What is the Scientific Method: How does it work and why is it important?

The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. It minimizes biases and enables replicable research, leading to groundbreaking discoveries like Einstein's theory of relativity, penicillin, and the structure of DNA. This ongoing approach promotes reason, evidence, and the pursuit of truth in science.

Updated on November 18, 2023

What is the Scientific Method: How does it work and why is it important?

Beginning in elementary school, we are exposed to the scientific method and taught how to put it into practice. As a tool for learning, it prepares children to think logically and use reasoning when seeking answers to questions.

Rather than jumping to conclusions, the scientific method gives us a recipe for exploring the world through observation and trial and error. We use it regularly, sometimes knowingly in academics or research, and sometimes subconsciously in our daily lives.

In this article we will refresh our memories on the particulars of the scientific method, discussing where it comes from, which elements comprise it, and how it is put into practice. Then, we will consider the importance of the scientific method, who uses it and under what circumstances.

What is the scientific method?

The scientific method is a dynamic process that involves objectively investigating questions through observation and experimentation . Applicable to all scientific disciplines, this systematic approach to answering questions is more accurately described as a flexible set of principles than as a fixed series of steps.

The following representations of the scientific method illustrate how it can be both condensed into broad categories and also expanded to reveal more and more details of the process. These graphics capture the adaptability that makes this concept universally valuable as it is relevant and accessible not only across age groups and educational levels but also within various contexts.

a graph of the scientific method

Steps in the scientific method

While the scientific method is versatile in form and function, it encompasses a collection of principles that create a logical progression to the process of problem solving:

  • Define a question : Constructing a clear and precise problem statement that identifies the main question or goal of the investigation is the first step. The wording must lend itself to experimentation by posing a question that is both testable and measurable.
  • Gather information and resources : Researching the topic in question to find out what is already known and what types of related questions others are asking is the next step in this process. This background information is vital to gaining a full understanding of the subject and in determining the best design for experiments. 
  • Form a hypothesis : Composing a concise statement that identifies specific variables and potential results, which can then be tested, is a crucial step that must be completed before any experimentation. An imperfection in the composition of a hypothesis can result in weaknesses to the entire design of an experiment.
  • Perform the experiments : Testing the hypothesis by performing replicable experiments and collecting resultant data is another fundamental step of the scientific method. By controlling some elements of an experiment while purposely manipulating others, cause and effect relationships are established.
  • Analyze the data : Interpreting the experimental process and results by recognizing trends in the data is a necessary step for comprehending its meaning and supporting the conclusions. Drawing inferences through this systematic process lends substantive evidence for either supporting or rejecting the hypothesis.
  • Report the results : Sharing the outcomes of an experiment, through an essay, presentation, graphic, or journal article, is often regarded as a final step in this process. Detailing the project's design, methods, and results not only promotes transparency and replicability but also adds to the body of knowledge for future research.
  • Retest the hypothesis : Repeating experiments to see if a hypothesis holds up in all cases is a step that is manifested through varying scenarios. Sometimes a researcher immediately checks their own work or replicates it at a future time, or another researcher will repeat the experiments to further test the hypothesis.

a chart of the scientific method

Where did the scientific method come from?

Oftentimes, ancient peoples attempted to answer questions about the unknown by:

  • Making simple observations
  • Discussing the possibilities with others deemed worthy of a debate
  • Drawing conclusions based on dominant opinions and preexisting beliefs

For example, take Greek and Roman mythology. Myths were used to explain everything from the seasons and stars to the sun and death itself.

However, as societies began to grow through advancements in agriculture and language, ancient civilizations like Egypt and Babylonia shifted to a more rational analysis for understanding the natural world. They increasingly employed empirical methods of observation and experimentation that would one day evolve into the scientific method . 

In the 4th century, Aristotle, considered the Father of Science by many, suggested these elements , which closely resemble the contemporary scientific method, as part of his approach for conducting science:

  • Study what others have written about the subject.
  • Look for the general consensus about the subject.
  • Perform a systematic study of everything even partially related to the topic.

a pyramid of the scientific method

By continuing to emphasize systematic observation and controlled experiments, scholars such as Al-Kindi and Ibn al-Haytham helped expand this concept throughout the Islamic Golden Age . 

In his 1620 treatise, Novum Organum , Sir Francis Bacon codified the scientific method, arguing not only that hypotheses must be tested through experiments but also that the results must be replicated to establish a truth. Coming at the height of the Scientific Revolution, this text made the scientific method accessible to European thinkers like Galileo and Isaac Newton who then put the method into practice.

As science modernized in the 19th century, the scientific method became more formalized, leading to significant breakthroughs in fields such as evolution and germ theory. Today, it continues to evolve, underpinning scientific progress in diverse areas like quantum mechanics, genetics, and artificial intelligence.

Why is the scientific method important?

The history of the scientific method illustrates how the concept developed out of a need to find objective answers to scientific questions by overcoming biases based on fear, religion, power, and cultural norms. This still holds true today.

By implementing this standardized approach to conducting experiments, the impacts of researchers’ personal opinions and preconceived notions are minimized. The organized manner of the scientific method prevents these and other mistakes while promoting the replicability and transparency necessary for solid scientific research.

The importance of the scientific method is best observed through its successes, for example: 

  • “ Albert Einstein stands out among modern physicists as the scientist who not only formulated a theory of revolutionary significance but also had the genius to reflect in a conscious and technical way on the scientific method he was using.” Devising a hypothesis based on the prevailing understanding of Newtonian physics eventually led Einstein to devise the theory of general relativity .
  • Howard Florey “Perhaps the most useful lesson which has come out of the work on penicillin has been the demonstration that success in this field depends on the development and coordinated use of technical methods.” After discovering a mold that prevented the growth of Staphylococcus bacteria, Dr. Alexander Flemimg designed experiments to identify and reproduce it in the lab, thus leading to the development of penicillin .
  • James D. Watson “Every time you understand something, religion becomes less likely. Only with the discovery of the double helix and the ensuing genetic revolution have we had grounds for thinking that the powers held traditionally to be the exclusive property of the gods might one day be ours. . . .” By using wire models to conceive a structure for DNA, Watson and Crick crafted a hypothesis for testing combinations of amino acids, X-ray diffraction images, and the current research in atomic physics, resulting in the discovery of DNA’s double helix structure .

Final thoughts

As the cases exemplify, the scientific method is never truly completed, but rather started and restarted. It gave these researchers a structured process that was easily replicated, modified, and built upon. 

While the scientific method may “end” in one context, it never literally ends. When a hypothesis, design, methods, and experiments are revisited, the scientific method simply picks up where it left off. Each time a researcher builds upon previous knowledge, the scientific method is restored with the pieces of past efforts.

By guiding researchers towards objective results based on transparency and reproducibility, the scientific method acts as a defense against bias, superstition, and preconceived notions. As we embrace the scientific method's enduring principles, we ensure that our quest for knowledge remains firmly rooted in reason, evidence, and the pursuit of truth.

The AJE Team

The AJE Team

See our "Privacy Policy"

What Is the Scientific Method?

when is the problem solving method considered scientific

The scientific method is a systematic way of conducting experiments or studies so that you can explore the things you observe in the world and answer questions about them. The scientific method, also known as the hypothetico-deductive method, is a series of steps that can help you accurately describe the things you observe or improve your understanding of them.

Ultimately, your goal when you use the scientific method is to:

  • Find a cause-and-effect relationship by asking a question about something you observed
  • Collect as much evidence as you can about what you observed, as this can help you explore the connection between your evidence and what you observed
  • Determine if all your evidence can be combined to answer your question in a way that makes sense

Francis Bacon and René Descartes are usually credited with formalizing the process in the 16th and 17th centuries. The two philosophers argued that research shouldn’t be guided by preset metaphysical ideas of how reality works. They supported the use of inductive reasoning to come up with hypotheses and understand new things about reality.

Scientific Method Steps

The scientific method is a step-by-step problem-solving process. These steps include:

Observe the world around you. This will help you come up with a topic you are interested in and want to learn more about. In many cases, you already have a topic in mind because you have a related question for which you couldn't find an immediate answer.

Either way, you'll start the process by finding out what people before you already know about the topic, as well as any questions that people are still asking about. You may need to look up and read books and articles from academic journals or talk to other people so that you understand as much as you possibly can about your topic. This will help you with your next step.

Ask questions. Asking questions about what you observed and learned from reading and talking to others can help you figure out what the "problem" is. Scientists try to ask questions that are both interesting and specific and can be answered with the help of a fairly easy experiment or series of experiments. Your question should have one part (called a variable) that you can change in your experiment and another variable that you can measure. Your goal is to design an experiment that is a "fair test," which is when all the conditions in the experiment are kept the same except for the one you change (called the experimental or independent variable).

Form a hypothesis and make predictions based on it.  A hypothesis is an educated guess about the relationship between two or more variables in your question. A good hypothesis lets you predict what will happen when you test it in an experiment. Another important feature of a good hypothesis is that, if the hypothesis is wrong, you should be able to show that it's wrong. This is called falsifiability. If your experiment shows that your prediction is true, then your hypothesis is supported by your data.

Test your prediction by doing an experiment or making more observations.  The way you test your prediction depends on what you are studying. The best support comes from an experiment, but in some cases, it's too hard or impossible to change the variables in an experiment. Sometimes, you may need to do descriptive research where you gather more observations instead of doing an experiment. You will carefully gather notes and measurements during your experiments or studies, and you can share them with other people interested in the same question as you. Ideally, you will also repeat your experiment a couple more times because it's possible to get a result by chance, but it's less possible to get the same result more than once by chance.

Draw a conclusion. You will analyze what you already know about your topic from your literature research and the data gathered during your experiment. This will help you decide if the conclusion you draw from your data supports or contradicts your hypothesis. If your results contradict your hypothesis, you can use this observation to form a new hypothesis and make a new prediction. This is why scientific research is ongoing and scientific knowledge is changing all the time. It's very common for scientists to get results that don't support their hypotheses. In fact, you sometimes learn more about the world when your experiments don't support your hypotheses because it leads you to ask more questions. And this time around, you already know that one possible explanation is likely wrong.

Use your results to guide your next steps (iterate). For instance, if your hypothesis is supported, you may do more experiments to confirm it. Or you could come up with a hypothesis about why it works this way and design an experiment to test that. If your hypothesis is not supported, you can come up with another hypothesis and do experiments to test it. You'll rarely get the right hypothesis in one go. Most of the time, you'll have to go back to the hypothesis stage and try again. Every attempt offers you important information that helps you improve your next round of questions, hypotheses, and predictions.

Share your results. Scientific research isn't something you can do on your own; you must work with other people to do it.   You may be able to do an experiment or a series of experiments on your own, but you can't come up with all the ideas or do all the experiments by yourself .

Scientists and researchers usually share information by publishing it in a scientific journal or by presenting it to their colleagues during meetings and scientific conferences. These journals are read and the conferences are attended by other researchers who are interested in the same questions. If there's anything wrong with your hypothesis, prediction, experiment design, or conclusion, other researchers will likely find it and point it out to you.

It can be scary, but it's a critical part of doing scientific research. You must let your research be examined by other researchers who are as interested and knowledgeable about your question as you. This process helps other researchers by pointing out hypotheses that have been proved wrong and why they are wrong. It helps you by identifying flaws in your thinking or experiment design. And if you don't share what you've learned and let other people ask questions about it, it's not helpful to your or anyone else's understanding of what happens in the world.

Scientific Method Example

Here's an everyday example of how you can apply the scientific method to understand more about your world so you can solve your problems in a helpful way.

Let's say you put slices of bread in your toaster and press the button, but nothing happens. Your toaster isn't working, but you can't afford to buy a new one right now. You might be able to rescue it from the trash can if you can figure out what's wrong with it. So, let's figure out what's wrong with your toaster.

Observation. Your toaster isn't working to toast your bread.

Ask a question. In this case, you're asking, "Why isn't my toaster working?" You could even do a bit of preliminary research by looking in the owner's manual for your toaster. The manufacturer has likely tested your toaster model under many conditions, and they may have some ideas for where to start with your hypothesis.

Form a hypothesis and make predictions based on it. Your hypothesis should be a potential explanation or answer to the question that you can test to see if it's correct. One possible explanation that we could test is that the power outlet is broken. Our prediction is that if the outlet is broken, then plugging it into a different outlet should make the toaster work again.

Test your prediction by doing an experiment or making more observations. You plug the toaster into a different outlet and try to toast your bread.

If that works, then your hypothesis is supported by your experimental data. Results that support your hypothesis don't prove it right; they simply suggest that it's a likely explanation. This uncertainty arises because, in the real world, we can't rule out the possibility of mistakes, wrong assumptions, or weird coincidences affecting the results. If the toaster doesn’t work even after plugging it into a different outlet, then your hypothesis is not supported and it's likely the wrong explanation.

Use your results to guide your next steps (iteration). If your toaster worked, you may decide to do further tests to confirm it or revise it. For example, you could plug something else that you know is working into the first outlet to see if that stops working too. That would be further confirmation that your hypothesis is correct.

If your toaster failed to toast when plugged into the second outlet, you need a new hypothesis. For example, your next hypothesis might be that the toaster has a shorted wire. You could test this hypothesis directly if you have the right equipment and training, or you could take it to a repair shop where they could test that hypothesis for you.

Share your results. For this everyday example, you probably wouldn't want to write a paper, but you could share your problem-solving efforts with your housemates or anyone you hire to repair your outlet or help you test if the toaster has a short circuit.

What the Scientific Method Is Used For

The scientific method is useful whenever you need to reason logically about your questions and gather evidence to support your problem-solving efforts. So, you can use it in everyday life to answer many of your questions; however, when most people think of the scientific method, they likely think of using it to:

Describe how nature works . It can be hard to accurately describe how nature works because it's almost impossible to account for every variable that's involved in a natural process. Researchers may not even know about many of the variables that are involved. In some cases, all you can do is make assumptions. But you can use the scientific method to logically disprove wrong assumptions by identifying flaws in the reasoning.

Do scientific research in a laboratory to develop things such as new medicines.

Develop critical thinking skills.  Using the scientific method may help you develop critical thinking in your daily life because you learn to systematically ask questions and gather evidence to find answers. Without logical reasoning, you might be more likely to have a distorted perspective or bias. Bias is the inclination we all have to favor one perspective (usually our own) over another.

The scientific method doesn't perfectly solve the problem of bias, but it does make it harder for an entire field to be biased in the same direction. That's because it's unlikely that all the people working in a field have the same biases. It also helps make the biases of individuals more obvious because if you repeatedly misinterpret information in the same way in multiple experiments or over a period, the other people working on the same question will notice. If you don't correct your bias when others point it out to you, you'll lose your credibility. Other people might then stop believing what you have to say.

Why Is the Scientific Method Important?

When you use the scientific method, your goal is to do research in a fair, unbiased, and repeatable way. The scientific method helps meet these goals because:

It's a systematic approach to problem-solving. It can help you figure out where you're going wrong in your thinking and research if you're not getting helpful answers to your questions. Helpful answers solve problems and keep you moving forward. So, a systematic approach helps you improve your problem-solving abilities if you get stuck.

It can help you solve your problems.  The scientific method helps you isolate problems by focusing on what's important. In addition, it can help you make your solutions better every time you go through the process.

It helps you eliminate (or become aware of) your personal biases.  It can help you limit the influence of your own personal, preconceived notions . A big part of the process is considering what other people already know and think about your question. It also involves sharing what you've learned and letting other people ask about your methods and conclusions. At the end of the process, even if you still think your answer is best, you have considered what other people know and think about the question.

The scientific method is a systematic way of conducting experiments or studies so that you can explore the world around you and answer questions using reason and evidence. It's a step-by-step problem-solving process that involves: (1) observation, (2) asking questions, (3) forming hypotheses and making predictions, (4) testing your hypotheses through experiments or more observations, (5) using what you learned through experiment or observation to guide further investigation, and (6) sharing your results.

Top doctors in ,

Find more top doctors on, related links.

  • Health A-Z News
  • Health A-Z Reference
  • Health A-Z Slideshows
  • Health A-Z Quizzes
  • Health A-Z Videos
  • WebMDRx Savings Card
  • Coronavirus (COVID-19)
  • Hepatitis C
  • Diabetes Warning Signs
  • Rheumatoid Arthritis
  • Morning-After Pill
  • Breast Cancer Screening
  • Psoriatic Arthritis Symptoms
  • Heart Failure
  • Multiple Myeloma
  • Types of Crohn's Disease

when is the problem solving method considered scientific

Encyclopedia Britannica

  • Games & Quizzes
  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

flow chart of scientific method

scientific method

Our editors will review what you’ve submitted and determine whether to revise the article.

  • University of Nevada, Reno - College of Agriculture, Biotechnology and Natural Resources Extension - The Scientific Method
  • World History Encyclopedia - Scientific Method
  • LiveScience - What Is Science?
  • Verywell Mind - Scientific Method Steps in Psychology Research
  • WebMD - What is the Scientific Method?
  • Chemistry LibreTexts - The Scientific Method
  • Khan Academy - The scientific method
  • Simply Psychology - What are the steps in the Scientific Method?
  • Stanford Encyclopedia of Philosophy - Scientific Method

flow chart of scientific method

scientific method , mathematical and experimental technique employed in the sciences . More specifically, it is the technique used in the construction and testing of a scientific hypothesis .

The process of observing, asking questions, and seeking answers through tests and experiments is not unique to any one field of science. In fact, the scientific method is applied broadly in science, across many different fields. Many empirical sciences, especially the social sciences , use mathematical tools borrowed from probability theory and statistics , together with outgrowths of these, such as decision theory , game theory , utility theory, and operations research . Philosophers of science have addressed general methodological problems, such as the nature of scientific explanation and the justification of induction .

Earth's Place in the Universe. Introduction: The History of the Solar System. Aristotle's Philosophical Universe. Ptolemy's Geocentric Cosmos. Copernicus' Heliocentric System. Kepler's Laws of Planetary Motion.

The scientific method is critical to the development of scientific theories , which explain empirical (experiential) laws in a scientifically rational manner. In a typical application of the scientific method, a researcher develops a hypothesis , tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments. The modified hypothesis is then retested, further modified, and tested again, until it becomes consistent with observed phenomena and testing outcomes. In this way, hypotheses serve as tools by which scientists gather data. From that data and the many different scientific investigations undertaken to explore hypotheses, scientists are able to develop broad general explanations, or scientific theories.

See also Mill’s methods ; hypothetico-deductive method .

Science and the scientific method: Definitions and examples

Here's a look at the foundation of doing science — the scientific method.

Kids follow the scientific method to carry out an experiment.

The scientific method

Hypothesis, theory and law, a brief history of science, additional resources, bibliography.

Science is a systematic and logical approach to discovering how things in the universe work. It is also the body of knowledge accumulated through the discoveries about all the things in the universe. 

The word "science" is derived from the Latin word "scientia," which means knowledge based on demonstrable and reproducible data, according to the Merriam-Webster dictionary . True to this definition, science aims for measurable results through testing and analysis, a process known as the scientific method. Science is based on fact, not opinion or preferences. The process of science is designed to challenge ideas through research. One important aspect of the scientific process is that it focuses only on the natural world, according to the University of California, Berkeley . Anything that is considered supernatural, or beyond physical reality, does not fit into the definition of science.

