• Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

55 Brilliant Research Topics For STEM Students

Research Topics For STEM Students

Primarily, STEM is an acronym for Science, Technology, Engineering, and Mathematics. It’s a study program that weaves all four disciplines for cross-disciplinary knowledge to solve scientific problems. STEM touches across a broad array of subjects as STEM students are required to gain mastery of four disciplines.

As a project-based discipline, STEM has different stages of learning. The program operates like other disciplines, and as such, STEM students embrace knowledge depending on their level. Since it’s a discipline centered around innovation, students undertake projects regularly. As a STEM student, your project could either be to build or write on a subject. Your first plan of action is choosing a topic if it’s written. After selecting a topic, you’ll need to determine how long a thesis statement should be .

Given that topic is essential to writing any project, this article focuses on research topics for STEM students. So, if you’re writing a STEM research paper or write my research paper , below are some of the best research topics for STEM students.

List of Research Topics For STEM Students

Quantitative research topics for stem students, qualitative research topics for stem students, what are the best experimental research topics for stem students, non-experimental research topics for stem students, capstone research topics for stem students, correlational research topics for stem students, scientific research topics for stem students, simple research topics for stem students, top 10 research topics for stem students, experimental research topics for stem students about plants, research topics for grade 11 stem students, research topics for grade 12 stem students, quantitative research topics for stem high school students, survey research topics for stem students, interesting and informative research topics for senior high school stem students.

Several research topics can be formulated in this field. They cut across STEM science, engineering, technology, and math. Here is a list of good research topics for STEM students.

  • The effectiveness of online learning over physical learning
  • The rise of metabolic diseases and their relationship to increased consumption
  • How immunotherapy can improve prognosis in Covid-19 progression

For your quantitative research in STEM, you’ll need to learn how to cite a thesis MLA for the topic you’re choosing. Below are some of the best quantitative research topics for STEM students.

  • A study of the effect of digital technology on millennials
  • A futuristic study of a world ruled by robotics
  • A critical evaluation of the future demand in artificial intelligence

There are several practical research topics for STEM students. However, if you’re looking for qualitative research topics for STEM students, here are topics to explore.

  • An exploration into how microbial factories result in the cause shortage in raw metals
  • An experimental study on the possibility of older-aged men passing genetic abnormalities to children
  • A critical evaluation of how genetics could be used to help humans live healthier and longer.
Experimental research in STEM is a scientific research methodology that uses two sets of variables. They are dependent and independent variables that are studied under experimental research. Experimental research topics in STEM look into areas of science that use data to derive results.

Below are easy experimental research topics for STEM students.

  • A study of nuclear fusion and fission
  • An evaluation of the major drawbacks of Biotechnology in the pharmaceutical industry
  • A study of single-cell organisms and how they’re capable of becoming an intermediary host for diseases causing bacteria

Unlike experimental research, non-experimental research lacks the interference of an independent variable. Non-experimental research instead measures variables as they naturally occur. Below are some non-experimental quantitative research topics for STEM students.

  • Impacts of alcohol addiction on the psychological life of humans
  • The popularity of depression and schizophrenia amongst the pediatric population
  • The impact of breastfeeding on the child’s health and development

STEM learning and knowledge grow in stages. The older students get, the more stringent requirements are for their STEM research topic. There are several capstone topics for research for STEM students .

Below are some simple quantitative research topics for stem students.

  • How population impacts energy-saving strategies
  • The application of an Excel table processor capabilities for cost calculation
  •  A study of the essence of science as a sphere of human activity

Correlations research is research where the researcher measures two continuous variables. This is done with little or no attempt to control extraneous variables but to assess the relationship. Here are some sample research topics for STEM students to look into bearing in mind how to cite a thesis APA style for your project.

  • Can pancreatic gland transplantation cure diabetes?
  • A study of improved living conditions and obesity
  • An evaluation of the digital currency as a valid form of payment and its impact on banking and economy

There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students.

