you can share ideas about how you can make your writing clearer or more exciting.

talk about your mistakes and find ways of correcting your writing : when adults talk about their errors or doubts, they make them a natural part of the process.

ask children to read what they have written : this provides opportunities for correction and celebration. Praise children's bold attempts such as using new words or experimenting with expressions.

give children choice : this gives children some control. For example, they can choose a topic, they can mix art and letters or they can choose paper or keyboard.

display their writing : make children's writing visible on your walls or fridge or as wallpapers on your devices to instill a sense a pride in what they have done.

Provided by The Conversation

Explore further

Feedback to editors

scientific research essays

Airborne technology brings new hope to map shallow aquifers in Earth's most arid deserts

4 hours ago

scientific research essays

First-generation medical students face unique challenges and need more targeted support, say researchers

5 hours ago

scientific research essays

Thermoelectric materials approach boosts band convergence to avoid time-consuming trial-and-error approach

scientific research essays

Ion swap dramatically improves performance of CO₂-defeating catalyst

scientific research essays

Military rank affects medical care, offering societal insights: Study

6 hours ago

scientific research essays

Mystery CRISPR unlocked: A new ally against antibiotic resistance?

7 hours ago

scientific research essays

Researchers develop a detector for continuously monitoring toxic gases

scientific research essays

Sea otter study finds tool use allows access to larger prey, reduces tooth damage

8 hours ago

scientific research essays

Accelerated discovery research unveils 21 novel materials for advanced organic solid-state laser technology

scientific research essays

Breaking bonds to form bonds: New chemical reaction with potential applications in medicinal chemistry

Relevant physicsforums posts, physics education is 60 years out of date.

3 hours ago

Is "College Algebra" really just high school "Algebra II"?

Plagiarism & chatgpt: is cheating with ai the new normal.

May 13, 2024

Physics Instructor Minimum Education to Teach Community College

May 11, 2024

Studying "Useful" vs. "Useless" Stuff in School

Apr 30, 2024

Why are Physicists so informal with mathematics?

Apr 29, 2024

More from STEM Educators and Teaching

Related Stories

scientific research essays

Writing by hand may increase brain connectivity more than typing on a keyboard

Jan 26, 2024

scientific research essays

Five reasons kids still need to learn handwriting

Jun 7, 2023

scientific research essays

Why writing by hand makes kids smarter

Oct 1, 2020

Later literacy success hinges on early handwriting lessons

Jul 31, 2017

scientific research essays

The case for continuing to write by hand

Oct 5, 2023

scientific research essays

Study: Writing letters by hand is best technique for learning to read

Jul 8, 2021

Recommended for you

scientific research essays

Investigation reveals varied impact of preschool programs on long-term school success

May 2, 2024

scientific research essays

Training of brain processes makes reading more efficient

Apr 18, 2024

scientific research essays

Researchers find lower grades given to students with surnames that come later in alphabetical order

Apr 17, 2024

scientific research essays

Earth, the sun and a bike wheel: Why your high-school textbook was wrong about the shape of Earth's orbit

Apr 8, 2024

scientific research essays

Touchibo, a robot that fosters inclusion in education through touch

Apr 5, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

IMAGES

  1. A Guide to Writing Scientific Essays

    scientific research essays

  2. Scientific Research Paper Sample

    scientific research essays

  3. 🎉 Scientific research essay. How To Write A Scientific Review Research

    scientific research essays

  4. Writing A Science Essay

    scientific research essays

  5. 😊 Scientific review article format. How To Write A Good Scientific

    scientific research essays

  6. "Science" College Essay Sample by EssaySupply.com by james.scott

    scientific research essays

VIDEO

  1. Research Content Services from Straive

  2. Day 2: Basics of Scientific Research Writing (Batch 18)

  3. How to write and develop critical essays

  4. How to write a scientific research paper

  5. How to Write a Scientific Research Paper

  6. Franklin's Fart Essays and the Constitution's Boozy Celebration

COMMENTS

  1. Scientific Writing Made Easy: A Step-by-Step Guide to Undergraduate Writing in the Biological Sciences

    Scientific writing, while an indispensable step of the scientific process, is often overlooked in undergraduate courses in favor of maximizing class time devoted to scientific concepts. However, the ability to effectively communicate research findings is crucial for success in the biological sciences.

  2. How to Write a Research Paper

    A research paper is a piece of academic writing that provides analysis, interpretation, and argument based on in-depth independent research. Research papers are similar to academic essays, but they are usually longer and more detailed assignments, designed to assess not only your writing skills but also your skills in scholarly research ...

  3. Our top essays by scientists in 2021

    Our top essays by scientists in 2021. 20 Dec 2021. 10:50 AM ET. By Katie Langin. Share: Robert Neubecker. When I emailed Phil De Luna in March to ask whether he was OK with titling the essay he'd written for Science " After falling in love, I reimagined my career path—for the better ," I wasn't sure how he'd react to the "love ...

  4. Writing in the Sciences Course by Stanford University

    There are 8 modules in this course. This course teaches scientists to become more effective writers, using practical examples and exercises. Topics include: principles of good writing, tricks for writing faster and with less anxiety, the format of a scientific manuscript, peer review, grant writing, ethical issues in scientific publication, and ...

  5. PDF Tutorial Essays for Science Subjects

    Dr Peter Judge | Tutorial Essays for Science Subjects 1 Tutorial Essays for Science Subjects This guide is designed to provide help and advice on scientific writing. ... your course you may be required to submit an extended essay or a report on a research project, which will count towards your final degree classification. Tutorial Essays

  6. Writing a Research Paper Introduction

    Table of contents. Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  7. Essential elements for high-impact scientific writing

    Communicating your research through writing is an important skill for researchers. Credit: Getty. The technicalities of good scientific writing are well established 1, 2 and important, but for ...