When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement) that is designed to support or contradict a scientific theory .

"As a field biologist, my favorite part of the scientific method is being in the field collecting the data," Jaime Tanner, a professor of biology at Marlboro College, told Live Science. "But what really makes that fun is knowing that you are trying to answer an interesting question. So the first step in identifying questions and generating possible answers (hypotheses) is also very important and is a creative process. Then once you collect the data you analyze it to see if your hypothesis is supported or not."

Here's an illustration showing the steps in the scientific method.

The steps of the scientific method go something like this, according to Highline College :

  • Make an observation or observations.
  • Form a hypothesis — a tentative description of what's been observed, and make predictions based on that hypothesis.
  • Test the hypothesis and predictions in an experiment that can be reproduced.
  • Analyze the data and draw conclusions; accept or reject the hypothesis or modify the hypothesis if necessary.
  • Reproduce the experiment until there are no discrepancies between observations and theory. "Replication of methods and results is my favorite step in the scientific method," Moshe Pritsker, a former post-doctoral researcher at Harvard Medical School and CEO of JoVE, told Live Science. "The reproducibility of published experiments is the foundation of science. No reproducibility — no science."

Some key underpinnings to the scientific method:

  • The hypothesis must be testable and falsifiable, according to North Carolina State University . Falsifiable means that there must be a possible negative answer to the hypothesis.
  • Research must involve deductive reasoning and inductive reasoning . Deductive reasoning is the process of using true premises to reach a logical true conclusion while inductive reasoning uses observations to infer an explanation for those observations.
  • An experiment should include a dependent variable (which does not change) and an independent variable (which does change), according to the University of California, Santa Barbara .
  • An experiment should include an experimental group and a control group. The control group is what the experimental group is compared against, according to Britannica .

The process of generating and testing a hypothesis forms the backbone of the scientific method. When an idea has been confirmed over many experiments, it can be called a scientific theory. While a theory provides an explanation for a phenomenon, a scientific law provides a description of a phenomenon, according to The University of Waikato . One example would be the law of conservation of energy, which is the first law of thermodynamics that says that energy can neither be created nor destroyed. 

A law describes an observed phenomenon, but it doesn't explain why the phenomenon exists or what causes it. "In science, laws are a starting place," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "From there, scientists can then ask the questions, 'Why and how?'"

Laws are generally considered to be without exception, though some laws have been modified over time after further testing found discrepancies. For instance, Newton's laws of motion describe everything we've observed in the macroscopic world, but they break down at the subatomic level.

This does not mean theories are not meaningful. For a hypothesis to become a theory, scientists must conduct rigorous testing, typically across multiple disciplines by separate groups of scientists. Saying something is "just a theory" confuses the scientific definition of "theory" with the layperson's definition. To most people a theory is a hunch. In science, a theory is the framework for observations and facts, Tanner told Live Science.

This Copernican heliocentric solar system, from 1708, shows the orbit of the moon around the Earth, and the orbits of the Earth and planets round the sun, including Jupiter and its moons, all surrounded by the 12 signs of the zodiac.

The earliest evidence of science can be found as far back as records exist. Early tablets contain numerals and information about the solar system , which were derived by using careful observation, prediction and testing of those predictions. Science became decidedly more "scientific" over time, however.

1200s: Robert Grosseteste developed the framework for the proper methods of modern scientific experimentation, according to the Stanford Encyclopedia of Philosophy. His works included the principle that an inquiry must be based on measurable evidence that is confirmed through testing.

1400s: Leonardo da Vinci began his notebooks in pursuit of evidence that the human body is microcosmic. The artist, scientist and mathematician also gathered information about optics and hydrodynamics.

1500s: Nicolaus Copernicus advanced the understanding of the solar system with his discovery of heliocentrism. This is a model in which Earth and the other planets revolve around the sun, which is the center of the solar system.

1600s: Johannes Kepler built upon those observations with his laws of planetary motion. Galileo Galilei improved on a new invention, the telescope, and used it to study the sun and planets. The 1600s also saw advancements in the study of physics as Isaac Newton developed his laws of motion.

1700s: Benjamin Franklin discovered that lightning is electrical. He also contributed to the study of oceanography and meteorology. The understanding of chemistry also evolved during this century as Antoine Lavoisier, dubbed the father of modern chemistry , developed the law of conservation of mass.

1800s: Milestones included Alessandro Volta's discoveries regarding electrochemical series, which led to the invention of the battery. John Dalton also introduced atomic theory, which stated that all matter is composed of atoms that combine to form molecules. The basis of modern study of genetics advanced as Gregor Mendel unveiled his laws of inheritance. Later in the century, Wilhelm Conrad Röntgen discovered X-rays , while George Ohm's law provided the basis for understanding how to harness electrical charges.

1900s: The discoveries of Albert Einstein , who is best known for his theory of relativity, dominated the beginning of the 20th century. Einstein's theory of relativity is actually two separate theories. His special theory of relativity, which he outlined in a 1905 paper, " The Electrodynamics of Moving Bodies ," concluded that time must change according to the speed of a moving object relative to the frame of reference of an observer. His second theory of general relativity, which he published as " The Foundation of the General Theory of Relativity ," advanced the idea that matter causes space to curve.

In 1952, Jonas Salk developed the polio vaccine , which reduced the incidence of polio in the United States by nearly 90%, according to Britannica . The following year, James D. Watson and Francis Crick discovered the structure of DNA , which is a double helix formed by base pairs attached to a sugar-phosphate backbone, according to the National Human Genome Research Institute .

2000s: The 21st century saw the first draft of the human genome completed, leading to a greater understanding of DNA. This advanced the study of genetics, its role in human biology and its use as a predictor of diseases and other disorders, according to the National Human Genome Research Institute .

  • This video from City University of New York delves into the basics of what defines science.
  • Learn about what makes science science in this book excerpt from Washington State University .
  • This resource from the University of Michigan — Flint explains how to design your own scientific study.

Merriam-Webster Dictionary, Scientia. 2022. https://www.merriam-webster.com/dictionary/scientia

University of California, Berkeley, "Understanding Science: An Overview." 2022. ​​ https://undsci.berkeley.edu/article/0_0_0/intro_01  

Highline College, "Scientific method." July 12, 2015. https://people.highline.edu/iglozman/classes/astronotes/scimeth.htm  

North Carolina State University, "Science Scripts." https://projects.ncsu.edu/project/bio183de/Black/science/science_scripts.html  

University of California, Santa Barbara. "What is an Independent variable?" October 31,2017. http://scienceline.ucsb.edu/getkey.php?key=6045  

Encyclopedia Britannica, "Control group." May 14, 2020. https://www.britannica.com/science/control-group  

The University of Waikato, "Scientific Hypothesis, Theories and Laws." https://sci.waikato.ac.nz/evolution/Theories.shtml  

Stanford Encyclopedia of Philosophy, Robert Grosseteste. May 3, 2019. https://plato.stanford.edu/entries/grosseteste/  

Encyclopedia Britannica, "Jonas Salk." October 21, 2021. https://www.britannica.com/ biography /Jonas-Salk

National Human Genome Research Institute, "​Phosphate Backbone." https://www.genome.gov/genetics-glossary/Phosphate-Backbone  

National Human Genome Research Institute, "What is the Human Genome Project?" https://www.genome.gov/human-genome-project/What  

‌ Live Science contributor Ashley Hamer updated this article on Jan. 16, 2022.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

What's the difference between a rock and a mineral?

Earth from space: Mysterious, slow-spinning cloud 'cyclone' hugs the Iberian coast

4,000-year-old 'Seahenge' in UK was built to 'extend summer,' archaeologist suggests

Most Popular

  • 2 Space photo of the week: James Webb and Chandra telescopes spot a 'lighthouse' pointed at Earth
  • 3 1st Neuralink user describes highs and lows of living with Elon Musk's brain chip
  • 4 James Webb telescope finds carbon at the dawn of the universe, challenging our understanding of when life could have emerged
  • 5 Neanderthals and humans interbred 47,000 years ago for nearly 7,000 years, research suggests
  • 2 Evidence of more than 200 survivors of Mount Vesuvius eruption discovered in ancient Roman records
  • 3 7 potential 'alien megastructures' spotted in our galaxy are not what they seem
  • 4 Hundreds of centuries-old coins unearthed in Germany likely belonged to wealthy 17th-century mayor
  • 5 'Physics itself disappears': How theoretical physicist Thomas Hertog helped Stephen Hawking produce his final, most radical theory of everything

when is the problem solving method considered scientific

Reset password New user? Sign up

Existing user? Log in

Scientific Method

Already have an account? Log in here.

The scientific method is the process by which scientists of all fields attempt to explain the phenomena in the world. It is how science is conducted--through experimentation. Generally, the scientific method refers to a set of steps whereby a scientist can form a conjecture (the hypothesis) for why something functions the way it does and then test their hypothesis. It is an empirical process; it uses real world data to prove the hypothesis. There is no exact set of \(x\) number of steps to conduct scientific experiments, or even some exact \(y\) number of experiments, but the general process involves making an observation, forming an hypothesis, forming a prediction from that hypothesis, and then experimental testing. The scientific method isn't limited to the physical or biological sciences, but also the social sciences, mathematics, computing and other fields where experimentation can be used to prove beliefs.

We could observe that whenever a fire is smothered, it goes out. For instance a small fire that is covered with a blanket is extinguished. We could hypothesize that the reason for this is that fire requires some gas in our air to form and remain a flame. We could then use a vacuum chamber to test this theory. We would predict that outside of a vacuum, a fire could be lit but inside of a vacuum, with no air, that the fire would not ignite. If we were to test this theory, perhaps in multiple vacuums with multiple forms of tinder/fuel (wood, paper, petrol, etc.) and multiple means of ignition, we would notice that the fire never ignites. If we wished, we could further refine our hypothesis, suggesting that fire can only ignite if there is sufficient oxygen in the air. This we'd also test in the vacuum chamber, by pulling out all the air, then adding in different gases. We would notice that the fire would only ignite in the presence of oxygen or an oxidizing agent . It is possible that other, incorrect hypothesis could have been initially formed--such as smothering decreases the surface area the fire has, and could try making different sized fires--and been proven incorrect. Also, it is important to note that this single set of experiments is not enough to turn this hypothesis into a theorem. More experimentation and discovery would be necessary.

The scientific method also refers to the fact that science is ongoing . In some cases scientists continue to collect data to prove and disprove old theories. Or in other cases, scientists have hypothesis for why the universe behaves the way it does but are unable to gather sufficient data to prove their hypothesis. For instance, until recent discoveries at LIGO scientists could not confirm what happened when two black holes collided, although they believed (and it was confirmed in February 2016) that colliding black holes produced gravitational waves .

Six Steps of the Scientific Method

Learn What Makes Each Stage Important

ThoughtCo. / Hugo Lin 

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

The scientific method is a systematic way of learning about the world around us and answering questions. The key difference between the scientific method and other ways of acquiring knowledge are forming a hypothesis and then testing it with an experiment.

The Six Steps

The number of steps can vary from one description to another (which mainly happens when data and analysis are separated into separate steps), however, this is a fairly standard list of the six scientific method steps that you are expected to know for any science class:

  • Purpose/Question Ask a question.
  • Research Conduct background research. Write down your sources so you can cite your references. In the modern era, a lot of your research may be conducted online. Scroll to the bottom of articles to check the references. Even if you can't access the full text of a published article, you can usually view the abstract to see the summary of other experiments. Interview experts on a topic. The more you know about a subject, the easier it will be to conduct your investigation.
  • Hypothesis Propose a hypothesis . This is a sort of educated guess about what you expect. It is a statement used to predict the outcome of an experiment. Usually, a hypothesis is written in terms of cause and effect. Alternatively, it may describe the relationship between two phenomena. One type of hypothesis is the null hypothesis or the no-difference hypothesis. This is an easy type of hypothesis to test because it assumes changing a variable will have no effect on the outcome. In reality, you probably expect a change but rejecting a hypothesis may be more useful than accepting one.
  • Experiment Design and perform an experiment to test your hypothesis. An experiment has an independent and dependent variable. You change or control the independent variable and record the effect it has on the dependent variable . It's important to change only one variable for an experiment rather than try to combine the effects of variables in an experiment. For example, if you want to test the effects of light intensity and fertilizer concentration on the growth rate of a plant, you're really looking at two separate experiments.
  • Data/Analysis Record observations and analyze the meaning of the data. Often, you'll prepare a table or graph of the data. Don't throw out data points you think are bad or that don't support your predictions. Some of the most incredible discoveries in science were made because the data looked wrong! Once you have the data, you may need to perform a mathematical analysis to support or refute your hypothesis.
  • Conclusion Conclude whether to accept or reject your hypothesis. There is no right or wrong outcome to an experiment, so either result is fine. Accepting a hypothesis does not necessarily mean it's correct! Sometimes repeating an experiment may give a different result. In other cases, a hypothesis may predict an outcome, yet you might draw an incorrect conclusion. Communicate your results. The results may be compiled into a lab report or formally submitted as a paper. Whether you accept or reject the hypothesis, you likely learned something about the subject and may wish to revise the original hypothesis or form a new one for a future experiment.

When Are There Seven Steps?

Sometimes the scientific method is taught with seven steps instead of six. In this model, the first step of the scientific method is to make observations. Really, even if you don't make observations formally, you think about prior experiences with a subject in order to ask a question or solve a problem.

Formal observations are a type of brainstorming that can help you find an idea and form a hypothesis. Observe your subject and record everything about it. Include colors, timing, sounds, temperatures, changes, behavior, and anything that strikes you as interesting or significant.

When you design an experiment, you are controlling and measuring variables. There are three types of variables:

  • Controlled Variables:  You can have as many  controlled variables  as you like. These are parts of the experiment that you try to keep constant throughout an experiment so that they won't interfere with your test. Writing down controlled variables is a good idea because it helps make your experiment  reproducible , which is important in science! If you have trouble duplicating results from one experiment to another, there may be a controlled variable that you missed.
  • Independent Variable:  This is the variable you control.
  • Dependent Variable:  This is the variable you measure. It is called the dependent variable because it  depends  on the independent variable.
  • Examples of Independent and Dependent Variables
  • Null Hypothesis Examples
  • Difference Between Independent and Dependent Variables
  • Scientific Method Flow Chart
  • What Is an Experiment? Definition and Design
  • How To Design a Science Fair Experiment
  • What Is a Hypothesis? (Science)
  • Scientific Variable
  • What Are the Elements of a Good Hypothesis?
  • Scientific Method Vocabulary Terms
  • Understanding Simple vs Controlled Experiments
  • What Is a Variable in Science?
  • Null Hypothesis Definition and Examples
  • Independent Variable Definition and Examples
  • Scientific Method Lesson Plan

PrepScholar

Choose Your Test

Sat / act prep online guides and tips, the 6 scientific method steps and how to use them.

author image

General Education

feature_microscope-1

When you’re faced with a scientific problem, solving it can seem like an impossible prospect. There are so many possible explanations for everything we see and experience—how can you possibly make sense of them all? Science has a simple answer: the scientific method.

The scientific method is a method of asking and answering questions about the world. These guiding principles give scientists a model to work through when trying to understand the world, but where did that model come from, and how does it work?

In this article, we’ll define the scientific method, discuss its long history, and cover each of the scientific method steps in detail.

What Is the Scientific Method?

At its most basic, the scientific method is a procedure for conducting scientific experiments. It’s a set model that scientists in a variety of fields can follow, going from initial observation to conclusion in a loose but concrete format.

The number of steps varies, but the process begins with an observation, progresses through an experiment, and concludes with analysis and sharing data. One of the most important pieces to the scientific method is skepticism —the goal is to find truth, not to confirm a particular thought. That requires reevaluation and repeated experimentation, as well as examining your thinking through rigorous study.

There are in fact multiple scientific methods, as the basic structure can be easily modified.  The one we typically learn about in school is the basic method, based in logic and problem solving, typically used in “hard” science fields like biology, chemistry, and physics. It may vary in other fields, such as psychology, but the basic premise of making observations, testing, and continuing to improve a theory from the results remain the same.

body_history

The History of the Scientific Method

The scientific method as we know it today is based on thousands of years of scientific study. Its development goes all the way back to ancient Mesopotamia, Greece, and India.

The Ancient World

In ancient Greece, Aristotle devised an inductive-deductive process , which weighs broad generalizations from data against conclusions reached by narrowing down possibilities from a general statement. However, he favored deductive reasoning, as it identifies causes, which he saw as more important.

Aristotle wrote a great deal about logic and many of his ideas about reasoning echo those found in the modern scientific method, such as ignoring circular evidence and limiting the number of middle terms between the beginning of an experiment and the end. Though his model isn’t the one that we use today, the reliance on logic and thorough testing are still key parts of science today.

The Middle Ages

The next big step toward the development of the modern scientific method came in the Middle Ages, particularly in the Islamic world. Ibn al-Haytham, a physicist from what we now know as Iraq, developed a method of testing, observing, and deducing for his research on vision. al-Haytham was critical of Aristotle’s lack of inductive reasoning, which played an important role in his own research.

Other scientists, including Abū Rayhān al-Bīrūnī, Ibn Sina, and Robert Grosseteste also developed models of scientific reasoning to test their own theories. Though they frequently disagreed with one another and Aristotle, those disagreements and refinements of their methods led to the scientific method we have today.

Following those major developments, particularly Grosseteste’s work, Roger Bacon developed his own cycle of observation (seeing that something occurs), hypothesis (making a guess about why that thing occurs), experimentation (testing that the thing occurs), and verification (an outside person ensuring that the result of the experiment is consistent).

After joining the Franciscan Order, Bacon was granted a special commission to write about science; typically, Friars were not allowed to write books or pamphlets. With this commission, Bacon outlined important tenets of the scientific method, including causes of error, methods of knowledge, and the differences between speculative and experimental science. He also used his own principles to investigate the causes of a rainbow, demonstrating the method’s effectiveness.

Scientific Revolution

Throughout the Renaissance, more great thinkers became involved in devising a thorough, rigorous method of scientific study. Francis Bacon brought inductive reasoning further into the method, whereas Descartes argued that the laws of the universe meant that deductive reasoning was sufficient. Galileo’s research was also inductive reasoning-heavy, as he believed that researchers could not account for every possible variable; therefore, repetition was necessary to eliminate faulty hypotheses and experiments.

All of this led to the birth of the Scientific Revolution , which took place during the sixteenth and seventeenth centuries. In 1660, a group of philosophers and physicians joined together to work on scientific advancement. After approval from England’s crown , the group became known as the Royal Society, which helped create a thriving scientific community and an early academic journal to help introduce rigorous study and peer review.

Previous generations of scientists had touched on the importance of induction and deduction, but Sir Isaac Newton proposed that both were equally important. This contribution helped establish the importance of multiple kinds of reasoning, leading to more rigorous study.

As science began to splinter into separate areas of study, it became necessary to define different methods for different fields. Karl Popper was a leader in this area—he established that science could be subject to error, sometimes intentionally. This was particularly tricky for “soft” sciences like psychology and social sciences, which require different methods. Popper’s theories furthered the divide between sciences like psychology and “hard” sciences like chemistry or physics.