  • A study of protease inhibitor and how it operates
  • A study of how men’s exercise impacts DNA traits passed to children
  • A study of the future of commercial space flight

If you’re looking for a simple research topic, below are easy research topics for STEM students.

  • How can the problem of Space junk be solved?
  • Can meteorites change our view of the universe?
  • Can private space flight companies change the future of space exploration?

For your top 10 research topics for STEM students, here are interesting topics for STEM students to consider.

  • A comparative study of social media addiction and adverse depression
  • The human effect of the illegal use of formalin in milk and food preservation
  • An evaluation of the human impact on the biosphere and its results
  • A study of how fungus affects plant growth
  • A comparative study of antiviral drugs and vaccine
  • A study of the ways technology has improved medicine and life science
  • The effectiveness of Vitamin D among older adults for disease prevention
  • What is the possibility of life on other planets?
  • Effects of Hubble Space Telescope on the universe
  • A study of important trends in medicinal chemistry research

Below are possible research topics for STEM students about plants:

  • How do magnetic fields impact plant growth?
  • Do the different colors of light impact the rate of photosynthesis?
  • How can fertilizer extend plant life during a drought?

Below are some examples of quantitative research topics for STEM students in grade 11.

  • A study of how plants conduct electricity
  • How does water salinity affect plant growth?
  • A study of soil pH levels on plants

Here are some of the best qualitative research topics for STEM students in grade 12.

  • An evaluation of artificial gravity and how it impacts seed germination
  • An exploration of the steps taken to develop the Covid-19 vaccine
  • Personalized medicine and the wave of the future

Here are topics to consider for your STEM-related research topics for high school students.

  • A study of stem cell treatment
  • How can molecular biological research of rare genetic disorders help understand cancer?
  • How Covid-19 affects people with digestive problems

Below are some survey topics for qualitative research for stem students.

  • How does Covid-19 impact immune-compromised people?
  • Soil temperature and how it affects root growth
  • Burned soil and how it affects seed germination

Here are some descriptive research topics for STEM students in senior high.

  • The scientific information concept and its role in conducting scientific research
  • The role of mathematical statistics in scientific research
  • A study of the natural resources contained in oceans

Final Words About Research Topics For STEM Students

STEM topics cover areas in various scientific fields, mathematics, engineering, and technology. While it can be tasking, reducing the task starts with choosing a favorable topic. If you require external assistance in writing your STEM research, you can seek professional help from our experts.

Leave a Reply Cancel reply

Studmentors-logo

161+ Exciting Qualitative Research Topics For STEM Students

161+ Exciting Qualitative Research Topics For STEM Students

Are you doing Qualitative research? Looking for the best qualitative research topics for stem students? It is a most interesting and good field for research. Qualitative research allows STEM (Science, Technology, Engineering, and Mathematics) students to delve deeper into complex issues, explore human behavior, and understand the intricacies of the world around them.

In this article, we’ll provide you with an extensive list of 161+ qualitative research topics tailored to STEM students. We’ll also explore how to find and choose good qualitative research topics, and why these topics are particularly beneficial for students, including those in high school.

Also Like To Read: 171+ Brilliant Quantitative Research Topics For STEM Students

Table of Contents

What Are Qualitative Research Topics for STEM Students

Qualitative research topics for stem students are questions or issues that necessitate an in-depth exploration of people’s experiences, beliefs, and behaviors. STEM students can use this approach to investigate societal impacts, ethical dilemmas, and user experiences related to scientific advancements and innovations.

Unlike quantitative research, which focuses on numerical data and statistical analysis, qualitative research delves into the ‘whys’ and ‘hows’ of a particular phenomenon.