  8. How to write a first-class paper

    In each paragraph, the first sentence defines the context, the body contains the new idea and the final sentence offers a conclusion. For the whole paper, the introduction sets the context, the ...

  9. Writing Center

    Delivered to your inbox every two weeks, the Writing Toolbox features practical advice and tools you can use to prepare a research manuscript for submission success and build your scientific writing skillset. Discover how to navigate the peer review and publishing process, beyond writing your article.

  10. Writing in the Sciences I Stanford Online

    Course Syllabus. Week 1 - Introduction; principles of effective writing (cutting unnecessary clutter) Week 2 - Principles of effective writing (verbs) Week 3 - Crafting better sentences and paragraphs. Week 4 - Organization; and streamlining the writing process. Week 5 - The format of an original manuscript. Week 6 - Reviews, commentaries, and ...

  11. PDF WRITING A SCIENTIFIC ESSAY

    problem or research area . 2. Present the background context. of the work . 3. Introduce/ o. utline of how your research fits into the theoretical framework. established around the area . 4. State . your viewpoint or argument . 1. Explain. different perspectives of the problem . 2. Critically Examine. the material read . Either from . your own ...

  12. Writing an Introduction for a Scientific Paper

    Dr. Michelle Harris, Dr. Janet Batzli,Biocore. This section provides guidelines on how to construct a solid introduction to a scientific paper including background information, study question, biological rationale, hypothesis, and general approach. If the Introduction is done well, there should be no question in the reader's mind why and on ...

  13. Scientific Reports

    What this handout is about. This handout provides a general guide to writing reports about scientific research you've performed. In addition to describing the conventional rules about the format and content of a lab report, we'll also attempt to convey why these rules exist, so you'll get a clearer, more dependable idea of how to approach ...

  14. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  15. 100 Science Topics for Research Papers

    How to Start Your Science Research Paper. Science papers are interesting to write and easy to research because there are so many current and reputable journals online. Start by browsing through the STEM research topics below, which are written in the form of prompts. Then, look at some of the linked articles at the end for further ideas.

  16. Top articles

    Top articles. Explore the most downloaded* papers from Scientific Reports in 2023. Featuring authors from around the world, these collections highlight valuable research from an international ...

  17. ScienceDirect.com

    Elsevier journals offer the latest peer-reviewed research papers on climate change, biodiversity, renewable energy and other topics addressing our planet's climate emergency. ... has remained committed to achieving its founding mission to drive social and political change through advancing medical research and science for the greater good ...

  18. JSTOR Home

    Harness the power of visual materials—explore more than 3 million images now on JSTOR. Enhance your scholarly research with underground newspapers, magazines, and journals. Explore collections in the arts, sciences, and literature from the world's leading museums, archives, and scholars. JSTOR is a digital library of academic journals ...

  19. 113 Great Research Paper Topics

    113 Great Research Paper Topics. Posted by Christine Sarikas. General Education. One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and ...

  20. Search

    Find the research you need | With 160+ million publications, 1+ million questions, and 25+ million researchers, this is where everyone can access science

  21. Scientific Research and Essays

    Scientific Research and Essays (SRE) is a peer reviewed open access journal with the objective of publishing quality research articles in science, medicine, agriculture and engineering such as Nanotechnology, Climate Change and Global Warming, Air Pollution Management and Electronics etc. SRE has an h5-index of 12 on Google Scholar Metrics.

  22. Scientific Research and Essays

    January-March, 2024 - Vol 19 Num. 1. L-Lysine, an essential amino acid crucial for both human and animal nutrition, serves as a valuable medicament and additive in animal feed. Nigeria annually imports significant quantities of L-lysine to support its animal feed industry. In developing countries like Nigeria, a viable biotechnological approach ...

  23. How to write a discussion text

    Video summary. Newsround presenter Leah Boleto explains how discursive writing requires an understanding of the difference between facts and opinions, and how to use connecting phrases and ...

  24. Study shows ChatGPT can accurately analyze medical charts for clinical

    Much of the research in the Xie Lab focuses on developing and using data science and AI tools to improve biomedical research and health care. She and her colleagues wondered whether ChatGPT might ...

  25. What Is Manifestation? Science-Based Ways to Manifest

    The word "manifestation" means to turn an idea into a reality. Usually, we want to manifest things that improve our happiness and well-being (take this well-being quiz to check your current level ...

  26. As schools reconsider cursive, research homes in on handwriting's ...

    Writing by hand also improves memory and recall of words, laying down the foundations of literacy and learning. In adults, taking notes by hand during a lecture, instead of typing, can lead to ...

  27. Illuminating 'the ugly side of science': fresh incentives for reporting

    Over the past 30 years, the proportion of negative results being published has decreased further. A 2012 study showed that, from 1990 to 2007, there was a 22% increase in positive conclusions in ...

  28. Flood of Fake Science Forces Multiple Journal Closures

    May 14, 2024 8:00 am ET. Text. Fake studies have flooded the publishers of top scientific journals, leading to thousands of retractions and millions of dollars in lost revenue. The biggest hit has ...

  29. Our research shows children produce better pieces of writing by hand

    Our research team has published two recent studies investigating children's handwriting and typing. In a study published last month we looked at Year 2 students and their handwriting and keyboard ...