Paul Feyerabend argued that Popper’s methods were too restrictive for certain fields, and followed a less restrictive method hinged on “anything goes,” as great scientists had made discoveries without the Scientific Method. Feyerabend suggested that throughout history scientists had adapted their methods as necessary, and that sometimes it would be necessary to break the rules. This approach suited social and behavioral scientists particularly well, leading to a more diverse range of models for scientists in multiple fields to use.

body_experiment-3

The Scientific Method Steps

Though different fields may have variations on the model, the basic scientific method is as follows:

#1: Make Observations 

Notice something, such as the air temperature during the winter, what happens when ice cream melts, or how your plants behave when you forget to water them.

#2: Ask a Question

Turn your observation into a question. Why is the temperature lower during the winter? Why does my ice cream melt? Why does my toast always fall butter-side down?

This step can also include doing some research. You may be able to find answers to these questions already, but you can still test them!

#3: Make a Hypothesis

A hypothesis is an educated guess of the answer to your question. Why does your toast always fall butter-side down? Maybe it’s because the butter makes that side of the bread heavier.

A good hypothesis leads to a prediction that you can test, phrased as an if/then statement. In this case, we can pick something like, “If toast is buttered, then it will hit the ground butter-first.”

#4: Experiment

Your experiment is designed to test whether your predication about what will happen is true. A good experiment will test one variable at a time —for example, we’re trying to test whether butter weighs down one side of toast, making it more likely to hit the ground first.

The unbuttered toast is our control variable. If we determine the chance that a slice of unbuttered toast, marked with a dot, will hit the ground on a particular side, we can compare those results to our buttered toast to see if there’s a correlation between the presence of butter and which way the toast falls.

If we decided not to toast the bread, that would be introducing a new question—whether or not toasting the bread has any impact on how it falls. Since that’s not part of our test, we’ll stick with determining whether the presence of butter has any impact on which side hits the ground first.

#5: Analyze Data

After our experiment, we discover that both buttered toast and unbuttered toast have a 50/50 chance of hitting the ground on the buttered or marked side when dropped from a consistent height, straight down. It looks like our hypothesis was incorrect—it’s not the butter that makes the toast hit the ground in a particular way, so it must be something else.

Since we didn’t get the desired result, it’s back to the drawing board. Our hypothesis wasn’t correct, so we’ll need to start fresh. Now that you think about it, your toast seems to hit the ground butter-first when it slides off your plate, not when you drop it from a consistent height. That can be the basis for your new experiment.

#6: Communicate Your Results

Good science needs verification. Your experiment should be replicable by other people, so you can put together a report about how you ran your experiment to see if other peoples’ findings are consistent with yours.

This may be useful for class or a science fair. Professional scientists may publish their findings in scientific journals, where other scientists can read and attempt their own versions of the same experiments. Being part of a scientific community helps your experiments be stronger because other people can see if there are flaws in your approach—such as if you tested with different kinds of bread, or sometimes used peanut butter instead of butter—that can lead you closer to a good answer.

body_toast-1

A Scientific Method Example: Falling Toast

We’ve run through a quick recap of the scientific method steps, but let’s look a little deeper by trying again to figure out why toast so often falls butter side down.

#1: Make Observations

At the end of our last experiment, where we learned that butter doesn’t actually make toast more likely to hit the ground on that side, we remembered that the times when our toast hits the ground butter side first are usually when it’s falling off a plate.

The easiest question we can ask is, “Why is that?”

We can actually search this online and find a pretty detailed answer as to why this is true. But we’re budding scientists—we want to see it in action and verify it for ourselves! After all, good science should be replicable, and we have all the tools we need to test out what’s really going on.

Why do we think that buttered toast hits the ground butter-first? We know it’s not because it’s heavier, so we can strike that out. Maybe it’s because of the shape of our plate?

That’s something we can test. We’ll phrase our hypothesis as, “If my toast slides off my plate, then it will fall butter-side down.”

Just seeing that toast falls off a plate butter-side down isn’t enough for us. We want to know why, so we’re going to take things a step further—we’ll set up a slow-motion camera to capture what happens as the toast slides off the plate.

We’ll run the test ten times, each time tilting the same plate until the toast slides off. We’ll make note of each time the butter side lands first and see what’s happening on the video so we can see what’s going on.

When we review the footage, we’ll likely notice that the bread starts to flip when it slides off the edge, changing how it falls in a way that didn’t happen when we dropped it ourselves.

That answers our question, but it’s not the complete picture —how do other plates affect how often toast hits the ground butter-first? What if the toast is already butter-side down when it falls? These are things we can test in further experiments with new hypotheses!

Now that we have results, we can share them with others who can verify our results. As mentioned above, being part of the scientific community can lead to better results. If your results were wildly different from the established thinking about buttered toast, that might be cause for reevaluation. If they’re the same, they might lead others to make new discoveries about buttered toast. At the very least, you have a cool experiment you can share with your friends!

Key Scientific Method Tips

Though science can be complex, the benefit of the scientific method is that it gives you an easy-to-follow means of thinking about why and how things happen. To use it effectively, keep these things in mind!

Don’t Worry About Proving Your Hypothesis

One of the important things to remember about the scientific method is that it’s not necessarily meant to prove your hypothesis right. It’s great if you do manage to guess the reason for something right the first time, but the ultimate goal of an experiment is to find the true reason for your observation to occur, not to prove your hypothesis right.

Good science sometimes means that you’re wrong. That’s not a bad thing—a well-designed experiment with an unanticipated result can be just as revealing, if not more, than an experiment that confirms your hypothesis.

Be Prepared to Try Again

If the data from your experiment doesn’t match your hypothesis, that’s not a bad thing. You’ve eliminated one possible explanation, which brings you one step closer to discovering the truth.

The scientific method isn’t something you’re meant to do exactly once to prove a point. It’s meant to be repeated and adapted to bring you closer to a solution. Even if you can demonstrate truth in your hypothesis, a good scientist will run an experiment again to be sure that the results are replicable. You can even tweak a successful hypothesis to test another factor, such as if we redid our buttered toast experiment to find out whether different kinds of plates affect whether or not the toast falls butter-first. The more we test our hypothesis, the stronger it becomes!

What’s Next?

Want to learn more about the scientific method? These important high school science classes will no doubt cover it in a variety of different contexts.

Test your ability to follow the scientific method using these at-home science experiments for kids !

Need some proof that science is fun? Try making slime

author image

Melissa Brinks graduated from the University of Washington in 2014 with a Bachelor's in English with a creative writing emphasis. She has spent several years tutoring K-12 students in many subjects, including in SAT prep, to help them prepare for their college education.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

Improve With Our Famous Guides

  • For All Students

The 5 Strategies You Must Be Using to Improve 160+ SAT Points

How to Get a Perfect 1600, by a Perfect Scorer

Series: How to Get 800 on Each SAT Section:

Score 800 on SAT Math

Score 800 on SAT Reading

Score 800 on SAT Writing

Series: How to Get to 600 on Each SAT Section:

Score 600 on SAT Math

Score 600 on SAT Reading

Score 600 on SAT Writing

Free Complete Official SAT Practice Tests

What SAT Target Score Should You Be Aiming For?

15 Strategies to Improve Your SAT Essay

The 5 Strategies You Must Be Using to Improve 4+ ACT Points

How to Get a Perfect 36 ACT, by a Perfect Scorer

Series: How to Get 36 on Each ACT Section:

36 on ACT English

36 on ACT Math

36 on ACT Reading

36 on ACT Science

Series: How to Get to 24 on Each ACT Section:

24 on ACT English

24 on ACT Math

24 on ACT Reading

24 on ACT Science

What ACT target score should you be aiming for?

ACT Vocabulary You Must Know

ACT Writing: 15 Tips to Raise Your Essay Score

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

Is the ACT easier than the SAT? A Comprehensive Guide

Should you retake your SAT or ACT?

When should you take the SAT or ACT?

Stay Informed

Follow us on Facebook (icon)

Get the latest articles and test prep tips!

Looking for Graduate School Test Prep?

Check out our top-rated graduate blogs here:

GRE Online Prep Blog

GMAT Online Prep Blog

TOEFL Online Prep Blog

Holly R. "I am absolutely overjoyed and cannot thank you enough for helping me!”

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons

Margin Size

  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

1.1.6: Scientific Problem Solving

  • Last updated
  • Save as PDF
  • Page ID 419240

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

How can we use problem solving in our everyday routines?

One day you wake up and realize your clock radio did not turn on to get you out of bed. You are puzzled, so you decide to find out what happened. You list three possible explanations:

  • There was a power failure and your radio cannot turn on.
  • Your little sister turned it off as a joke.
  • You did not set the alarm last night.

Upon investigation, you find that the clock is on, so there is no power failure. Your little sister was spending the night with a friend and could not have turned the alarm off. You notice that the alarm is not set—your forgetfulness made you late. You have used the scientific method to answer a question.

Scientific Problem Solving

Humans have always wondered about the world around them. One of the questions of interest was (and still is): what is this world made of? Chemistry has been defined in various ways as the study of matter. What matter consists of has been a source of debate over the centuries. One of the key areas for this debate in the Western world was Greek philosophy.

The basic approach of the Greek philosophers was to discuss and debate the questions they had about the world. There was no gathering of information to speak of, just talking. As a result, several ideas about matter were put forth, but never resolved. The first philosopher to carry out the gathering of data was Aristotle (384-322 B.C.). He recorded many observations on the weather, on plant and animal life and behavior, on physical motions, and a number of other topics. Aristotle could probably be considered the first "real" scientist, because he made systematic observations of nature and tried to understand what he was seeing.

Picture of Aristotle

Inductive and Deductive Reasoning

Two approaches to logical thinking developed over the centuries. These two methods are inductive reasoning and deductive reasoning . Inductive reasoning involves getting a collection of specific examples and drawing a general conclusion from them. Deductive reasoning takes a general principle and then draws a specific conclusion from the general concept. Both are used in the development of scientific ideas.

Inductive reasoning first involves the collection of data: "If I add sodium metal to water, I observe a very violent reaction. Every time I repeat the process, I see the same thing happen." A general conclusion is drawn from these observations: the addition of sodium to water results in a violent reaction.

In deductive reasoning, a specific prediction is made based on a general principle. One general principle is that acids turn blue litmus paper red. Using the deductive reasoning process, one might predict: "If I have a bottle of liquid labeled 'acid', I expect the litmus paper to turn red when I immerse it in the liquid."

The Idea of the Experiment

Inductive reasoning is at the heart of what is now called the " scientific method ." In European culture, this approach was developed mainly by Francis Bacon (1561-1626), a British scholar. He advocated the use of inductive reasoning in every area of life, not just science. The scientific method, as developed by Bacon and others, involves several steps:

  • Ask a question - identify the problem to be considered.
  • Make observations - gather data that pertains to the question.
  • Propose an explanation (a hypothesis) for the observations.
  • Make new observations to test the hypothesis further.

Picture of Sir Francis Bacon

Note that this should not be considered a "cookbook" for scientific research. Scientists do not sit down with their daily "to do" list and write down these steps. The steps may not necessarily be followed in order. But this does provide a general idea of how scientific research is usually done.

When a hypothesis is confirmed repeatedly, it eventually becomes a theory—a general principle that is offered to explain natural phenomena. Note a key word— explain , or  explanation . A theory offers a description of why something happens. A law, on the other hand, is a statement that is always true, but offers no explanation as to why. The law of gravity says a rock will fall when dropped, but does not explain why (gravitational theory is very complex and incomplete at present). The kinetic molecular theory of gases, on the other hand, states what happens when a gas is heated in a closed container (the pressure increases), but also explains why (the motions of the gas molecules are increased due to the change in temperature). Theories do not get "promoted" to laws, because laws do not answer the "why" question.

  • The early Greek philosophers spent their time talking about nature, but did little or no actual exploration or investigation.
  • Inductive reasoning - to develop a general conclusion from a collection of observations.
  • Deductive reasoning - to make a specific statement based on a general principle.
  • Scientific method - a process of observation, developing a hypothesis, and testing that hypothesis.
  • What was the basic shortcoming of the Greek philosophers approach to studying the material world?
  • How did Aristotle improve the approach?
  • Define “inductive reasoning” and give an example.
  • Define “deductive reasoning” and give an example.
  • What is the difference between a hypothesis and a theory?
  • What is the difference between a theory and a law?

What Are The Steps Of The Scientific Method?

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Science is not just knowledge. It is also a method for obtaining knowledge. Scientific understanding is organized into theories.

The scientific method is a step-by-step process used by researchers and scientists to determine if there is a relationship between two or more variables. Psychologists use this method to conduct psychological research, gather data, process information, and describe behaviors.

It involves careful observation, asking questions, formulating hypotheses, experimental testing, and refining hypotheses based on experimental findings.

How it is Used

The scientific method can be applied broadly in science across many different fields, such as chemistry, physics, geology, and psychology. In a typical application of this process, a researcher will develop a hypothesis, test this hypothesis, and then modify the hypothesis based on the outcomes of the experiment.

The process is then repeated with the modified hypothesis until the results align with the observed phenomena. Detailed steps of the scientific method are described below.

Keep in mind that the scientific method does not have to follow this fixed sequence of steps; rather, these steps represent a set of general principles or guidelines.

7 Steps of the Scientific Method

Psychology uses an empirical approach.

Empiricism (founded by John Locke) states that the only source of knowledge comes through our senses – e.g., sight, hearing, touch, etc.

Empirical evidence does not rely on argument or belief. Thus, empiricism is the view that all knowledge is based on or may come from direct observation and experience.

The empiricist approach of gaining knowledge through experience quickly became the scientific approach and greatly influenced the development of physics and chemistry in the 17th and 18th centuries.

Steps of the Scientific Method

Step 1: Make an Observation (Theory Construction)

Every researcher starts at the very beginning. Before diving in and exploring something, one must first determine what they will study – it seems simple enough!

By making observations, researchers can establish an area of interest. Once this topic of study has been chosen, a researcher should review existing literature to gain insight into what has already been tested and determine what questions remain unanswered.

This assessment will provide helpful information about what has already been comprehended about the specific topic and what questions remain, and if one can go and answer them.

Specifically, a literature review might implicate examining a substantial amount of documented material from academic journals to books dating back decades. The most appropriate information gathered by the researcher will be shown in the introduction section or abstract of the published study results.

The background material and knowledge will help the researcher with the first significant step in conducting a psychology study, which is formulating a research question.

This is the inductive phase of the scientific process. Observations yield information that is used to formulate theories as explanations. A theory is a well-developed set of ideas that propose an explanation for observed phenomena.

Inductive reasoning moves from specific premises to a general conclusion. It starts with observations of phenomena in the natural world and derives a general law.

Step 2: Ask a Question

Once a researcher has made observations and conducted background research, the next step is to ask a scientific question. A scientific question must be defined, testable, and measurable.

A useful approach to develop a scientific question is: “What is the effect of…?” or “How does X affect Y?”

To answer an experimental question, a researcher must identify two variables: the independent and dependent variables.

The independent variable is the variable manipulated (the cause), and the dependent variable is the variable being measured (the effect).

An example of a research question could be, “Is handwriting or typing more effective for retaining information?” Answering the research question and proposing a relationship between the two variables is discussed in the next step.

Step 3: Form a Hypothesis (Make Predictions)

A hypothesis is an educated guess about the relationship between two or more variables. A hypothesis is an attempt to answer your research question based on prior observation and background research. Theories tend to be too complex to be tested all at once; instead, researchers create hypotheses to test specific aspects of a theory.

For example, a researcher might ask about the connection between sleep and educational performance. Do students who get less sleep perform worse on tests at school?

It is crucial to think about different questions one might have about a particular topic to formulate a reasonable hypothesis. It would help if one also considered how one could investigate the causalities.

It is important that the hypothesis is both testable against reality and falsifiable. This means that it can be tested through an experiment and can be proven wrong.

The falsification principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory to be considered scientific, it must be able to be tested and conceivably proven false.

To test a hypothesis, we first assume that there is no difference between the populations from which the samples were taken. This is known as the null hypothesis and predicts that the independent variable will not influence the dependent variable.

Examples of “if…then…” Hypotheses:

  • If one gets less than 6 hours of sleep, then one will do worse on tests than if one obtains more rest.
  • If one drinks lots of water before going to bed, one will have to use the bathroom often at night.
  • If one practices exercising and lighting weights, then one’s body will begin to build muscle.

The research hypothesis is often called the alternative hypothesis and predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Although one could state and write a scientific hypothesis in many ways, hypotheses are usually built like “if…then…” statements.

Step 4: Run an Experiment (Gather Data)

The next step in the scientific method is to test your hypothesis and collect data. A researcher will design an experiment to test the hypothesis and gather data that will either support or refute the hypothesis.

The exact research methods used to examine a hypothesis depend on what is being studied. A psychologist might utilize two primary forms of research, experimental research, and descriptive research.

The scientific method is objective in that researchers do not let preconceived ideas or biases influence the collection of data and is systematic in that experiments are conducted in a logical way.

Experimental Research

Experimental research is used to investigate cause-and-effect associations between two or more variables. This type of research systematically controls an independent variable and measures its effect on a specified dependent variable.

Experimental research involves manipulating an independent variable and measuring the effect(s) on the dependent variable. Repeating the experiment multiple times is important to confirm that your results are accurate and consistent.

One of the significant advantages of this method is that it permits researchers to determine if changes in one variable cause shifts in each other.

While experiments in psychology typically have many moving parts (and can be relatively complex), an easy investigation is rather fundamental. Still, it does allow researchers to specify cause-and-effect associations between variables.

Most simple experiments use a control group, which involves those who do not receive the treatment, and an experimental group, which involves those who do receive the treatment.

An example of experimental research would be when a pharmaceutical company wants to test a new drug. They give one group a placebo (control group) and the other the actual pill (experimental group).

Descriptive Research

Descriptive research is generally used when it is challenging or even impossible to control the variables in question. Examples of descriptive analysis include naturalistic observation, case studies , and correlation studies .

One example of descriptive research includes phone surveys that marketers often use. While they typically do not allow researchers to identify cause and effect, correlational studies are quite common in psychology research. They make it possible to spot associations between distinct variables and measure the solidity of those relationships.

Step 5: Analyze the Data and Draw Conclusions

Once a researcher has designed and done the investigation and collected sufficient data, it is time to inspect this gathered information and judge what has been found. Researchers can summarize the data, interpret the results, and draw conclusions based on this evidence using analyses and statistics.

Upon completion of the experiment, you can collect your measurements and analyze the data using statistics. Based on the outcomes, you will either reject or confirm your hypothesis.

Analyze the Data

So, how does a researcher determine what the results of their study mean? Statistical analysis can either support or refute a researcher’s hypothesis and can also be used to determine if the conclusions are statistically significant.

When outcomes are said to be “statistically significant,” it is improbable that these results are due to luck or chance. Based on these observations, investigators must then determine what the results mean.

An experiment will support a hypothesis in some circumstances, but sometimes it fails to be truthful in other cases.

What occurs if the developments of a psychology investigation do not endorse the researcher’s hypothesis? It does mean that the study was worthless. Simply because the findings fail to defend the researcher’s hypothesis does not mean that the examination is not helpful or instructive.

This kind of research plays a vital role in supporting scientists in developing unexplored questions and hypotheses to investigate in the future. After decisions have been made, the next step is to communicate the results with the rest of the scientific community.

This is an integral part of the process because it contributes to the general knowledge base and can assist other scientists in finding new research routes to explore.