How to Find and Choose Good Qualitative Research Topics

Selecting qualitative research topics for stem students is a crucial step in the research process. Here are some tips to help you find and choose a suitable topic:

How to Find and Choose Good Qualitative Research Topics

  • Passion and Interest: Start by considering your personal interests and passions. What topics within STEM excite you? Research becomes more engaging when you’re genuinely interested in the subject.
  • Relevance: Choose qualitative research topics for stem students. Look for gaps in the existing knowledge or unanswered questions.
  • Literature Review: Conduct a thorough literature review to identify the latest trends and areas where qualitative research is lacking. This can guide you in selecting a topic that contributes to the field.
  • Feasibility: Ensure that your chosen topic is feasible within the resources and time constraints available to you. Some research topics may require extensive resources and funding.
  • Ethical Considerations: Be aware of ethical concerns related to your qualitative research topics for stem students, especially when dealing with human subjects or sensitive issues.

Here are the most exciting and very interesting Qualitative Research Topics For STEM Students, high school students, nursing students, college students, etc.

Biology Qualitative Research Topics

  • Impact of Ecosystem Restoration on Biodiversity
  • Ethical Considerations in Human Gene Editing
  • Public Perceptions of Biotechnology in Agriculture
  • Coping Mechanisms and Stress Responses in Marine Biologists
  • Cultural Perspectives on Traditional Herbal Medicine
  • Community Attitudes Toward Wildlife Conservation Efforts
  • Ethical Issues in Animal Testing and Research
  • Indigenous Knowledge and Ethnobotany
  • Psychological Well-being of Conservation Biologists
  • Attitudes Toward Endangered Species Protection

Chemistry Qualitative Research Topics For STEM Students

  • Adoption of Green Chemistry Practices in the Pharmaceutical Industry
  • Public Perception of Chemical Safety in Household Products
  • Strategies for Improving Chemistry Education
  • Art Conservation and Chemical Analysis
  • Consumer Attitudes Toward Organic Chemistry in Everyday Life
  • Ethical Considerations in Chemical Waste Disposal
  • The Role of Chemistry in Sustainable Agriculture
  • Perceptions of Nanomaterials and Their Applications
  • Chemistry-Related Career Aspirations in High School Students
  • Cultural Beliefs and Traditional Chemical Practices

Physics Qualitative Research Topics

  • Gender Bias in Physics Education and Career Progression
  • Philosophical Implications of Quantum Mechanics
  • Public Understanding of Renewable Energy Technologies
  • Influence of Science Fiction on Scientific Research
  • Perceptions of Dark Matter and Dark Energy in the Universe
  • Student Experiences in High School Physics Classes
  • Physics Outreach Programs and Their Impact on Communities
  • Cultural Variations in the Perception of Time and Space
  • Role of Physics in Environmental Conservation
  • Public Engagement with Science Through Astronomy Events

Engineering Qualitative Research Topics For STEM Students

  • Ethics in Artificial Intelligence and Robotics
  • Human-Centered Design in Engineering
  • Innovation and Sustainability in Civil Engineering
  • Public Perception of Self-Driving Cars
  • Engineering Solutions for Climate Change Mitigation
  • Experiences of Women in Male-Dominated Engineering Fields
  • Role of Engineers in Disaster Response and Recovery
  • Ethical Considerations in Technology Patents
  • Perceptions of Engineering Education and Career Prospects
  • Students Views on the Role of Engineers in Society

Computer Science Qualitative Research Topics

  • Gender Diversity in Tech Companies
  • Ethical Implications of AI-Powered Decision-Making
  • User Experience and Interface Design
  • Cybersecurity Awareness and Behaviors
  • Digital Privacy Concerns and Practices
  • Social Media Use and Mental Health in College Students
  • Gaming Culture and its Impact on Social Interactions
  • Student Attitudes Toward Coding and Programming
  • Online Learning Platforms and Student Satisfaction
  • Perceptions of Artificial Intelligence in Everyday Life

Mathematics Qualitative Research Topics For STEM Students

  • Gender Stereotypes in Mathematics Education
  • Cultural Variations in Problem-Solving Approaches
  • Perception of Math in Everyday Life
  • Math Anxiety and Coping Mechanisms
  • Historical Development of Mathematical Concepts
  • Attitudes Toward Mathematics Among Elementary School Students
  • Role of Mathematics in Solving Real-World Problems
  • Homeschooling Approaches to Teaching Mathematics
  • Effectiveness of Math Tutoring Programs
  • Math-Related Stereotypes in Society