If the hypothesis is not supported, a researcher should acknowledge the experiment’s results, formulate a new hypothesis, and develop a new experiment.

We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist that could refute a theory.

Draw Conclusions and Interpret the Data

When the empirical observations disagree with the hypothesis, a number of possibilities must be considered. It might be that the theory is incorrect, in which case it needs altering, so it fully explains the data.

Alternatively, it might be that the hypothesis was poorly derived from the original theory, in which case the scientists were expecting the wrong thing to happen.

It might also be that the research was poorly conducted, or used an inappropriate method, or there were factors in play that the researchers did not consider. This will begin the process of the scientific method again.

If the hypothesis is supported, the researcher can find more evidence to support their hypothesis or look for counter-evidence to strengthen their hypothesis further.

In either scenario, the researcher should share their results with the greater scientific community.

Step 6: Share Your Results

One of the final stages of the research cycle involves the publication of the research. Once the report is written, the researcher(s) may submit the work for publication in an appropriate journal.

Usually, this is done by writing up a study description and publishing the article in a professional or academic journal. The studies and conclusions of psychological work can be seen in peer-reviewed journals such as  Developmental Psychology , Psychological Bulletin, the  Journal of Social Psychology, and numerous others.

Scientists should report their findings by writing up a description of their study and any subsequent findings. This enables other researchers to build upon the present research or replicate the results.

As outlined by the American Psychological Association (APA), there is a typical structure of a journal article that follows a specified format. In these articles, researchers:

  • Supply a brief narrative and background on previous research
  • Give their hypothesis
  • Specify who participated in the study and how they were chosen
  • Provide operational definitions for each variable
  • Explain the measures and methods used to collect data
  • Describe how the data collected was interpreted
  • Discuss what the outcomes mean

A detailed record of psychological studies and all scientific studies is vital to clearly explain the steps and procedures used throughout the study. So that other researchers can try this experiment too and replicate the results.

The editorial process utilized by academic and professional journals guarantees that each submitted article undergoes a thorough peer review to help assure that the study is scientifically sound. Once published, the investigation becomes another piece of the current puzzle of our knowledge “base” on that subject.

This last step is important because all results, whether they supported or did not support the hypothesis, can contribute to the scientific community. Publication of empirical observations leads to more ideas that are tested against the real world, and so on. In this sense, the scientific process is circular.

The editorial process utilized by academic and professional journals guarantees that each submitted article undergoes a thorough peer review to help assure that the study is scientifically sound.

Once published, the investigation becomes another piece of the current puzzle of our knowledge “base” on that subject.

By replicating studies, psychologists can reduce errors, validate theories, and gain a stronger understanding of a particular topic.

Step 7: Repeat the Scientific Method (Iteration)

Now, if one’s hypothesis turns out to be accurate, find more evidence or find counter-evidence. If one’s hypothesis is false, create a new hypothesis or try again.

One may wish to revise their first hypothesis to make a more niche experiment to design or a different specific question to test.

The amazingness of the scientific method is that it is a comprehensive and straightforward process that scientists, and everyone, can utilize over and over again.

So, draw conclusions and repeat because the scientific method is never-ending, and no result is ever considered perfect.

The scientific method is a process of:

  • Making an observation.
  • Forming a hypothesis.
  • Making a prediction.
  • Experimenting to test the hypothesis.

The procedure of repeating the scientific method is crucial to science and all fields of human knowledge.

Further Information

  • Karl Popper – Falsification
  • Thomas – Kuhn Paradigm Shift
  • Positivism in Sociology: Definition, Theory & Examples
  • Is Psychology a Science?
  • Psychology as a Science (PDF)

List the 6 steps of the scientific methods in order

  • Make an observation (theory construction)
  • Ask a question. A scientific question must be defined, testable, and measurable.
  • Form a hypothesis (make predictions)
  • Run an experiment to test the hypothesis (gather data)
  • Analyze the data and draw conclusions
  • Share your results so that other researchers can make new hypotheses

What is the first step of the scientific method?

The first step of the scientific method is making an observation. This involves noticing and describing a phenomenon or group of phenomena that one finds interesting and wishes to explain.

Observations can occur in a natural setting or within the confines of a laboratory. The key point is that the observation provides the initial question or problem that the rest of the scientific method seeks to answer or solve.

What is the scientific method?

The scientific method is a step-by-step process that investigators can follow to determine if there is a causal connection between two or more variables.

Psychologists and other scientists regularly suggest motivations for human behavior. On a more casual level, people judge other people’s intentions, incentives, and actions daily.

While our standard assessments of human behavior are subjective and anecdotal, researchers use the scientific method to study psychology objectively and systematically.

All utilize a scientific method to study distinct aspects of people’s thinking and behavior. This process allows scientists to analyze and understand various psychological phenomena, but it also provides investigators and others a way to disseminate and debate the results of their studies.

The outcomes of these studies are often noted in popular media, which leads numerous to think about how or why researchers came to the findings they did.

Why Use the Six Steps of the Scientific Method

The goal of scientists is to understand better the world that surrounds us. Scientific research is the most critical tool for navigating and learning about our complex world.

Without it, we would be compelled to rely solely on intuition, other people’s power, and luck. We can eliminate our preconceived concepts and superstitions through methodical scientific research and gain an objective sense of ourselves and our world.

All psychological studies aim to explain, predict, and even control or impact mental behaviors or processes. So, psychologists use and repeat the scientific method (and its six steps) to perform and record essential psychological research.

So, psychologists focus on understanding behavior and the cognitive (mental) and physiological (body) processes underlying behavior.

In the real world, people use to understand the behavior of others, such as intuition and personal experience. The hallmark of scientific research is evidence to support a claim.

Scientific knowledge is empirical, meaning it is grounded in objective, tangible evidence that can be observed repeatedly, regardless of who is watching.

The scientific method is crucial because it minimizes the impact of bias or prejudice on the experimenter. Regardless of how hard one tries, even the best-intentioned scientists can’t escape discrimination. can’t

It stems from personal opinions and cultural beliefs, meaning any mortal filters data based on one’s experience. Sadly, this “filtering” process can cause a scientist to favor one outcome over another.

For an everyday person trying to solve a minor issue at home or work, succumbing to these biases is not such a big deal; in fact, most times, it is important.

But in the scientific community, where results must be inspected and reproduced, bias or discrimination must be avoided.

When to Use the Six Steps of the Scientific Method ?

One can use the scientific method anytime, anywhere! From the smallest conundrum to solving global problems, it is a process that can be applied to any science and any investigation.

Even if you are not considered a “scientist,” you will be surprised to know that people of all disciplines use it for all kinds of dilemmas.

Try to catch yourself next time you come by a question and see how you subconsciously or consciously use the scientific method.

Print Friendly, PDF & Email

Related Articles

Metasynthesis Of Qualitative Research

Research Methodology

Metasynthesis Of Qualitative Research

Grounded Theory In Qualitative Research: A Practical Guide

Grounded Theory In Qualitative Research: A Practical Guide

Qualitative Data Coding

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

The scientific method is arguably one of the most powerful, if not the most powerful methodology in critical thinking for discovering how things work.

For centuries, scientists, engineers, mathematicians, and others have used this method to advance the human knowledge base.

The scientific method uses hypothesis, prediction, controlled experiment, observation, and potential conclusions (possible solutions).

With this method scientist are able to discover many things.


For example, Marie Curie helped pioneer the discovery of radioactivity (the detection of radium is considered as the second most important chemical element—oxygen being first).

Curie also helped provide the groundwork for nuclear medicine and the discovery of the structure of the atom.

Another example of using scientific method comes from work done in the jungle. Jane Goodall is an English behaviorist who worked with and learned about chimpanzees (Homo sapiens’ closest relatives) at the Gombe Stream Reserve in Tanzania Africa. Her discoveries were revolutionary.

She was able to show that chimpanzees hunt, approximate language and engage in warfare. Goodall also discovered that chimpanzees make and use tools. Previously, tool making was thought to be a human defining characteristic.#1



Scientists learn from the experiences of those before them. If a new hypothesis (theory) is found to be more accurate than a previous theory, then that new theory becomes the accepted norm.

The scientist who came up with the previous theory isn’t thought of less. He or she is thought of as having helped other scientists to learn better explanations to the way our world and the people in it operate.

To the true scientist the ultimate goal is to eliminate ego, politics and pride in order to discover the ultimate truths of the universe.

For example, Sir Isaac Newton’s explanation of the effects of gravity was accepted as truth until Albert Einstein improved upon Newton’s theory and also explained why gravity works the way it does. Einstein’s theory of gravity is still the accepted theory for large objects. Einstein used Newton’s ground work as his starting point.

Einstein continued his work in physics making major discoveries in relativity, gravity, space, time, matter and energy. For the final decades of his life, Einstein worked on a unified field theory to explain and relate the physical world of the very large and of the very small (quantum mechanics).

He never discovered a satisfactory answer to a theory how everything behaves in the physical universe. Eventually someone may. When (if) someone does, that person (or people) will get the credit. However, Einstein did significant groundwork towards that goal.

"Imagination is more important than knowledge. Knowledge is limited. Imagination encircles the world." ~ Albert Einstein


#1 Curie and Jane Goodall, LHJ 100 Most Important Women of the Century 1999


100 Last-Day-of-School Activities Your Students Will Love!

What Are the Scientific Method Steps?

Explore with a well-organized and curious approach.

Text that says What Is the Scientific Method? on yellow background.

The scientific method not only teaches students how to conduct experiments, but it also enables them to think critically about processes that extend beyond science and into all aspects of their academic lives. Just like detectives, scientists, and explorers, students can use this scientific method structured-steps approach to explore, question, and discover. 

What is the scientific method?

What are the steps of the scientific method, how does the scientific method encourage critical thinking, how are the scientific method steps used in the classroom.

The scientific method is like a structured adventure for exploring the world that encourages discovery by finding answers and solving puzzles. With the scientific method steps, students get to ask questions, observe, make educated guesses (called hypotheses), run experiments, collect and organize data, draw sensible conclusions, and share what they’ve learned. Students can explore the natural world with a well-organized and curious approach. 

The scientific method steps can vary by name, but the process as a whole is the same across grade levels. There are as many as seven steps, but sometimes they are combined. Below are six steps that make the process accessible to younger learners.

1. Question

Encourage students to ask why, what, when, where, or how about a particular phenomenon or topic. Get them wondering about something that they find interesting or have a passion for. 

2. Research

Teach them to use their senses to gather information and make notes—for example, what are they seeing, hearing, etc.

3. Hypothesize

Based on observations, students will then make a hypothesis, which is an educated guess—it’s what they think will happen in an experiment. 

4. Experiment

To test their hypothesis, students can conduct an investigation or experiment and collect data. Data collection can involve charts, graphs, and observations.

Students can then look at the results of their experiment and interpret what that means in the grand scheme of their original question. From the data collected, students can then apply the new knowledge to their original question. 

Just like real scientists, students can communicate their findings with their classmates in a presentation, lab write-up, and many other ways. 

Be sure to check out our free printable scientific method posters and free scientific method steps printable .

The scientific method fosters critical thinking in students by promoting curiosity, observation, hypothesis formation, problem-solving, data analysis, logical reasoning, and effective communication. This structured approach equips students with vital skills for science and everyday life, while also promoting open-mindedness, adaptability, and reflective thinking, enhancing their critical thinking abilities across various situations.

The scientific method isn’t just about experiments, it’s a valuable tool that helps students become critical thinkers in all areas of their studies. From forming hypotheses to conducting experiments and sharing findings, it equips them with important skills. Plus, it encourages open-mindedness and adaptability. By using the scientific method, students start a lifelong adventure of learning and solving problems.

Even students as young as kindergarten can begin learning and exploring the scientific method steps. Plus, the scientific method is used all the way through high school and beyond, so it’s not a one-and-done skill. If you’re looking for hands-on ways for students to practice the scientific method, we compiled science experiments, labs, and demonstrations for elementary through middle school teachers to share with their students:

Free Printable Scientific Method Worksheet

Scientific Method Worksheet Feature 1

This worksheet includes space for students to fill in every step of the scientific inquiry process along with prompts to ensure they stay on track. 

Free Printable Scientific Method Posters

scientific method posters feature

Looking for a visual aid to help your students remember the steps to the scientific method? Get our free printable scientific method posters.

Unleash the power of the scientific method in elementary and middle school with examples of scientific method steps and free printables.

You Might Also Like

Scientific Method Worksheet Feature 1

Grab Your Free Scientific Method Worksheet Printable

Supercharge scientific inquiry. Continue Reading

Copyright © 2024. All rights reserved. 5335 Gate Parkway, Jacksonville, FL 32256

SEP home page

Bibliography

Academic tools.

Scientific Discovery

Scientific discovery is the process or product of successful scientific inquiry. Objects of discovery can be things, events, processes, causes, and properties as well as theories and hypotheses and their features (their explanatory power, for example). Most philosophical discussions of scientific discoveries focus on the generation of new hypotheses that fit or explain given data sets or allow for the derivation of testable consequences. Philosophical discussions of scientific discovery have been intricate and complex because the term “discovery” has been used in many different ways, both to refer to the outcome and to the procedure of inquiry. In the narrowest sense, the term “discovery” refers to the purported “eureka moment” of having a new insight. In the broadest sense, “discovery” is a synonym for “successful scientific endeavor” tout court. Some philosophical disputes about the nature of scientific discovery reflect these terminological variations.

Philosophical issues related to scientific discovery arise about the nature of human creativity, specifically about whether the “eureka moment” can be analyzed and about whether there are rules (algorithms, guidelines, or heuristics) according to which such a novel insight can be brought about. Philosophical issues also arise about the analysis and evaluation of heuristics, about the characteristics of hypotheses worthy of articulation and testing, and, on the meta-level, about the nature and scope of philosophical analysis itself. This essay describes the emergence and development of the philosophical problem of scientific discovery and surveys different philosophical approaches to understanding scientific discovery. In doing so, it also illuminates the meta-philosophical problems surrounding the debates, and, incidentally, the changing nature of philosophy of science.

1. Introduction

2. scientific inquiry as discovery, 3. elements of discovery, 4. pragmatic logics of discovery, 5. the distinction between the context of discovery and the context of justification, 6.1 discovery as abduction, 6.2 heuristic programming, 7. anomalies and the structure of discovery, 8.1 discoverability, 8.2 preliminary appraisal, 8.3 heuristic strategies, 9.1 kinds and features of creativity, 9.2 analogy, 9.3 mental models, 10. machine discovery, 11. social epistemology and discovery, 12. integrated approaches to knowledge generation, other internet resources, related entries.

Philosophical reflection on scientific discovery occurred in different phases. Prior to the 1930s, philosophers were mostly concerned with discoveries in the broad sense of the term, that is, with the analysis of successful scientific inquiry as a whole. Philosophical discussions focused on the question of whether there were any discernible patterns in the production of new knowledge. Because the concept of discovery did not have a specified meaning and was used in a very wide sense, almost all discussions of scientific method and practice could potentially be considered as early contributions to reflections on scientific discovery. In the course of the 18 th century, as philosophy of science and science gradually became two distinct endeavors with different audiences, the term “discovery” became a technical term in philosophical discussions. Different elements of scientific inquiry were specified. Most importantly, during the 19 th century, the generation of new knowledge came to be clearly and explicitly distinguished from its assessment, and thus the conditions for the narrower notion of discovery as the act or process of conceiving new ideas emerged. This distinction was encapsulated in the so-called “context distinction,” between the “context of discovery” and the “context of justification”.

Much of the discussion about scientific discovery in the 20 th century revolved around this distinction It was argued that conceiving a new idea is a non-rational process, a leap of insight that cannot be captured in specific instructions. Justification, by contrast, is a systematic process of applying evaluative criteria to knowledge claims. Advocates of the context distinction argued that philosophy of science is exclusively concerned with the context of justification. The assumption underlying this argument is that philosophy is a normative project; it determines norms for scientific practice. Given this assumption, only the justification of ideas, not their generation, can be the subject of philosophical (normative) analysis. Discovery, by contrast, can only be a topic for empirical study. By definition, the study of discovery is outside the scope of philosophy of science proper.

The introduction of the context distinction and the disciplinary distinction between empirical science studies and normative philosophy of science that was tied to it spawned meta-philosophical disputes. For a long time, philosophical debates about discovery were shaped by the notion that philosophical and empirical analyses are mutually exclusive. Some philosophers insisted, like their predecessors prior to the 1930s, that the philosopher’s tasks include the analysis of actual scientific practices and that scientific resources be used to address philosophical problems. They maintained that it is a legitimate task for philosophy of science to develop a theory of heuristics or problem solving. But this position was the minority view in philosophy of science until the last decades of the 20 th century. Philosophers of discovery were thus compelled to demonstrate that scientific discovery was in fact a legitimate part of philosophy of science. Philosophical reflections about the nature of scientific discovery had to be bolstered by meta-philosophical arguments about the nature and scope of philosophy of science.

Today, however, there is wide agreement that philosophy and empirical research are not mutually exclusive. Not only do empirical studies of actual scientific discoveries in past and present inform philosophical thought about the structure and cognitive mechanisms of discovery, but works in psychology, cognitive science, artificial intelligence and related fields have become integral parts of philosophical analyses of the processes and conditions of the generation of new knowledge. Social epistemology has opened up another perspective on scientific discovery, reconceptualizing knowledge generation as group process.

Prior to the 19 th century, the term “discovery” was used broadly to refer to a new finding, such as a new cure, an unknown territory, an improvement of an instrument, or a new method of measuring longitude. One strand of the discussion about discovery dating back to ancient times concerns the method of analysis as the method of discovery in mathematics and geometry, and, by extension, in philosophy and scientific inquiry. Following the analytic method, we seek to find or discover something – the “thing sought,” which could be a theorem, a solution to a geometrical problem, or a cause – by analyzing it. In the ancient Greek context, analytic methods in mathematics, geometry, and philosophy were not clearly separated; the notion of finding or discovering things by analysis was relevant in all these fields.

In the ensuing centuries, several natural and experimental philosophers, including Avicenna and Zabarella, Bacon and Boyle, the authors of the Port-Royal Logic and Newton, and many others, expounded rules of reasoning and methods for arriving at new knowledge. The ancient notion of analysis still informed these rules and methods. Newton’s famous thirty-first query in the second edition of the Opticks outlines the role of analysis in discovery as follows: “As in Mathematicks, so in Natural Philosophy, the Investigation of difficult Things by the Method of Analysis, ought ever to precede the Method of Composition. This Analysis consists in making Experiments and Observations, and in drawing general Conclusions from them by Induction, and admitting of no Objections against the Conclusions, but such as are taken from Experiments, or other certain Truths … By this way of Analysis we may proceed from Compounds to Ingredients, and from Motions to the Forces producing them; and in general, from Effects to their Causes, and from particular Causes to more general ones, till the Argument end in the most general. This is the Method of Analysis” (Newton 1718, 380, see Koertge 1980, section VI). Early modern accounts of discovery captured knowledge-seeking practices in the study of living and non-living nature, ranging from astronomy and physics to medicine, chemistry, and agriculture. These rich accounts of scientific inquiry were often expounded to bolster particular theories about the nature of matter and natural forces and were not explicitly labeled “methods of discovery ”, yet they are, in fact, accounts of knowledge generation and proper scientific reasoning, covering topics such as the role of the senses in knowledge generation, observation and experimentation, analysis and synthesis, induction and deduction, hypotheses, probability, and certainty.

Bacon’s work is a prominent example. His view of the method of science as it is presented in the Novum Organum showed how best to arrive at knowledge about “form natures” (the most general properties of matter) via a systematic investigation of phenomenal natures. Bacon described how first to collect and organize natural phenomena and experimentally produced facts in tables, how to evaluate these lists, and how to refine the initial results with the help of further trials. Through these steps, the investigator would arrive at conclusions about the “form nature” that produces particular phenomenal natures. Bacon expounded the procedures of constructing and evaluating tables of presences and absences to underpin his matter theory. In addition, in his other writings, such as his natural history Sylva Sylvarum or his comprehensive work on human learning De Augmentis Scientiarium , Bacon exemplified the “art of discovery” with practical examples and discussions of strategies of inquiry.

Like Bacon and Newton, several other early modern authors advanced ideas about how to generate and secure empirical knowledge, what difficulties may arise in scientific inquiry, and how they could be overcome. The close connection between theories about matter and force and scientific methodologies that we find in early modern works was gradually severed. 18 th - and early 19 th -century authors on scientific method and logic cited early modern approaches mostly to model proper scientific practice and reasoning, often creatively modifying them ( section 3 ). Moreover, they developed the earlier methodologies of experimentation, observation, and reasoning into practical guidelines for discovering new phenomena and devising probable hypotheses about cause-effect relations.

It was common in 20 th -century philosophy of science to draw a sharp contrast between those early theories of scientific method and modern approaches. 20 th -century philosophers of science interpreted 17 th - and 18 th -century approaches as generative theories of scientific method. They function simultaneously as guides for acquiring new knowledge and as assessments of the knowledge thus obtained, whereby knowledge that is obtained “in the right way” is considered secure (Laudan 1980; Schaffner 1993: chapter 2). On this view, scientific methods are taken to have probative force (Nickles 1985). According to modern, “consequentialist” theories, propositions must be established by comparing their consequences with observed and experimentally produced phenomena (Laudan 1980; Nickles 1985). It was further argued that, when consequentialist theories were on the rise, the two processes of generation and assessment of an idea or hypothesis became distinct, and the view that the merit of a new idea does not depend on the way in which it was arrived at became widely accepted.

More recent research in history of philosophy of science has shown, however, that there was no such sharp contrast. Consequentialist ideas were advanced throughout the 18 th century, and the early modern generative theories of scientific method and knowledge were more pragmatic than previously assumed. Early modern scholars did not assume that this procedure would lead to absolute certainty. One could only obtain moral certainty for the propositions thus secured.

During the 18 th and 19 th centuries, the different elements of discovery gradually became separated and discussed in more detail. Discussions concerned the nature of observations and experiments, the act of having an insight and the processes of articulating, developing, and testing the novel insight. Philosophical discussion focused on the question of whether and to what extent rules could be devised to guide each of these processes.

Numerous 19 th -century scholars contributed to these discussions, including Claude Bernard, Auguste Comte, George Gore, John Herschel, W. Stanley Jevons, Justus von Liebig, John Stuart Mill, and Charles Sanders Peirce, to name only a few. William Whewell’s work, especially the two volumes of Philosophy of the Inductive Sciences of 1840, is a noteworthy and, later, much discussed contribution to the philosophical debates about scientific discovery because he explicitly distinguished the creative moment or “happy thought” as he called it from other elements of scientific inquiry and because he offered a detailed analysis of the “discoverer’s induction”, i.e., the pursuit and evaluation of the new insight. Whewell’s approach is not unique, but for late 20 th -century philosophers of science, his comprehensive, historically informed philosophy of discovery became a point of orientation in the revival of interest in scientific discovery processes.

For Whewell, discovery comprised three elements: the happy thought, the articulation and development of that thought, and the testing or verification of it. His account was in part a description of the psychological makeup of the discoverer. For instance, he held that only geniuses could have those happy thoughts that are essential to discovery. In part, his account was an account of the methods by which happy thoughts are integrated into the system of knowledge. According to Whewell, the initial step in every discovery is what he called “some happy thought, of which we cannot trace the origin; some fortunate cast of intellect, rising above all rules. No maxims can be given which inevitably lead to discovery” (Whewell 1996 [1840]: 186). An “art of discovery” in the sense of a teachable and learnable skill does not exist according to Whewell. The happy thought builds on the known facts, but according to Whewell it is impossible to prescribe a method for having happy thoughts.

In this sense, happy thoughts are accidental. But in an important sense, scientific discoveries are not accidental. The happy thought is not a wild guess. Only the person whose mind is prepared to see things will actually notice them. The “previous condition of the intellect, and not the single fact, is really the main and peculiar cause of the success. The fact is merely the occasion by which the engine of discovery is brought into play sooner or later. It is, as I have elsewhere said, only the spark which discharges a gun already loaded and pointed; and there is little propriety in speaking of such an accident as the cause why the bullet hits its mark.” (Whewell 1996 [1840]: 189).

Having a happy thought is not yet a discovery, however. The second element of a scientific discovery consists in binding together—“colligating”, as Whewell called it—a set of facts by bringing them under a general conception. Not only does the colligation produce something new, but it also shows the previously known facts in a new light. Colligation involves, on the one hand, the specification of facts through systematic observation, measurements and experiment, and on the other hand, the clarification of ideas through the exposition of the definitions and axioms that are tacitly implied in those ideas. This process is extended and iterative. The scientists go back and forth between binding together the facts, clarifying the idea, rendering the facts more exact, and so forth.

The final part of the discovery is the verification of the colligation involving the happy thought. This means, first and foremost, that the outcome of the colligation must be sufficient to explain the data at hand. Verification also involves judging the predictive power, simplicity, and “consilience” of the outcome of the colligation. “Consilience” refers to a higher range of generality (broader applicability) of the theory (the articulated and clarified happy thought) that the actual colligation produced. Whewell’s account of discovery is not a deductivist system. It is essential that the outcome of the colligation be inferable from the data prior to any testing (Snyder 1997).

Whewell’s theory of discovery clearly separates three elements: the non-analyzable happy thought or eureka moment; the process of colligation which includes the clarification and explication of facts and ideas; and the verification of the outcome of the colligation. His position that the philosophy of discovery cannot prescribe how to think happy thoughts has been a key element of 20 th -century philosophical reflection on discovery. In contrast to many 20 th -century approaches, Whewell’s philosophical conception of discovery also comprises the processes by which the happy thoughts are articulated. Similarly, the process of verification is an integral part of discovery. The procedures of articulation and test are both analyzable according to Whewell, and his conception of colligation and verification serve as guidelines for how the discoverer should proceed. To verify a hypothesis, the investigator needs to show that it accounts for the known facts, that it foretells new, previously unobserved phenomena, and that it can explain and predict phenomena which are explained and predicted by a hypothesis that was obtained through an independent happy thought-cum-colligation (Ducasse 1951).

Whewell’s conceptualization of scientific discovery offers a useful framework for mapping the philosophical debates about discovery and for identifying major issues of concern in 20 th -century philosophical debates. Until the late 20 th century, most philosophers operated with a notion of discovery that is narrower than Whewell’s. In more recent treatments of discovery, however, the scope of the term “discovery” is limited to either the first of these elements, the “happy thought”, or to the happy thought and its initial articulation. In the narrower conception, what Whewell called “verification” is not part of discovery proper. Secondly, until the late 20 th century, there was wide agreement that the eureka moment, narrowly construed, is an unanalyzable, even mysterious leap of insight. The main disagreements concerned the question of whether the process of developing a hypothesis (the “colligation” in Whewell’s terms) is, or is not, a part of discovery proper – and if it is, whether and how this process is guided by rules. Much of the controversies in the 20 th century about the possibility of a philosophy of discovery can be understood against the background of the disagreement about whether the process of discovery does or does not include the articulation and development of a novel thought. Philosophers also disagreed on the issue of whether it is a philosophical task to explicate these rules.

In early 20 th -century logical empiricism, the view that discovery is or at least crucially involves a non-analyzable creative act of a gifted genius was widespread. Alternative conceptions of discovery especially in the pragmatist tradition emphasize that discovery is an extended process, i.e., that the discovery process includes the reasoning processes through which a new insight is articulated and further developed.

In the pragmatist tradition, the term “logic” is used in the broad sense to refer to strategies of human reasoning and inquiry. While the reasoning involved does not proceed according to the principles of demonstrative logic, it is systematic enough to deserve the label “logical”. Proponents of this view argued that traditional (here: syllogistic) logic is an inadequate model of scientific discovery because it misrepresents the process of knowledge generation as grossly as the notion of an “aha moment”.

Early 20 th -century pragmatic logics of discovery can best be described as comprehensive theories of the mental and physical-practical operations involved in knowledge generation, as theories of “how we think” (Dewey 1910). Among the mental operations are classification, determination of what is relevant to an inquiry, and the conditions of communication of meaning; among the physical operations are observation and (laboratory) experiments. These features of scientific discovery are either not or only insufficiently represented by traditional syllogistic logic (Schiller 1917: 236–7).

Philosophers advocating this approach agree that the logic of discovery should be characterized as a set of heuristic principles rather than as a process of applying inductive or deductive logic to a set of propositions. These heuristic principles are not understood to show the path to secure knowledge. Heuristic principles are suggestive rather than demonstrative (Carmichael 1922, 1930). One recurrent feature in these accounts of the reasoning strategies leading to new ideas is analogical reasoning (Schiller 1917; Benjamin 1934, see also section 9.2 .). However, in academic philosophy of science, endeavors to develop more systematically the heuristics guiding discovery processes were soon eclipsed by the advance of the distinction between contexts of discovery and justification.

The distinction between “context of discovery” and “context of justification” dominated and shaped the discussions about discovery in 20 th -century philosophy of science. The context distinction marks the distinction between the generation of a new idea or hypothesis and the defense (test, verification) of it. As the previous sections have shown, the distinction among different elements of scientific inquiry has a long history but in the first half of the 20 th century, the distinction between the different features of scientific inquiry turned into a powerful demarcation criterion between “genuine” philosophy and other fields of science studies, which became potent in philosophy of science. The boundary between context of discovery (the de facto thinking processes) and context of justification (the de jure defense of the correctness of these thoughts) was now understood to determine the scope of philosophy of science, whereby philosophy of science is conceived as a normative endeavor. Advocates of the context distinction argue that the generation of a new idea is an intuitive, nonrational process; it cannot be subject to normative analysis. Therefore, the study of scientists’ actual thinking can only be the subject of psychology, sociology, and other empirical sciences. Philosophy of science, by contrast, is exclusively concerned with the context of justification.

The terms “context of discovery” and “context of justification” are often associated with Hans Reichenbach’s work. Reichenbach’s original conception of the context distinction is quite complex, however (Howard 2006; Richardson 2006). It does not map easily on to the disciplinary distinction mentioned above, because for Reichenbach, philosophy of science proper is partly descriptive. Reichenbach maintains that philosophy of science includes a description of knowledge as it really is. Descriptive philosophy of science reconstructs scientists’ thinking processes in such a way that logical analysis can be performed on them, and it thus prepares the ground for the evaluation of these thoughts (Reichenbach 1938: § 1). Discovery, by contrast, is the object of empirical—psychological, sociological—study. According to Reichenbach, the empirical study of discoveries shows that processes of discovery often correspond to the principle of induction, but this is simply a psychological fact (Reichenbach 1938: 403).

While the terms “context of discovery” and “context of justification” are widely used, there has been ample discussion about how the distinction should be drawn and what their philosophical significance is (c.f. Kordig 1978; Gutting 1980; Zahar 1983; Leplin 1987; Hoyningen-Huene 1987; Weber 2005: chapter 3; Schickore and Steinle 2006). Most commonly, the distinction is interpreted as a distinction between the process of conceiving a theory and the assessment of that theory, specifically the assessment of the theory’s epistemic support. This version of the distinction is not necessarily interpreted as a temporal distinction. In other words, it is not usually assumed that a theory is first fully developed and then assessed. Rather, generation and assessment are two different epistemic approaches to theory: the endeavor to articulate, flesh out, and develop its potential and the endeavor to assess its epistemic worth. Within the framework of the context distinction, there are two main ways of conceptualizing the process of conceiving a theory. The first option is to characterize the generation of new knowledge as an irrational act, a mysterious creative intuition, a “eureka moment”. The second option is to conceptualize the generation of new knowledge as an extended process that includes a creative act as well as some process of articulating and developing the creative idea.

Both of these accounts of knowledge generation served as starting points for arguments against the possibility of a philosophy of discovery. In line with the first option, philosophers have argued that neither is it possible to prescribe a logical method that produces new ideas nor is it possible to reconstruct logically the process of discovery. Only the process of testing is amenable to logical investigation. This objection to philosophies of discovery has been called the “discovery machine objection” (Curd 1980: 207). It is usually associated with Karl Popper’s Logic of Scientific Discovery .

The initial state, the act of conceiving or inventing a theory, seems to me neither to call for logical analysis not to be susceptible of it. The question how it happens that a new idea occurs to a man—whether it is a musical theme, a dramatic conflict, or a scientific theory—may be of great interest to empirical psychology; but it is irrelevant to the logical analysis of scientific knowledge. This latter is concerned not with questions of fact (Kant’s quid facti ?) , but only with questions of justification or validity (Kant’s quid juris ?) . Its questions are of the following kind. Can a statement be justified? And if so, how? Is it testable? Is it logically dependent on certain other statements? Or does it perhaps contradict them? […]Accordingly I shall distinguish sharply between the process of conceiving a new idea, and the methods and results of examining it logically. As to the task of the logic of knowledge—in contradistinction to the psychology of knowledge—I shall proceed on the assumption that it consists solely in investigating the methods employed in those systematic tests to which every new idea must be subjected if it is to be seriously entertained. (Popper 2002 [1934/1959]: 7–8)

With respect to the second way of conceptualizing knowledge generation, many philosophers argue in a similar fashion that because the process of discovery involves an irrational, intuitive process, which cannot be examined logically, a logic of discovery cannot be construed. Other philosophers turn against the philosophy of discovery even though they explicitly acknowledge that discovery is an extended, reasoned process. They present a meta-philosophical objection argument, arguing that a theory of articulating and developing ideas is not a philosophical but a psychological or sociological theory. In this perspective, “discovery” is understood as a retrospective label, which is attributed as a sign of accomplishment to some scientific endeavors. Sociological theories acknowledge that discovery is a collective achievement and the outcome of a process of negotiation through which “discovery stories” are constructed and certain knowledge claims are granted discovery status (Brannigan 1981; Schaffer 1986, 1994).

The impact of the context distinction on 20 th -century studies of scientific discovery and on philosophy of science more generally can hardly be overestimated. The view that the process of discovery (however construed) is outside the scope of philosophy of science proper was widely shared amongst philosophers of science for most of the 20 th century. The last section shows that there were some attempts to develop logics of discovery in the 1920s and 1930s, especially in the pragmatist tradition. But for several decades, the context distinction dictated what philosophy of science should be about and how it should proceed. The dominant view was that theories of mental operations or heuristics had no place in philosophy of science and that, therefore, discovery was not a legitimate topic for philosophy of science. Until the last decades of the 20 th century, there were few attempts to challenge the disciplinary distinction tied to the context distinction. Only during the 1970s did the interest in philosophical approaches to discovery begin to increase again. But the context distinction remained a challenge for philosophies of discovery.

There are several lines of response to the disciplinary distinction tied to the context distinction. Each of these lines of response opens a philosophical perspective on discovery. Each proceeds on the assumption that philosophy of science may legitimately include some form of analysis of actual reasoning patterns as well as information from empirical sciences such as cognitive science, psychology, and sociology. All of these responses reject the idea that discovery is nothing but a mystical event. Discovery is conceived as an analyzable reasoning process, not just as a creative leap by which novel ideas spring into being fully formed. All of these responses agree that the procedures and methods for arriving at new hypotheses and ideas are no guarantee that the hypothesis or idea that is thus formed is necessarily the best or the correct one. Nonetheless, it is the task of philosophy of science to provide rules for making this process better. All of these responses can be described as theories of problem solving, whose ultimate goal is to make the generation of new ideas and theories more efficient.

But the different approaches to scientific discovery employ different terminologies. In particular, the term “logic” of discovery is sometimes used in a narrow sense and sometimes broadly understood. In the narrow sense, “logic” of discovery is understood to refer to a set of formal, generally applicable rules by which novel ideas can be mechanically derived from existing data. In the broad sense, “logic” of discovery refers to the schematic representation of reasoning procedures. “Logical” is just another term for “rational”. Moreover, while each of these responses combines philosophical analyses of scientific discovery with empirical research on actual human cognition, different sets of resources are mobilized, ranging from AI research and cognitive science to historical studies of problem-solving procedures. Also, the responses parse the process of scientific inquiry differently. Often, scientific inquiry is regarded as having two aspects, viz. generation and assessments of new ideas. At times, however, scientific inquiry is regarded as having three aspects, namely generation, pursuit or articulation, and assessment of knowledge. In the latter framework, the label “discovery” is sometimes used to refer just to generation and sometimes to refer to both generation and pursuit.

One response to the challenge of the context distinction draws on a broad understanding of the term “logic” to argue that we cannot but admit a general, domain-neutral logic if we do not want to assume that the success of science is a miracle (Jantzen 2016) and that a logic of scientific discovery can be developed ( section 6 ). Another response, drawing on a narrow understanding of the term “logic”, is to concede that there is no logic of discovery, i.e., no algorithm for generating new knowledge, but that the process of discovery follows an identifiable, analyzable pattern ( section 7 ).

Others argue that discovery is governed by a methodology . The methodology of discovery is a legitimate topic for philosophical analysis ( section 8 ). Yet another response assumes that discovery is or at least involves a creative act. Drawing on resources from cognitive science, neuroscience, computational research, and environmental and social psychology, philosophers have sought to demystify the cognitive processes involved in the generation of new ideas. Philosophers who take this approach argue that scientific creativity is amenable to philosophical analysis ( section 9.1 ).

All these responses assume that there is more to discovery than a eureka moment. Discovery comprises processes of articulating, developing, and assessing the creative thought, as well as the scientific community’s adjudication of what does, and does not, count as “discovery” (Arabatzis 1996). These are the processes that can be examined with the tools of philosophical analysis, augmented by input from other fields of science studies such as sociology, history, or cognitive science.

6. Logics of discovery after the context distinction

One way of responding to the demarcation criterion described above is to argue that discovery is a topic for philosophy of science because it is a logical process after all. Advocates of this approach to the logic of discovery usually accept the overall distinction between the two processes of conceiving and testing a hypothesis. They also agree that it is impossible to put together a manual that provides a formal, mechanical procedure through which innovative concepts or hypotheses can be derived: There is no discovery machine. But they reject the view that the process of conceiving a theory is a creative act, a mysterious guess, a hunch, a more or less instantaneous and random process. Instead, they insist that both conceiving and testing hypotheses are processes of reasoning and systematic inference, that both of these processes can be represented schematically, and that it is possible to distinguish better and worse paths to new knowledge.