Environmental Science Qualitative Research Topics

  • Local Communities’ Responses to Climate Change
  • Public Understanding of Conservation Practices
  • Sustainable Agriculture and Farmer Perspectives
  • Environmental Education and Behavior Change
  • Indigenous Ecological Knowledge and Biodiversity Conservation
  • Conservation Awareness and Behavior of Tourists
  • Climate Change Perceptions Among Youth
  • Perceptions of Water Scarcity and Resource Management
  • Environmental Activism and Youth Engagement
  • Community Responses to Environmental Disasters

Geology and Earth Sciences Qualitative Research Topics For STEM Students

  • Geologists’ Risk Perception and Decision-Making
  • Volcano Hazard Preparedness in At-Risk Communities
  • Public Attitudes Toward Geological Hazards
  • Environmental Consequences of Extractive Industries
  • Perceptions of Geological Time and Deep Earth Processes
  • Use of Geospatial Technology in Environmental Research
  • Role of Geology in Disaster Preparedness and Response
  • Geological Factors Influencing Urban Planning
  • Community Engagement in Geoscience Education
  • Climate Change Communication and Public Understanding

Astronomy and Space Science Qualitative Research Topics

  • The Role of Science Communication in Astronomy Education
  • Perceptions of Space Exploration and Colonization
  • UFO and Extraterrestrial Life Beliefs
  • Public Understanding of Black Holes and Neutron Stars
  • Space Tourism and Future Space Travel
  • Impact of Space Science Outreach Programs on Student Interest
  • Cultural Beliefs and Rituals Related to Celestial Events
  • Space Science in Indigenous Knowledge Systems
  • Public Engagement with Astronomical Phenomena
  • Space Exploration in Science Fiction and Popular Culture

Medicine and Health Sciences Qualitative Research Topics

  • Patient-Physician Communication and Trust
  • Ethical Considerations in Human Cloning and Genetic Modification
  • Public Attitudes Toward Vaccination
  • Coping Strategies for Healthcare Workers in Pandemics
  • Cultural Beliefs and Health Practices
  • Health Disparities Among Underserved Communities
  • Medical Decision-Making and Informed Consent
  • Mental Health Stigma and Help-Seeking Behavior
  • Wellness Practices and Health-Related Beliefs
  • Perceptions of Alternative and Complementary Medicine

Psychology Qualitative Research Topics

  • Perceptions of Body Image in Different Cultures
  • Workplace Stress and Coping Mechanisms
  • LGBTQ+ Youth Experiences and Well-Being
  • Cross-Cultural Differences in Parenting Styles and Outcomes
  • Perceptions of Psychotherapy and Counseling
  • Attitudes Toward Medication for Mental Health Conditions
  • Psychological Well-being of Older Adults
  • Role of Cultural and Social Factors in Psychological Well-being
  • Technology Use and Its Impact on Mental Health

Social Sciences Qualitative Research Topics

  • Political Polarization and Online Echo Chambers
  • Immigration and Acculturation Experiences
  • Educational Inequality and School Policy
  • Youth Engagement in Environmental Activism
  • Identity and Social Media in the Digital Age
  • Social Media and Its Influence on Political Beliefs
  • Family Dynamics and Conflict Resolution
  • Social Support and Coping Strategies in College Students
  • Perceptions of Cyberbullying Among Adolescents
  • Impact of Social Movements on Societal Change

Interesting Sociology Qualitative Research Topics For STEM Students

  • Perceptions of Racial Inequality and Discrimination
  • Aging and Quality of Life in Elderly Populations
  • Gender Roles and Expectations in Relationships
  • Online Communities and Social Support
  • Cultural Practices and Beliefs Related to Marriage
  • Family Dynamics and Coping Mechanisms
  • Perceptions of Community Safety and Policing
  • Attitudes Toward Social Welfare Programs
  • Influence of Media on Perceptions of Social Issues
  • Youth Perspectives on Education and Career Aspirations