This line of argument has much in common with the logics of discovery described in section 4 above but it is now explicitly pitched against the disciplinary distinction tied to the context distinction. There are two main ways of developing this argument. The first is to conceive of discovery in terms of abductive reasoning ( section 6.1 ). The second is to conceive of discovery in terms of problem-solving algorithms, whereby heuristic rules aid the processing of available data and enhance the success in finding solutions to problems ( section 6.2 ). Both lines of argument rely on a broad conception of logic, whereby the “logic” of discovery amounts to a schematic account of the reasoning processes involved in knowledge generation.

One argument, elaborated prominently by Norwood R. Hanson, is that the act of discovery—here, the act of suggesting a new hypothesis—follows a distinctive logical pattern, which is different from both inductive logic and the logic of hypothetico-deductive reasoning. The special logic of discovery is the logic of abductive or “retroductive” inferences (Hanson 1958). The argument that it is through an act of abductive inferences that plausible, promising scientific hypotheses are devised goes back to C.S. Peirce. This version of the logic of discovery characterizes reasoning processes that take place before a new hypothesis is ultimately justified. The abductive mode of reasoning that leads to plausible hypotheses is conceptualized as an inference beginning with data or, more specifically, with surprising or anomalous phenomena.

In this view, discovery is primarily a process of explaining anomalies or surprising, astonishing phenomena. The scientists’ reasoning proceeds abductively from an anomaly to an explanatory hypothesis in light of which the phenomena would no longer be surprising or anomalous. The outcome of this reasoning process is not one single specific hypothesis but the delineation of a type of hypotheses that is worthy of further attention (Hanson 1965: 64). According to Hanson, the abductive argument has the following schematic form (Hanson 1960: 104):

Drawing on the historical record, Hanson argues that several important discoveries were made relying on abductive reasoning, such as Kepler’s discovery of the elliptic orbit of Mars (Hanson 1958). It is now widely agreed, however, that Hanson’s reconstruction of the episode is not a historically adequate account of Kepler’s discovery (Lugg 1985). More importantly, while there is general agreement that abductive inferences are frequent in both everyday and scientific reasoning, these inferences are no longer considered as logical inferences. Even if one accepts Hanson’s schematic representation of the process of identifying plausible hypotheses, this process is a “logical” process only in the widest sense whereby the term “logical” is understood as synonymous with “rational”. Notably, some philosophers have even questioned the rationality of abductive inferences (Koehler 1991; Brem and Rips 2000).

Another argument against the above schema is that it is too permissive. There will be several hypotheses that are explanations for phenomena p 1 , p 2 , p 3 …, so the fact that a particular hypothesis explains the phenomena is not a decisive criterion for developing that hypothesis (Harman 1965; see also Blackwell 1969). Additional criteria are required to evaluate the hypothesis yielded by abductive inferences.

Finally, it is worth noting that the schema of abductive reasoning does not explain the very act of conceiving a hypothesis or hypothesis-type. The processes by which a new idea is first articulated remain unanalyzed in the above schema. The schema focuses on the reasoning processes by which an exploratory hypothesis is assessed in terms of its merits and promise (Laudan 1980; Schaffner 1993).

In more recent work on abduction and discovery, two notions of abduction are sometimes distinguished: the common notion of abduction as inference to the best explanation (selective abduction) and creative abduction (Magnani 2000, 2009). Selective abduction—the inference to the best explanation—involves selecting a hypothesis from a set of known hypotheses. Medical diagnosis exemplifies this kind of abduction. Creative abduction, by contrast, involves generating a new, plausible hypothesis. This happens, for instance, in medical research, when the notion of a new disease is articulated. However, it is still an open question whether this distinction can be drawn, or whether there is a more gradual transition from selecting an explanatory hypothesis from a familiar domain (selective abduction) to selecting a hypothesis that is slightly modified from the familiar set and to identifying a more drastically modified or altered assumption.

Another recent suggestion is to broaden Peirce’s original account of abduction and to include not only verbal information but also non-verbal mental representations, such as visual, auditory, or motor representations. In Thagard’s approach, representations are characterized as patterns of activity in mental populations (see also section 9.3 below). The advantage of the neural account of human reasoning is that it covers features such as the surprise that accompanies the generation of new insights or the visual and auditory representations that contribute to it. Surprise, for instance, could be characterized as resulting from rapid changes in activation of the node in a neural network representing the “surprising” element (Thagard and Stewart 2011). If all mental representations can be characterized as patterns of firing in neural populations, abduction can be analyzed as the combination or “convolution” (Thagard) of patterns of neural activity from disjoint or overlapping patterns of activity (Thagard 2010).

The concern with the logic of discovery has also motivated research on artificial intelligence at the intersection of philosophy of science and cognitive science. In this approach, scientific discovery is treated as a form of problem-solving activity (Simon 1973; see also Newell and Simon 1971), whereby the systematic aspects of problem solving are studied within an information-processing framework. The aim is to clarify with the help of computational tools the nature of the methods used to discover scientific hypotheses. These hypotheses are regarded as solutions to problems. Philosophers working in this tradition build computer programs employing methods of heuristic selective search (e.g., Langley et al. 1987). In computational heuristics, search programs can be described as searches for solutions in a so-called “problem space” in a certain domain. The problem space comprises all possible configurations in that domain (e.g., for chess problems, all possible arrangements of pieces on a board of chess). Each configuration is a “state” of the problem space. There are two special states, namely the goal state, i.e., the state to be reached, and the initial state, i.e., the configuration at the starting point from which the search begins. There are operators, which determine the moves that generate new states from the current state. There are path constraints, which limit the permitted moves. Problem solving is the process of searching for a solution of the problem of how to generate the goal state from an initial state. In principle, all states can be generated by applying the operators to the initial state, then to the resulting state, until the goal state is reached (Langley et al. 1987: chapter 9). A problem solution is a sequence of operations leading from the initial to the goal state.

The basic idea behind computational heuristics is that rules can be identified that serve as guidelines for finding a solution to a given problem quickly and efficiently by avoiding undesired states of the problem space. These rules are best described as rules of thumb. The aim of constructing a logic of discovery thus becomes the aim of constructing a heuristics for the efficient search for solutions to problems. The term “heuristic search” indicates that in contrast to algorithms, problem-solving procedures lead to results that are merely provisional and plausible. A solution is not guaranteed, but heuristic searches are advantageous because they are more efficient than exhaustive random trial and error searches. Insofar as it is possible to evaluate whether one set of heuristics is better—more efficacious—than another, the logic of discovery turns into a normative theory of discovery.

Arguably, because it is possible to reconstruct important scientific discovery processes with sets of computational heuristics, the scientific discovery process can be considered as a special case of the general mechanism of information processing. In this context, the term “logic” is not used in the narrow sense of a set of formal, generally applicable rules to draw inferences but again in a broad sense as a label for a set of procedural rules.

The computer programs that embody the principles of heuristic searches in scientific inquiry simulate the paths that scientists followed when they searched for new theoretical hypotheses. Computer programs such as BACON (Simon et al. 1981) and KEKADA (Kulkarni and Simon 1988) utilize sets of problem-solving heuristics to detect regularities in given data sets. The program would note, for instance, that the values of a dependent term are constant or that a set of values for a term x and a set of values for a term y are linearly related. It would thus “infer” that the dependent term always has that value or that a linear relation exists between x and y . These programs can “make discoveries” in the sense that they can simulate successful discoveries such as Kepler’s third law (BACON) or the Krebs cycle (KEKADA).

Computational theories of scientific discoveries have helped identify and clarify a number of problem-solving strategies. An example of such a strategy is heuristic means-ends analysis, which involves identifying specific differences between the present and the goal situation and searches for operators (processes that will change the situation) that are associated with the differences that were detected. Another important heuristic is to divide the problem into sub-problems and to begin solving the one with the smallest number of unknowns to be determined (Simon 1977). Computational approaches have also highlighted the extent to which the generation of new knowledge draws on existing knowledge that constrains the development of new hypotheses.

As accounts of scientific discoveries, the early computational heuristics have some limitations. Compared to the problem spaces given in computational heuristics, the complex problem spaces for scientific problems are often ill defined, and the relevant search space and goal state must be delineated before heuristic assumptions could be formulated (Bechtel and Richardson 1993: chapter 1). Because a computer program requires the data from actual experiments, the simulations cover only certain aspects of scientific discoveries; in particular, it cannot determine by itself which data is relevant, which data to relate and what form of law it should look for (Gillies 1996). However, as a consequence of the rise of so-called “deep learning” methods in data-intensive science, there is renewed philosophical interest in the question of whether machines can make discoveries ( section 10 ).

Many philosophers maintain that discovery is a legitimate topic for philosophy of science while abandoning the notion that there is a logic of discovery. One very influential approach is Thomas Kuhn’s analysis of the emergence of novel facts and theories (Kuhn 1970 [1962]: chapter 6). Kuhn identifies a general pattern of discovery as part of his account of scientific change. A discovery is not a simple act, but an extended, complex process, which culminates in paradigm changes. Paradigms are the symbolic generalizations, metaphysical commitments, values, and exemplars that are shared by a community of scientists and that guide the research of that community. Paradigm-based, normal science does not aim at novelty but instead at the development, extension, and articulation of accepted paradigms. A discovery begins with an anomaly, that is, with the recognition that the expectations induced by an established paradigm are being violated. The process of discovery involves several aspects: observations of an anomalous phenomenon, attempts to conceptualize it, and changes in the paradigm so that the anomaly can be accommodated.

It is the mark of success of normal science that it does not make transformative discoveries, and yet such discoveries come about as a consequence of normal, paradigm-guided science. The more detailed and the better developed a paradigm, the more precise are its predictions. The more precisely the researchers know what to expect, the better they are able to recognize anomalous results and violations of expectations:

novelty ordinarily emerges only for the man who, knowing with precision what he should expect, is able to recognize that something has gone wrong. Anomaly appears only against the background provided by the paradigm. (Kuhn 1970 [1962]: 65)

Drawing on several historical examples, Kuhn argues that it is usually impossible to identify the very moment when something was discovered or even the individual who made the discovery. Kuhn illustrates these points with the discovery of oxygen (see Kuhn 1970 [1962]: 53–56). Oxygen had not been discovered before 1774 and had been discovered by 1777. Even before 1774, Lavoisier had noticed that something was wrong with phlogiston theory, but he was unable to move forward. Two other investigators, C. W. Scheele and Joseph Priestley, independently identified a gas obtained from heating solid substances. But Scheele’s work remained unpublished until after 1777, and Priestley did not identify his substance as a new sort of gas. In 1777, Lavoisier presented the oxygen theory of combustion, which gave rise to fundamental reconceptualization of chemistry. But according to this theory as Lavoisier first presented it, oxygen was not a chemical element. It was an atomic “principle of acidity” and oxygen gas was a combination of that principle with caloric. According to Kuhn, all of these developments are part of the discovery of oxygen, but none of them can be singled out as “the” act of discovery.

In pre-paradigmatic periods or in times of paradigm crisis, theory-induced discoveries may happen. In these periods, scientists speculate and develop tentative theories, which may lead to novel expectations and experiments and observations to test whether these expectations can be confirmed. Even though no precise predictions can be made, phenomena that are thus uncovered are often not quite what had been expected. In these situations, the simultaneous exploration of the new phenomena and articulation of the tentative hypotheses together bring about discovery.

In cases like the discovery of oxygen, by contrast, which took place while a paradigm was already in place, the unexpected becomes apparent only slowly, with difficulty, and against some resistance. Only gradually do the anomalies become visible as such. It takes time for the investigators to recognize “both that something is and what it is” (Kuhn 1970 [1962]: 55). Eventually, a new paradigm becomes established and the anomalous phenomena become the expected phenomena.

Recent studies in cognitive neuroscience of brain activity during periods of conceptual change support Kuhn’s view that conceptual change is hard to achieve. These studies examine the neural processes that are involved in the recognition of anomalies and compare them with the brain activity involved in the processing of information that is consistent with preferred theories. The studies suggest that the two types of data are processed differently (Dunbar et al. 2007).

8. Methodologies of discovery

Advocates of the view that there are methodologies of discovery use the term “logic” in the narrow sense of an algorithmic procedure to generate new ideas. But like the AI-based theories of scientific discovery described in section 6 , methodologies of scientific discovery interpret the concept “discovery” as a label for an extended process of generating and articulating new ideas and often describe the process in terms of problem solving. In these approaches, the distinction between the contexts of discovery and the context of justification is challenged because the methodology of discovery is understood to play a justificatory role. Advocates of a methodology of discovery usually rely on a distinction between different justification procedures, justification involved in the process of generating new knowledge and justification involved in testing it. Consequential or “strong” justifications are methods of testing. The justification involved in discovery, by contrast, is conceived as generative (as opposed to consequential) justification ( section 8.1 ) or as weak (as opposed to strong) justification ( section 8.2 ). Again, some terminological ambiguity exists because according to some philosophers, there are three contexts, not two: Only the initial conception of a new idea (the creative act is the context of discovery proper, and between it and justification there exists a separate context of pursuit (Laudan 1980). But many advocates of methodologies of discovery regard the context of pursuit as an integral part of the process of justification. They retain the notion of two contexts and re-draw the boundaries between the contexts of discovery and justification as they were drawn in the early 20 th century.

The methodology of discovery has sometimes been characterized as a form of justification that is complementary to the methodology of testing (Nickles 1984, 1985, 1989). According to the methodology of testing, empirical support for a theory results from successfully testing the predictive consequences derived from that theory (and appropriate auxiliary assumptions). In light of this methodology, justification for a theory is “consequential justification,” the notion that a hypothesis is established if successful novel predictions are derived from the theory or claim. Generative justification complements consequential justification. Advocates of generative justification hold that there exists an important form of justification in science that involves reasoning to a claim from data or previously established results more generally.

One classic example for a generative methodology is the set of Newton’s rules for the study of natural philosophy. According to these rules, general propositions are established by deducing them from the phenomena. The notion of generative justification seeks to preserve the intuition behind classic conceptions of justification by deduction. Generative justification amounts to the rational reconstruction of the discovery path in order to establish its discoverability had the researchers known what is known now, regardless of how it was first thought of (Nickles 1985, 1989). The reconstruction demonstrates in hindsight that the claim could have been discovered in this manner had the necessary information and techniques been available. In other words, generative justification—justification as “discoverability” or “potential discovery”—justifies a knowledge claim by deriving it from results that are already established. While generative justification does not retrace exactly those steps of the actual discovery path that were actually taken, it is a better representation of scientists’ actual practices than consequential justification because scientists tend to construe new claims from available knowledge. Generative justification is a weaker version of the traditional ideal of justification by deduction from the phenomena. Justification by deduction from the phenomena is complete if a theory or claim is completely determined from what we already know. The demonstration of discoverability results from the successful derivation of a claim or theory from the most basic and most solidly established empirical information.

Discoverability as described in the previous paragraphs is a mode of justification. Like the testing of novel predictions derived from a hypothesis, generative justification begins when the phase of finding and articulating a hypothesis worthy of assessing is drawing to a close. Other approaches to the methodology of discovery are directly concerned with the procedures involved in devising new hypotheses. The argument in favor of this kind of methodology is that the procedures of devising new hypotheses already include elements of appraisal. These preliminary assessments have been termed “weak” evaluation procedures (Schaffner 1993). Weak evaluations are relevant during the process of devising a new hypothesis. They provide reasons for accepting a hypothesis as promising and worthy of further attention. Strong evaluations, by contrast, provide reasons for accepting a hypothesis as (approximately) true or confirmed. Both “generative” and “consequential” testing as discussed in the previous section are strong evaluation procedures. Strong evaluation procedures are rigorous and systematically organized according to the principles of hypothesis derivation or H-D testing. A methodology of preliminary appraisal, by contrast, articulates criteria for the evaluation of a hypothesis prior to rigorous derivation or testing. It aids the decision about whether to take that hypothesis seriously enough to develop it further and test it. For advocates of this version of the methodology of discovery, it is the task of philosophy of science to characterize sets of constraints and methodological rules guiding the complex process of prior-to-test evaluation of hypotheses.

In contrast to the computational approaches discussed above, strategies of preliminary appraisal are not regarded as subject-neutral but as specific to particular fields of study. Philosophers of biology, for instance, have developed a fine-grained framework to account for the generation and preliminary evaluation of biological mechanisms (Darden 2002; Craver 2002; Bechtel and Richardson 1993; Craver and Darden 2013). Some philosophers have suggested that the phase of preliminary appraisal be further divided into two phases, the phase of appraising and the phase of revising. According to Lindley Darden, the phases of generation, appraisal and revision of descriptions of mechanisms can be characterized as reasoning processes governed by reasoning strategies. Different reasoning strategies govern the different phases (Darden 1991, 2002; Craver 2002; Darden 2009). The generation of hypotheses about mechanisms, for instance, is governed by the strategy of “schema instantiation” (see Darden 2002). The discovery of the mechanism of protein synthesis involved the instantiation of an abstract schema for chemical reactions: reactant 1 + reactant 2 = product. The actual mechanism of protein synthesis was found through specification and modification of this schema.

Neither of these strategies is deemed necessary for discovery, and they are not prescriptions for biological research. Rather, these strategies are deemed sufficient for the discovery of mechanisms. The methodology of the discovery of mechanisms is an extrapolation from past episodes of research on mechanisms and the result of a synthesis of rational reconstructions of several of these historical episodes. The methodology of discovery is weakly normative in the sense that the strategies for the discovery of mechanisms that were successful in the past may prove useful in future biological research (Darden 2002).

As philosophers of science have again become more attuned to actual scientific practices, interest in heuristic strategies has also been revived. Many analysts now agree that discovery processes can be regarded as problem solving activities, whereby a discovery is a solution to a problem. Heuristics-based methodologies of discovery are neither purely subjective and intuitive nor algorithmic or formalizable; the point is that reasons can be given for pursuing one or the other problem-solving strategy. These rules are open and do not guarantee a solution to a problem when applied (Ippoliti 2018). On this view, scientific researchers are no longer seen as Kuhnian “puzzle solvers” but as problem solvers and decision makers in complex, variable, and changing environments (Wimsatt 2007).

Philosophers of discovery working in this tradition draw on a growing body of literature in cognitive psychology, management science, operations research, and economy on human reasoning and decision making in contexts with limited information, under time constraints, and with sub-optimal means (Gigerenzer & Sturm 2012). Heuristic strategies characterized in these studies, such as Gigerenzer’s “tools to theory heuristic” are then applied to understand scientific knowledge generation (Gigerenzer 1992, Nickles 2018). Other analysts specify heuristic strategies in a range of scientific fields, including climate science, neurobiology, and clinical medicine (Gramelsberger 2011, Schaffner 2008, Gillies 2018). Finally, in analytic epistemology, formal methods are developed to identify and assess distinct heuristic strategies currently in use, such as Bayesian reverse engineering in cognitive science (Zednik and Jäkel 2016).

As the literature on heuristics continues to grow, it has become clear that the term “heuristics” is itself used in a variety of different ways. (For a valuable taxonomy of meanings of “heuristic,” see Chow 2015, see also Ippoliti 2018.) Moreover, as in the context of earlier debates about computational heuristics, debates continue about the limitations of heuristics. The use of heuristics may come at a cost if heuristics introduce systematic biases (Wimsatt 2007). Some philosophers thus call for general principles for the evaluation of heuristic strategies (Hey 2016).

9. Cognitive perspectives on discovery

The approaches to scientific discovery presented in the previous sections focus on the adoption, articulation, and preliminary evaluation of ideas or hypotheses prior to rigorous testing, not on how a novel hypothesis or idea is first thought up. For a long time, the predominant view among philosophers of discovery was that the initial step of discovery is a mysterious intuitive leap of the human mind that cannot be analyzed further. More recent accounts of discovery informed by evolutionary biology also do not explicate how new ideas are formed. The generation of new ideas is akin to random, blind variations of thought processes, which have to be inspected by the critical mind and assessed as neutral, productive, or useless (Campbell 1960; see also Hull 1988), but the key processes by which new ideas are generated are left unanalyzed.

With the recent rapprochement among philosophy of mind, cognitive science and psychology and the increased integration of empirical research into philosophy of science, these processes have been submitted to closer analysis, and philosophical studies of creativity have seen a surge of interest (e.g. Paul & Kaufman 2014a). The distinctive feature of these studies is that they integrate philosophical analyses with empirical work from cognitive science, psychology, evolutionary biology, and computational neuroscience (Thagard 2012). Analysts have distinguished different kinds and different features of creative thinking and have examined certain features in depth, and from new angles. Recent philosophical research on creativity comprises conceptual analyses and integrated approaches based on the assumption that creativity can be analyzed and that empirical research can contribute to the analysis (Paul & Kaufman 2014b). Two key elements of the cognitive processes involved in creative thinking that have been in the focus of philosophical analysis are analogies ( section 9.2 ) and mental models ( section 9.3 ).

General definitions of creativity highlight novelty or originality and significance or value as distinctive features of a creative act or product (Sternberg & Lubart 1999, Kieran 2014, Paul & Kaufman 2014b, although see Hills & Bird 2019). Different kinds of creativity can be distinguished depending on whether the act or product is novel for a particular individual or entirely novel. Psychologist Margaret Boden distinguishes between psychological creativity (P-creativity) and historical creativity (H-creativity). P-creativity is a development that is new, surprising and important to the particular person who comes up with it. H-creativity, by contrast, is radically novel, surprising, and important—it is generated for the first time (Boden 2004). Further distinctions have been proposed, such as anthropological creativity (construed as a human condition) and metaphysical creativity, a radically new thought or action in the sense that it is unaccounted for by antecedents and available knowledge, and thus constitutes a radical break with the past (Kronfeldner 2009, drawing on Hausman 1984).

Psychological studies analyze the personality traits and creative individuals’ behavioral dispositions that are conducive to creative thinking. They suggest that creative scientists share certain distinct personality traits, including confidence, openness, dominance, independence, introversion, as well as arrogance and hostility. (For overviews of recent studies on personality traits of creative scientists, see Feist 1999, 2006: chapter 5).

Recent work on creativity in philosophy of mind and cognitive science offers substantive analyses of the cognitive and neural mechanisms involved in creative thinking (Abrams 2018, Minai et al 2022) and critical scrutiny of the romantic idea of genius creativity as something deeply mysterious (Blackburn 2014). Some of this research aims to characterize features that are common to all creative processes, such as Thagard and Stewart’s account according to which creativity results from combinations of representations (Thagard & Stewart 2011, but see Pasquale and Poirier 2016). Other research aims to identify the features that are distinctive of scientific creativity as opposed to other forms of creativity, such as artistic creativity or creative technological invention (Simonton 2014).

Many philosophers of science highlight the role of analogy in the development of new knowledge, whereby analogy is understood as a process of bringing ideas that are well understood in one domain to bear on a new domain (Thagard 1984; Holyoak and Thagard 1996). An important source for philosophical thought about analogy is Mary Hesse’s conception of models and analogies in theory construction and development. In this approach, analogies are similarities between different domains. Hesse introduces the distinction between positive, negative, and neutral analogies (Hesse 1966: 8). If we consider the relation between gas molecules and a model for gas, namely a collection of billiard balls in random motion, we will find properties that are common to both domains (positive analogy) as well as properties that can only be ascribed to the model but not to the target domain (negative analogy). There is a positive analogy between gas molecules and a collection of billiard balls because both the balls and the molecules move randomly. There is a negative analogy between the domains because billiard balls are colored, hard, and shiny but gas molecules do not have these properties. The most interesting properties are those properties of the model about which we do not know whether they are positive or negative analogies. This set of properties is the neutral analogy. These properties are the significant properties because they might lead to new insights about the less familiar domain. From our knowledge about the familiar billiard balls, we may be able to derive new predictions about the behavior of gas molecules, which we could then test.

Hesse offers a more detailed analysis of the structure of analogical reasoning through the distinction between horizontal and vertical analogies between domains. Horizontal analogies between two domains concern the sameness or similarity between properties of both domains. If we consider sound and light waves, there are similarities between them: sound echoes, light reflects; sound is loud, light is bright, both sound and light are detectable by our senses. There are also relations among the properties within one domain, such as the causal relation between sound and the loud tone we hear and, analogously, between physical light and the bright light we see. These analogies are vertical analogies. For Hesse, vertical analogies hold the key for the construction of new theories.

Analogies play several roles in science. Not only do they contribute to discovery but they also play a role in the development and evaluation of scientific theories. Current discussions about analogy and discovery have expanded and refined Hesse’s approach in various ways. Some philosophers have developed criteria for evaluating analogy arguments (Bartha 2010). Other work has identified highly significant analogies that were particularly fruitful for the advancement of science (Holyoak and Thagard 1996: 186–188; Thagard 1999: chapter 9). The majority of analysts explore the features of the cognitive mechanisms through which aspects of a familiar domain or source are applied to an unknown target domain in order to understand what is unknown. According to the influential multi-constraint theory of analogical reasoning developed by Holyoak and Thagard, the transfer processes involved in analogical reasoning (scientific and otherwise) are guided or constrained in three main ways: 1) by the direct similarity between the elements involved; 2) by the structural parallels between source and target domain; as well as 3) by the purposes of the investigators, i.e., the reasons why the analogy is considered. Discovery, the formulation of a new hypothesis, is one such purpose.

“In vivo” investigations of scientists reasoning in their laboratories have not only shown that analogical reasoning is a key component of scientific practice, but also that the distance between source and target depends on the purpose for which analogies are sought. Scientists trying to fix experimental problems draw analogies between targets and sources from highly similar domains. In contrast, scientists attempting to formulate new models or concepts draw analogies between less similar domains. Analogies between radically different domains, however, are rare (Dunbar 1997, 2001).

In current cognitive science, human cognition is often explored in terms of model-based reasoning. The starting point of this approach is the notion that much of human reasoning, including probabilistic and causal reasoning as well as problem solving takes place through mental modeling rather than through the application of logic or methodological criteria to a set of propositions (Johnson-Laird 1983; Magnani et al. 1999; Magnani and Nersessian 2002). In model-based reasoning, the mind constructs a structural representation of a real-world or imaginary situation and manipulates this structure. In this perspective, conceptual structures are viewed as models and conceptual innovation as constructing new models through various modeling operations. Analogical reasoning—analogical modeling—is regarded as one of three main forms of model-based reasoning that appear to be relevant for conceptual innovation in science. Besides analogical modeling, visual modeling and simulative modeling or thought experiments also play key roles (Nersessian 1992, 1999, 2009). These modeling practices are constructive in that they aid the development of novel mental models. The key elements of model-based reasoning are the call on knowledge of generative principles and constraints for physical models in a source domain and the use of various forms of abstraction. Conceptual innovation results from the creation of new concepts through processes that abstract and integrate source and target domains into new models (Nersessian 2009).

Some critics have argued that despite the large amount of work on the topic, the notion of mental model is not sufficiently clear. Thagard seeks to clarify the concept by characterizing mental models in terms of neural processes (Thagard 2010). In his approach, mental models are produced through complex patterns of neural firing, whereby the neurons and the interconnections between them are dynamic and changing. A pattern of firing neurons is a representation when there is a stable causal correlation between the pattern or activation and the thing that is represented. In this research, questions about the nature of model-based reasoning are transformed into questions about the brain mechanisms that produce mental representations.

The above sections again show that the study of scientific discovery integrates different approaches, combining conceptual analysis of processes of knowledge generation with empirical work on creativity, drawing heavily and explicitly on current research in psychology and cognitive science, and on in vivo laboratory observations, as well as brain imaging techniques (Kounios & Beeman 2009, Thagard & Stewart 2011).

Earlier critics of AI-based theories of scientific discoveries argued that a computer cannot devise new concepts but is confined to the concepts included in the given computer language (Hempel 1985: 119–120). It cannot design new experiments, instruments, or methods. Subsequent computational research on scientific discovery was driven by the motivation to contribute computational tools to aid scientists in their research (Addis et al. 2016). It appears that computational methods can be used to generate new results leading to refereed scientific publications in astrophysics, cancer research, ecology, and other fields (Langley 2000). However, the philosophical discussion has continued about the question of whether these methods really generate new knowledge or whether they merely speed up data processing. It is also still an open question whether data-intensive science is fundamentally different from traditional research, for instance regarding the status of hypothesis or theory in data-intensive research (Pietsch 2015).

In the wake of recent developments in machine learning, some older discussions about automated discovery have been revived. The availability of vastly improved computational tools and software for data analysis has stimulated new discussions about computer-generated discovery (see Leonelli 2020). It is largely uncontroversial that machine learning tools can aid discovery, for instance in research on antibiotics (Stokes et al, 2020). The notion of “robot scientist” is mostly used metaphorically, and the vision that human scientists may one day be replaced by computers – by successors of the laboratory automation systems “Adam” and “Eve”, allegedly the first “robot scientists” – is evoked in writings for broader audiences (see King et al. 2009, Williams et al. 2015, for popularized descriptions of these systems), although some interesting ethical challenges do arise from “superhuman AI” (see Russell 2021). It also appears that, on the notion that products of creative acts are both novel and valuable, AI systems should be called “creative,” an implication which not all analysts will find plausible (Boden 2014)

Philosophical analyses focus on various questions arising from the processes involving human-machine complexes. One issue relevant to the problem of scientific discovery arises from the opacity of machine learning. If machine learning indeed escapes human understanding, how can we be warranted to say that knowledge or understanding is generated by deep learning tools? Might we have reason to say that humans and machines are “co-developers” of knowledge (Tamaddoni-Nezhad et al. 2021)?

New perspectives on scientific discovery have also opened up in the context of social epistemology (see Goldman & O’Connor 2021). Social epistemology investigates knowledge production as a group process, specifically the epistemic effects of group composition in terms of cognitive diversity and unity and social interactions within groups or institutions such as testimony and trust, peer disagreement and critique, and group justification, among others. On this view, discovery is a collective achievement, and the task is to explore how assorted social-epistemic activities or practices have an impact on the knowledge generated by groups in question. There are obvious implications for debates about scientific discovery of recent research in the different branches of social epistemology. Social epistemologists have examined individual cognitive agents in their roles as group members (as providers of information or as critics) and the interactions among these members (Longino 2001), groups as aggregates of diverse agents, or the entire group as epistemic agent (e.g., Koons 2021, Dragos 2019).

Standpoint theory, for instance, explores the role of outsiders in knowledge generation, considering how the sociocultural structures and practices in which individuals are embedded aid or obstruct the generation of creative ideas. According to standpoint theorists, people with standpoint are politically aware and politically engaged people outside the mainstream. Because people with standpoint have different experiences and access to different domains of expertise than most members of a culture, they can draw on rich conceptual resources for creative thinking (Solomon 2007).

Social epistemologists examining groups as aggregates of agents consider to what extent diversity among group members is conducive to knowledge production and whether and to what extent beliefs and attitudes must be shared among group members to make collective knowledge possible (Bird 2014). This is still an open question. Some formal approaches to model the influence of diversity on knowledge generation suggest that cognitive diversity is beneficial to collective knowledge generation (Weisberg and Muldoon 2009), but others have criticized the model (Alexander et al (2015), see also Thoma (2015) and Poyhönen (2017) for further discussion).

This essay has illustrated that philosophy of discovery has come full circle. Philosophy of discovery has once again become a thriving field of philosophical study, now intersecting with, and drawing on philosophical and empirical studies of creative thinking, problem solving under uncertainty, collective knowledge production, and machine learning. Recent approaches to discovery are typically explicitly interdisciplinary and integrative, cutting across previous distinctions among hypothesis generation and theory building, data collection, assessment, and selection; as well as descriptive-analytic, historical, and normative perspectives (Danks & Ippoliti 2018, Michel 2021). The goal no longer is to provide one overarching account of scientific discovery but to produce multifaceted analyses of past and present activities of knowledge generation in all their complexity and heterogeneity that are illuminating to the non-scientist and the scientific researcher alike.

How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.

[Please contact the author with suggestions.]

abduction | analogy and analogical reasoning | cognitive science | epistemology: social | knowledge: analysis of | Kuhn, Thomas | models in science | Newton, Isaac: Philosophiae Naturalis Principia Mathematica | Popper, Karl | rationality: historicist theories of | scientific method | scientific research and big data | Whewell, William

Copyright © 2022 by Jutta Schickore < jschicko @ indiana . edu >

Support SEP

Mirror sites.

View this site from another server:

The Stanford Encyclopedia of Philosophy is copyright © 2023 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

Library homepage

Margin Size

selected template will load here

This action is not available.

Biology LibreTexts

1.1.1: The Scientific Method

\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

\( \newcommand{\Span}{\mathrm{span}}\)

\( \newcommand{\id}{\mathrm{id}}\)

\( \newcommand{\kernel}{\mathrm{null}\,}\)

\( \newcommand{\range}{\mathrm{range}\,}\)

\( \newcommand{\RealPart}{\mathrm{Re}}\)

\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

\( \newcommand{\Argument}{\mathrm{Arg}}\)

\( \newcommand{\norm}[1]{\| #1 \|}\)

\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

\( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

\( \newcommand{\vectorC}[1]{\textbf{#1}} \)

\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

Learning Objectives

The Process of Science

Science includes such diverse fields as astronomy, biology, computer sciences, geology, logic, physics, chemistry, and mathematics (Figure \(\PageIndex{1}\)). However, those fields of science related to the physical world and its phenomena and processes are considered natural sciences . Natural sciences could be categorized as astronomy, biology, chemistry, earth science, and physics. One can divide natural sciences further into life sciences, which study living things and include biology, and physical sciences, which study nonliving matter and include astronomy, geology, physics, and chemistry. Some disciplines such as biophysics and biochemistry build on both life and physical sciences and are interdisciplinary. Natural sciences are sometimes referred to as “hard science” because they rely on the use of quantitative data; social sciences that study society and human behavior are more likely to use qualitative assessments to drive investigations and findings.

Not surprisingly, the natural science of biology has many branches or subdisciplines. Cell biologists study cell structure and function, while biologists who study anatomy investigate the structure of an entire organism. Those biologists studying physiology, however, focus on the internal functioning of an organism. Some areas of biology focus on only particular types of living things. For example, botanists explore plants, while zoologists specialize in animals.

A collage displaying examples of various fields of science

Scientific Reasoning

One thing is common to all forms of science: an ultimate goal “to know.” Curiosity and inquiry are the driving forces for the development of science. Scientists seek to understand the world and the way it operates. To do this, they use two methods of logical thinking: inductive reasoning and deductive reasoning.

Inductive reasoning is a form of logical thinking that uses related observations to arrive at a general conclusion. This type of reasoning is common in descriptive science. A life scientist such as a biologist makes observations and records them. These data can be qualitative (descriptive) or quantitative (numeric), and the raw data can be supplemented with drawings, pictures, photos, or videos. From many observations, the scientist can infer conclusions (inductions) based on evidence. Inductive reasoning involves formulating generalizations inferred from careful observation and the analysis of a large amount of data.

Deductive reasoning ,   or deduction, is the type of logic used in hypothesis-based science. In deductive reason, the pattern of thinking moves in the opposite direction as compared to inductive reasoning; that is, specific results are predicted from a general premise. Deductive reasoning is a form of logical thinking that uses a general principle or law to forecast specific results. From those general principles, a scientist can extrapolate and predict the specific results that would be valid as long as the general principles are valid. Studies in climate change can illustrate this type of reasoning. For example, scientists may predict that if the climate becomes warmer in a particular region, then the distribution of plants and animals should change. These predictions have been made and tested, and many such changes have been found, such as the modification of arable areas for agriculture, with change based on temperature averages. 

Inductive and deductive reasoning are often used in tandem to advance scientific knowledge (Example \(\PageIndex{1}\)) . Both types of logical thinking are related to the two main pathways of scientific study: descriptive science and hypothesis-based science. Descriptive (or discovery) science , which is usually inductive, aims to observe, explore, and discover, while hypothesis-based science , which is usually deductive, begins with a specific question or problem and a potential answer or solution that one can test. The boundary between these two forms of study is often blurred, and most scientific endeavors combine both approaches.

Example \(\PageIndex{1}\)

Here is an example of how the two types of reasoning might be used in similar situations.

In inductive reasoning, where a conclusion is drawn from a number of observations, one might observe that members of a species are not all the same, individuals compete for resources, and species are generally adapted to their environment. This observation could then lead to the conclusion that individuals most adapted to their environment are more likely to survive and pass their traits to the next generation.

In deductive reasoning, which uses a general premise to predict a specific result, one might start with that conclusion as a general premise, then predict the results. For example, from that premise, one might predict that if the average temperature in an ecosystem increases due to climate change, individuals better adapted to warmer temperatures will outcompete those that are not. A scientist could then design a study to test this prediction.

The Scientific Method

Biologists study the living world by posing questions about it and seeking science-based responses. The scientific method is a method of research with defined steps that include experiments and careful observation. The scientific method was used even in ancient times, but it was first documented by England’s Sir Francis Bacon (1561–1626; Figure \(\PageIndex{2}\)), who set up inductive methods for scientific inquiry. The scientific method is not exclusively used by biologists but can be applied to almost all fields of study as a logical, rational problem-solving method.

It is important to note that even though there are specific steps to the scientific method, the process of science is often more fluid, with scientists going back and forth between steps until they reach their conclusions.

Painting depicts Sir Francis Bacon in a long robe.

Observation and Question

Scientists are good observers. In the field of biology, naturalists will often will make an observation that leads to a question. A naturalist is a person who studies nature. Naturalists often describe structures, processes, and behavior, either with their eyes or with the use of a tool such as a microscope. A naturalist may not conduct experiments, but they may ask many good questions that can lead to experimentation. Scientists are also very curious. They will research for known answers to their questions or run experiments to learn the answer to their questions.

Let’s think about a simple problem that starts with an observation and apply the scientific method to solve the problem. One Monday morning, a student arrives at class and quickly discovers that the classroom is too warm. That is an observation that also describes a problem: the classroom is too warm. The student then asks a question: “Why is the classroom so warm?”

Proposing a Hypothesis

A hypothesis is an educated guess or a suggested explanation for an event, which can be tested. Sometimes, more than one hypothesis may be proposed. Once a hypothesis has been selected, the student can make a prediction. A prediction is similar to a hypothesis but it typically has the format “If . . . then . . . .”.

For example, one hypothesis might be, “The classroom is warm because no one turned on the air conditioning.” However, there could be other responses to the question, and therefore one may propose other hypotheses. A second hypothesis might be, “The classroom is warm because there is a power failure, and so the air conditioning doesn’t work.” In this case, you would have to test both hypotheses to see if either one could be supported with data.

A hypothesis may become a verified theory . This can happen if it has been repeatedly tested and confirmed, is general, and has inspired many other hypotheses, facts, and experimentations. Not all hypotheses will become theories.