Anthropology Qualitative Research Topics

  • Traditional Knowledge and Biodiversity Conservation
  • Cultural Variation in Parenting Practices
  • Indigenous Language Revitalization Efforts
  • Social Impacts of Tourism on Indigenous Communities
  • Rituals and Ceremonies in Different Cultural Contexts
  • Food and Identity in Cultural Practices
  • Traditional Healing and Healthcare Practices
  • Indigenous Rights and Land Conservation
  • Ethnographic Studies of Marginalized Communities
  • Cultural Practices Surrounding Death and Mourning

Economics and Business Qualitative Research Topics

  • Small Business Resilience in Times of Crisis
  • Workplace Diversity and Inclusion
  • Corporate Social Responsibility Perceptions
  • International Trade and Cultural Perceptions
  • Consumer Behavior and Decision-Making in E-Commerce
  • Business Ethics and Ethical Decision-Making
  • Innovation and Entrepreneurship in Startups
  • Perceptions of Economic Inequality and Wealth Distribution
  • Impact of Economic Policies on Communities
  • Role of Economic Education in Financial Literacy

Good Education Qualitative Research Topics For STEM Students

  • Homeschooling Experiences and Outcomes
  • Teacher Burnout and Coping Strategies
  • Inclusive Education and Special Needs Integration
  • Student Perspectives on Online Learning
  • High-Stakes Testing and Its Impact on Students
  • Multilingual Education and Bilingualism
  • Perceptions of Educational Technology in Classrooms
  • School Climate and Student Well-being
  • Teacher-Student Relationships and Their Effects on Learning
  • Cultural Diversity in Education and Inclusion

Environmental Engineering Qualitative Research Topics

  • Sustainable Transportation and Community Preferences
  • Ethical Considerations in Waste Reduction and Recycling
  • Public Attitudes Toward Renewable Energy Projects
  • Environmental Impact Assessment and Community Engagement
  • Sustainable Urban Planning and Neighborhood Perceptions
  • Water Quality and Conservation Practices in Residential Areas
  • Green Building Practices and User Experiences
  • Community Resilience in the Face of Climate Change
  • Role of Environmental Engineers in Disaster Preparedness

Why Qualitative Research Topics Are Good for STEM Students

  • Deeper Understanding: Qualitative research encourages STEM students to explore complex issues from a human perspective. This deepens their understanding of the broader impact of scientific discoveries and technological advancements.
  • Critical Thinking: Qualitative research fosters critical thinking skills by requiring students to analyze and interpret data, consider diverse viewpoints, and draw nuanced conclusions.
  • Real-World Relevance: Many qualitative research topics have real-world applications. Students can address problems, inform policy, and contribute to society by investigating issues that matter.
  • Interdisciplinary Learning: Qualitative research often transcends traditional STEM boundaries, allowing students to draw on insights from psychology, sociology, anthropology, and other fields.
  • Preparation for Future Careers: Qualitative research skills are valuable in various STEM careers, as they enable students to communicate complex ideas and understand the human and social aspects of their work.

Qualitative Research Topics for High School STEM Students

High school STEM students can benefit from qualitative research by honing their critical thinking and problem-solving skills. Here are some qualitative research topics suitable for high school students:

  • Perceptions of STEM Education: Investigate students’ and teachers’ perceptions of STEM education and its effectiveness.
  • Environmental Awareness: Examine the factors influencing high school students’ environmental awareness and eco-friendly behaviors.
  • Digital Learning in the Classroom: Explore the impact of technology on learning experiences and student engagement.
  • STEM Gender Gap: Analyze the reasons behind the gender gap in STEM fields and potential strategies for closing it.
  • Science Communication: Study how high school students perceive and engage with popular science communication channels, like YouTube and podcasts.
  • Impact of Extracurricular STEM Activities: Investigate how participation in STEM clubs and competitions influences students’ interest and performance in science and technology.