Testing a Hypothesis

A valid hypothesis must be testable. It should also be falsifiable , meaning that it can be disproven by experimental results. Importantly, science does not claim to “prove” anything because scientific understandings are always subject to modification with further information. This step—openness to disproving ideas—is what distinguishes sciences from non-sciences. The presence of the supernatural, for instance, is neither testable nor falsifiable. To test a hypothesis, a researcher will conduct one or more experiments designed to eliminate one or more of the hypotheses. Each experiment will have one or more variables and one or more controls. A variable is any part of the experiment that can vary or change during the experiment. The control group contains every feature of the experimental group except that it was not manipulated. Therefore, if the results of the experimental group differ from the control group, the difference must be due to the hypothesized manipulation, rather than some outside factor. Look for the variables and controls in the examples that follow. To test the first hypothesis, the student would find out if the air conditioning is on. If the air conditioning is turned on but does not work, there should be another reason, and this hypothesis should be rejected. To test the second hypothesis, the student could check if the lights in the classroom are functional. If so, there is no power failure, and this hypothesis should be rejected. Each hypothesis should be tested by carrying out appropriate experiments. Be aware that rejecting one hypothesis does not determine whether or not the other hypotheses can be accepted; it simply eliminates one hypothesis that is not valid (Figure \(\PageIndex{3}\)). Using the scientific method, the hypotheses that are inconsistent with experimental data are rejected.

While this “warm classroom” example is based on observational results, other hypotheses and experiments might have clearer controls. For instance, a student might attend class on Monday and realize she had difficulty concentrating on the lecture. One observation to explain this occurrence might be, “When I eat breakfast before class, I am better able to pay attention.” The student could then design an experiment with a control to test this hypothesis.

Visual Connection

A flow chart with the steps in the scientific method.

The scientific method may seem too rigid and structured. It is important to keep in mind that, although scientists often follow this sequence, there is flexibility. Sometimes an experiment leads to conclusions that favor a change in approach; often, an experiment brings entirely new scientific questions to the puzzle. Many times, science does not operate in a linear fashion; instead, scientists continually draw inferences and make generalizations, finding patterns as their research proceeds. Scientific reasoning is more complex than the scientific method alone suggests. Notice, too, that the scientific method can be applied to solving problems that aren’t necessarily scientific in nature (Example \(\PageIndex{2}\)).

Example \(\PageIndex{2}\)

In the example below, the scientific method is used to solve an everyday problem. Match the scientific method steps (numbered items) with the process of solving the everyday problem (lettered items). Based on the results of the experiment, is the hypothesis correct? If it is incorrect, propose some alternative hypotheses.

Steps of the Scientific Method

Process of Solving an Everyday Problem

Two Types of Science: Basic Science and Applied Science

The scientific community has been debating for the last few decades about the value of different types of science. Is it valuable to pursue science for the sake of simply gaining knowledge, or does scientific knowledge only have worth if we can apply it to solving a specific problem or to bettering our lives? This question focuses on the differences between two types of science: basic science and applied science.

Basic science or “pure” science seeks to expand knowledge regardless of the short-term application of that knowledge. It is not focused on developing a product or a service of immediate public or commercial value. The immediate goal of basic science is knowledge for knowledge’s sake, though this does not mean that, in the end, it may not result in a practical application.

In contrast, applied science or “technology,” aims to use science to solve real-world problems, making it possible, for example, to improve a crop yield or find a cure for a particular disease. In applied science, the problem is usually defined for the researcher.

Some individuals may perceive applied science as “useful” and basic science as “useless.” A question these people might pose to a scientist advocating knowledge acquisition would be, “What for?” A careful look at the history of science, however, reveals that basic knowledge has resulted in many remarkable applications of great value. Many scientists think that a basic understanding of science is necessary before an application is developed; therefore, applied science relies on the results generated through basic science. Other scientists think that it is time to move on from basic science and instead to find solutions to actual problems. Both approaches are valid. It is true that there are problems that demand immediate attention; however, few solutions would be found without the help of the wide knowledge foundation generated through basic science.

One example of how basic and applied science can work together to solve practical problems occurred after the discovery of DNA structure led to an understanding of the molecular mechanisms governing DNA replication. Strands of DNA, unique in every human, are found in our cells, where they provide the instructions necessary for life. During DNA replication, DNA makes new copies of itself, shortly before a cell divides. Understanding the mechanisms of DNA replication enabled scientists to develop laboratory techniques that are now used to identify genetic diseases, pinpoint individuals who were at a crime scene, and determine paternity. Without basic science, it is unlikely that applied science would exist.

Another example of the link between basic and applied research is the Human Genome Project, a study in which each human chromosome was analyzed and mapped to determine the precise sequence of DNA subunits and the exact location of each gene. (The gene is the basic unit of heredity; an individual’s complete collection of genes is their genome.) Other less complex organisms have also been studied as part of this project in order to gain a better understanding of human chromosomes. The Human Genome Project (Figure \(\PageIndex{4}\)) relied on basic research carried out with simple organisms and, later, with the human genome. An important end goal eventually became using the data for applied research, seeking cures and early diagnoses for genetically related diseases.

The human genome project’s logo is shown, depicting a human being inside a DNA double helix.

While research efforts in both basic science and applied science are usually carefully planned, it is important to note that some discoveries are made by serendipity , that is, by means of a fortunate accident or a lucky surprise. Penicillin was discovered when biologist Alexander Fleming accidentally left a petri dish of Staphylococcus bacteria open. An unwanted mold grew on the dish, killing the bacteria. The mold turned out to be Penicillium , and a new antibiotic was discovered. Even in the highly organized world of science, luck—when combined with an observant, curious mind—can lead to unexpected breakthroughs.

Reporting Scientific Work

Whether scientific research is basic science or applied science, scientists must share their findings in order for other researchers to expand and build upon their discoveries. Collaboration with other scientists—when planning, conducting, and analyzing results—are all important for scientific research. For this reason, important aspects of a scientist’s work are communicating with peers and disseminating results to peers. Scientists can share results by presenting them at a scientific meeting or conference (Figure \(\PageIndex{5}\)), but this approach can reach only the select few who are present. Instead, most scientists present their results in peer-reviewed manuscripts that are published in scientific journals. Peer-reviewed manuscripts are scientific papers that are reviewed by a scientist’s colleagues, or peers. These colleagues are qualified individuals, often experts in the same research area, who judge whether or not the scientist’s work is suitable for publication. The process of peer review helps to ensure that the research described in a scientific paper or grant proposal is original, significant, logical, and thorough. Grant proposals, which are requests for research funding, are also subject to peer review. Scientists publish their work so other scientists can reproduce their experiments under similar or different conditions to expand on the findings. The experimental results must be consistent with the findings of other scientists.

A group of undergraduate students at the BOTANY 2018 conference

A scientific paper is very different from creative writing. Although creativity is required to design experiments, there are fixed guidelines when it comes to presenting scientific results. First, scientific writing must be brief, concise, and accurate. A scientific paper needs to be succinct but detailed enough to allow peers to reproduce the experiments.

The scientific paper consists of several specific sections—introduction, materials and methods, results, and discussion. This structure is sometimes called the “IMRaD” format, an acronym for Introduction, Method, Results, and Discussion. There are usually acknowledgment and reference sections as well as an abstract (a concise summary) at the beginning of the paper. There might be additional sections depending on the type of paper and the journal where it will be published; for example, some review papers require an outline.

The introduction starts with brief, but broad, background information about what is known in the field. A good introduction also gives the rationale of the work; it justifies the work carried out and also briefly mentions the end of the paper, where the hypothesis or research question driving the research will be presented. The introduction refers to the published scientific work of others and therefore requires citations following the style of the journal. Using the work or ideas of others without proper citation is considered plagiarism .

The materials and methods section includes a complete and accurate description of the substances used, and the method and techniques used by the researchers to gather data. The description should be thorough enough to allow another researcher to repeat the experiment and obtain similar results, but it does not have to be verbose. This section will also include information on how measurements were made and what types of calculations and statistical analyses were used to examine raw data. Although the materials and methods section gives an accurate description of the experiments, it does not discuss them.

Some journals require a results section followed by a discussion section, but it is more common to combine both. If the journal does not allow the combination of both sections, the results section simply narrates the findings without any further interpretation. The results are presented by means of tables or graphs, but no duplicate information should be presented. In the discussion section, the researcher will interpret the results, describe how variables may be related, and attempt to explain the observations. It is indispensable to conduct an extensive literature search to put the results in the context of previously published scientific research. Therefore, proper citations are included in this section as well.

Finally, the conclusion section summarizes the importance of the experimental findings. While the scientific paper almost certainly answered one or more scientific questions that were stated, any good research should lead to more questions. Therefore, a well-done scientific paper leaves doors open for the researcher and others to continue and expand on the findings.

Review articles do not follow the IMRaD format because they do not present original scientific findings (they are not primary literature); instead, they summarize and comment on findings that were published as primary literature and typically include extensive reference sections.

Attributions

Curated and authored by Kammy Algiers using  1.2 (The Process of Science)  from Biology 2e  by OpenStax (licensed CC-BY ).

when is the problem solving method considered scientific

The Scientific Revolution

Taleen Aktorosian

Please enter your email address to receive a download link for this resource:

Please check your email for the download link.

Before class, students will be asked to read two World History Encyclopedia articles.

Introduction (10-15 minutes)

Hook: Start with a thought-provoking question: "How would you determine whether something is true or not? What process would you use?"

Write students’ responses on the board to highlight different approaches, such as personal experience, advice from others, intuition, or logical reasoning.

Explain that before the Scientific Revolution , people often relied on methods like tradition, philosophical reasoning, or religious teachings to determine the truth.

Introduce the idea that the Scientific Method emerged as a new approach to discovering truth, emphasizing that this method is based on observation, experimentation, and evidence rather than solely on abstract reasoning or accepted beliefs.

Hands-On Activity (25-30 minutes)

Present the following scenario to the class: "A farmer notices that some crops in his field are growing poorly while others are thriving. He wants to understand why this is happening."

Divide the class into an even number of small groups. Half of the groups will receive Handout 1: Philosophical Approach and the other half will receive Handout 2: Scientific Method Approach.

Instruct each group to brainstorm solutions to the farmer's problem based on their assigned approach.

Philosophical Approach: Groups might suggest reasons based on general principles, such as the alignment of the stars, the will of the gods, or moral interpretations of natural events.

Scientific Method Approach: Groups should focus on making specific observations, forming testable hypotheses, designing experiments, and collecting data.

Pair each Philosophical Approach group with a Scientific Method Approach group. Have the paired groups present their ideas to each other. Encourage them to discuss and debate the differences between the philosophical reasoning and the scientific method.

Class Discussion and Reflection (15-20 minutes)

Reflect on the activity, highlighting the strengths and limitations of each approach and the importance of the Scientific Method in advancing knowledge and solving problems.

Summarize key takeaways from the lesson, emphasizing how the Scientific Method has led to a more systematic and evidence-based approach to knowledge.

Reflect on how the Scientific Method has shaped modern knowledge and technology and ask students how they might use the Scientific Method in their own lives or future careers.

Homework/Extension

Students will pick one scientist from the collection of 12 Great Scientists of the Scientific Revolution , read their biography, and answer questions on the worksheet (see below). If needed, further research can be done to complete the worksheet.

About the Author

Taleen Aktorosian

Free for the World, Supported by You

World History Encyclopedia is a non-profit organization. For only $5 per month you can become a member and support our mission to engage people with cultural heritage and to improve history education worldwide.

License & Copyright

Uploaded by Taleen Aktorosian , published on 28 May 2024. The copyright holder has published this content under the following license: Creative Commons Attribution-NonCommercial-ShareAlike . This license lets others remix, tweak, and build upon this content non-commercially, as long as they credit the author and license their new creations under the identical terms. When republishing on the web a hyperlink back to the original content source URL must be included. Please note that content linked from this page may have different licensing terms.

IMAGES

  1. PPT

    when is the problem solving method considered scientific

  2. Draw A Map Showing The Problem Solving Process

    when is the problem solving method considered scientific

  3. PPT

    when is the problem solving method considered scientific

  4. PPT

    when is the problem solving method considered scientific

  5. PPT

    when is the problem solving method considered scientific

  6. The Scientific Method *A Way to Solve a Problem*

    when is the problem solving method considered scientific

VIDEO

  1. The scientific approach and alternative approaches to investigation

  2. Teaching Methods

  3. THE PROCESS OF PROBLEM SOLVING METHOD

  4. problem solving method

  5. #Problem Solving Method#advantages &disadvantages

  6. PROBLEM SOLVING METHOD OF TEACHING

COMMENTS

  1. What is the Scientific Method: How does it work and why is it important

    The scientific method is a systematic process involving steps like defining questions, forming hypotheses, conducting experiments, and analyzing data. ... it encompasses a collection of principles that create a logical progression to the process of problem solving: ... In the 4th century, Aristotle, considered the Father of Science by many ...

  2. The scientific method (article)

    At the core of physics and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis. Test the prediction.

  3. The Scientific Method: What Is It?

    The scientific method is a step-by-step problem-solving process. ... you have considered what other people know and think about the question. ... It's a step-by-step problem-solving process that ...

  4. Scientific Method

    The study of scientific method is the attempt to discern the activities by which that success is achieved. ... where only enterprises which employ some canonical form of scientific method or methods should be considered ... (1993) present science as problem solving and investigate scientific problem solving as a special case of problem-solving ...

  5. Scientific method

    The scientific method is critical to the development of scientific theories, which explain empirical (experiential) laws in a scientifically rational manner.In a typical application of the scientific method, a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments.

  6. Scientific method

    The scientific method is an empirical method for acquiring knowledge that has characterized the development of science since at least the 17th century. The scientific method involves careful observation coupled with rigorous scepticism, because cognitive assumptions can distort the interpretation of the observation.Scientific inquiry includes creating a hypothesis through inductive reasoning ...

  7. Science and the scientific method: Definitions and examples

    The process of generating and testing a hypothesis forms the backbone of the scientific method. When an idea has been confirmed over many experiments, it can be called a scientific theory.

  8. Scientific Method

    The scientific method is the process by which scientists of all fields attempt to explain the phenomena in the world. It is how science is conducted--through experimentation. Generally, the scientific method refers to a set of steps whereby a scientist can form a conjecture (the hypothesis) for why something functions the way it does and then test their hypothesis. It is an empirical process ...

  9. The scientific method (video)

    The scientific method. The scientific method is a logical approach to understanding the world. It starts with an observation, followed by a question. A testable explanation or hypothesis is then created. An experiment is designed to test the hypothesis, and based on the results, the hypothesis is refined.

  10. 1.2: Scientific Approach for Solving Problems

    In doing so, they are using the scientific method. 1.2: Scientific Approach for Solving Problems is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts. Chemists expand their knowledge by making observations, carrying out experiments, and testing hypotheses to develop laws to summarize their results and ...

  11. 1.3: The Scientific Method

    The key steps in the scientific method include the following: Step 1: Make observations. Step 2: Formulate a hypothesis. Step 3: Test the hypothesis through experimentation. Step 4: Accept or modify the hypothesis. Step 5: Develop into a law and/or a theory.

  12. Steps of the Scientific Method

    The six steps of the scientific method include: 1) asking a question about something you observe, 2) doing background research to learn what is already known about the topic, 3) constructing a hypothesis, 4) experimenting to test the hypothesis, 5) analyzing the data from the experiment and drawing conclusions, and 6) communicating the results ...

  13. Using the Scientific Method to Solve Problems

    The processes of problem-solving and decision-making can be complicated and drawn out. In this article we look at how the scientific method, along with deductive and inductive reasoning can help simplify these processes.

  14. 6 Steps of the Scientific Method

    The more you know about a subject, the easier it will be to conduct your investigation. Hypothesis. Propose a hypothesis. This is a sort of educated guess about what you expect. It is a statement used to predict the outcome of an experiment. Usually, a hypothesis is written in terms of cause and effect.

  15. The scientific method (article)

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  16. The 6 Scientific Method Steps and How to Use Them

    The number of steps varies, but the process begins with an observation, progresses through an experiment, and concludes with analysis and sharing data. One of the most important pieces to the scientific method is skepticism —the goal is to find truth, not to confirm a particular thought. That requires reevaluation and repeated experimentation ...

  17. 1.1.6: Scientific Problem Solving

    The scientific method, as developed by Bacon and others, involves several steps: Ask a question - identify the problem to be considered. Make observations - gather data that pertains to the question. Propose an explanation (a hypothesis) for the observations. Make new observations to test the hypothesis further.

  18. What Are The Steps Of The Scientific Method?

    The scientific method is a process that includes several steps: First, an observation or question arises about a phenomenon. Then a hypothesis is formulated to explain the phenomenon, which is used to make predictions about other related occurrences or to predict the results of new observations quantitatively. Finally, these predictions are put to the test through experiments or further ...

  19. 1.5: Scientific Investigations

    Figure \ (\PageIndex {2}\): The Scientific Method: The scientific method is a process for gathering data and processing information. It provides well-defined steps to standardize how scientific knowledge is gathered through a logical, rational problem-solving method. This diagram shows the steps of the scientific method, which are listed below.

  20. The Scientific Method

    The scientific method uses hypothesis, prediction, controlled experiment, observation, and potential conclusions (possible solutions). With this method scientist are able to discover many things. For example, Marie Curie helped pioneer the discovery of radioactivity (the detection of radium is considered as the second most important chemical ...

  21. 1.1: The Scientific Method

    The Scientific Method. Biologists study the living world by posing questions about it and seeking science-based responses. The scientific method is a method of research with defined steps that include experiments and careful observation. The scientific method was used even in ancient times, but it was first documented by England's Sir Francis Bacon (1561-1626; Figure \(\PageIndex{2 ...

  22. What Are the Scientific Method Steps?

    The scientific method is like a structured adventure for exploring the world that encourages discovery by finding answers and solving puzzles. With the scientific method steps, students get to ask questions, observe, make educated guesses (called hypotheses), run experiments, collect and organize data, draw sensible conclusions, and share what ...

  23. Scientific Discovery

    There are path constraints, which limit the permitted moves. Problem solving is the process of searching for a solution of the problem of how to generate the goal state from an initial state. ... the scientific discovery process can be considered as a special case of the general mechanism of information processing. ... P.W. Langley, and G.L ...

  24. 1.1.1: The Scientific Method

    The scientific method is a method of research with defined steps that include experiments and careful observation. The scientific method was used even in ancient times, but it was first documented by England's Sir Francis Bacon (1561-1626; Figure 1.1.1.2 1.1.1. 2 ), who set up inductive methods for scientific inquiry.

  25. The Scientific Revolution (Lesson)

    Summarize key takeaways from the lesson, emphasizing how the Scientific Method has led to a more systematic and evidence-based approach to knowledge. Reflect on how the Scientific Method has shaped modern knowledge and technology and ask students how they might use the Scientific Method in their own lives or future careers. Homework/Extension.

  26. PDF Scientific Method How do Scientists Solve problems

    Formulate student's ideas into a chart of steps in the scientific method. Determine with the students how a scientist solves problems. • Arrange students in working groups of 3 or 4. Students are to attempt to discover what is in their mystery box. • The group must decide on a procedure to determine the contents of their box and formulate ...