In essence, these are the best qualitative research topics for STEM students in the Philippines and are usable for other countries students too. Qualitative research topics offer STEM students a unique opportunity to explore the multifaceted aspects of their fields, develop essential skills, and contribute to meaningful discoveries. With the right topic selection, a strong research design, and ethical considerations, STEM students can easily get the best knowledge on exciting qualitative research that benefits both their career growth. So, choose a topic that resonates with your interests and get best job in your interest field.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

StatAnalytica

200+ Experimental Quantitative Research Topics For STEM Students In 2023

Experimental Quantitative Research Topics For Stem Students

STEM means Science, Technology, Engineering, and Math, which is not the only stuff we learn in school. It is like a treasure chest of skills that help students become great problem solvers, ready to tackle the real world’s challenges.

In this blog, we are here to explore the world of Research Topics for STEM Students. We will break down what STEM really means and why it is so important for students. In addition, we will give you the lowdown on how to pick a fascinating research topic. We will explain a list of 200+ Experimental Quantitative Research Topics For STEM Students.

And when it comes to writing a research title, we will guide you step by step. So, stay with us as we unlock the exciting world of STEM research – it is not just about grades; it is about growing smarter, more confident, and happier along the way.

What Is STEM?

Table of Contents

STEM is Science, Technology, Engineering, and Mathematics. It is a way of talking about things like learning, jobs, and activities related to these four important subjects. Science is about understanding the world around us, technology is about using tools and machines to solve problems, engineering is about designing and building things, and mathematics is about numbers and solving problems with them. STEM helps us explore, discover, and create cool stuff that makes our world better and more exciting.

Why STEM Research Is Important?

STEM research is important because it helps us learn new things about the world and solve problems. When scientists, engineers, and mathematicians study these subjects, they can discover cures for diseases, create new technology that makes life easier, and build things that help us live better. It is like a big puzzle where we put together pieces of knowledge to make our world safer, healthier, and more fun.

  • STEM research leads to new discoveries and solutions.
  • It helps find cures for diseases.
  • STEM technology makes life easier.
  • Engineers build things that improve our lives.
  • Mathematics helps us understand and solve complex problems.

How to Choose a Topic for STEM Research Paper

Here are some steps to choose a topic for STEM Research Paper:

Step 1: Identify Your Interests

Think about what you like and what excites you in science, technology, engineering, or math. It could be something you learned in school, saw in the news, or experienced in your daily life. Choosing a topic you’re passionate about makes the research process more enjoyable.

Step 2: Research Existing Topics

Look up different STEM research areas online, in books, or at your library. See what scientists and experts are studying. This can give you ideas and help you understand what’s already known in your chosen field.

Step 3: Consider Real-World Problems

Think about the problems you see around you. Are there issues in your community or the world that STEM can help solve? Choosing a topic that addresses a real-world problem can make your research impactful.

Step 4: Talk to Teachers and Mentors

Discuss your interests with your teachers, professors, or mentors. They can offer guidance and suggest topics that align with your skills and goals. They may also provide resources and support for your research.

Step 5: Narrow Down Your Topic

Once you have some ideas, narrow them down to a specific research question or project. Make sure it’s not too broad or too narrow. You want a topic that you can explore in depth within the scope of your research paper.

Here we will discuss 200+ Experimental Quantitative Research Topics For STEM Students: 

Qualitative Research Topics for STEM Students:

Qualitative research focuses on exploring and understanding phenomena through non-numerical data and subjective experiences. Here are 10 qualitative research topics for STEM students:

  • Exploring the experiences of female STEM students in overcoming gender bias in academia.
  • Understanding the perceptions of teachers regarding the integration of technology in STEM education.
  • Investigating the motivations and challenges of STEM educators in underprivileged schools.
  • Exploring the attitudes and beliefs of parents towards STEM education for their children.
  • Analyzing the impact of collaborative learning on student engagement in STEM subjects.
  • Investigating the experiences of STEM professionals in bridging the gap between academia and industry.
  • Understanding the cultural factors influencing STEM career choices among minority students.
  • Exploring the role of mentorship in the career development of STEM graduates.
  • Analyzing the perceptions of students towards the ethics of emerging STEM technologies like AI and CRISPR.
  • Investigating the emotional well-being and stress levels of STEM students during their academic journey.

Easy Experimental Research Topics for STEM Students:

These experimental research topics are relatively straightforward and suitable for STEM students who are new to research:

  •  Measuring the effect of different light wavelengths on plant growth.
  •  Investigating the relationship between exercise and heart rate in various age groups.
  •  Testing the effectiveness of different insulating materials in conserving heat.
  •  Examining the impact of pH levels on the rate of chemical reactions.
  •  Studying the behavior of magnets in different temperature conditions.
  •  Investigating the effect of different concentrations of a substance on bacterial growth.
  •  Testing the efficiency of various sunscreen brands in blocking UV radiation.
  •  Measuring the impact of music genres on concentration and productivity.
  •  Examining the correlation between the angle of a ramp and the speed of a rolling object.
  •  Investigating the relationship between the number of blades on a wind turbine and energy output.

Research Topics for STEM Students in the Philippines:

These research topics are tailored for STEM students in the Philippines:

  •  Assessing the impact of climate change on the biodiversity of coral reefs in the Philippines.
  •  Studying the potential of indigenous plants in the Philippines for medicinal purposes.
  •  Investigating the feasibility of harnessing renewable energy sources like solar and wind in rural Filipino communities.
  •  Analyzing the water quality and pollution levels in major rivers and lakes in the Philippines.
  •  Exploring sustainable agricultural practices for small-scale farmers in the Philippines.
  •  Assessing the prevalence and impact of dengue fever outbreaks in urban areas of the Philippines.
  •  Investigating the challenges and opportunities of STEM education in remote Filipino islands.
  •  Studying the impact of typhoons and natural disasters on infrastructure resilience in the Philippines.
  •  Analyzing the genetic diversity of endemic species in the Philippine rainforests.
  •  Assessing the effectiveness of disaster preparedness programs in Philippine communities.

Read More 

  • Frontend Project Ideas
  • Business Intelligence Projects For Beginners

Good Research Topics for STEM Students:

These research topics are considered good because they offer interesting avenues for investigation and learning:

  •  Developing a low-cost and efficient water purification system for rural communities.
  •  Investigating the potential use of CRISPR-Cas9 for gene therapy in genetic disorders.
  •  Studying the applications of blockchain technology in securing medical records.
  •  Analyzing the impact of 3D printing on customized prosthetics for amputees.
  •  Exploring the use of artificial intelligence in predicting and preventing forest fires.
  •  Investigating the effects of microplastic pollution on aquatic ecosystems.
  •  Analyzing the use of drones in monitoring and managing agricultural crops.
  •  Studying the potential of quantum computing in solving complex optimization problems.
  •  Investigating the development of biodegradable materials for sustainable packaging.
  •  Exploring the ethical implications of gene editing in humans.

Unique Research Topics for STEM Students:

Unique research topics can provide STEM students with the opportunity to explore unconventional and innovative ideas. Here are 10 unique research topics for STEM students:

  •  Investigating the use of bioluminescent organisms for sustainable lighting solutions.
  •  Studying the potential of using spider silk proteins for advanced materials in engineering.
  •  Exploring the application of quantum entanglement for secure communication in the field of cryptography.
  •  Analyzing the feasibility of harnessing geothermal energy from underwater volcanoes.
  •  Investigating the use of CRISPR-Cas12 for rapid and cost-effective disease diagnostics.
  •  Studying the interaction between artificial intelligence and human creativity in art and music generation.
  •  Exploring the development of edible packaging materials to reduce plastic waste.
  •  Investigating the impact of microgravity on cellular behavior and tissue regeneration in space.
  •  Analyzing the potential of using sound waves to detect and combat invasive species in aquatic ecosystems.
  •  Studying the use of biotechnology in reviving extinct species, such as the woolly mammoth.

Experimental Research Topics for STEM Students in the Philippines

Research topics for STEM students in the Philippines can address specific regional challenges and opportunities. Here are 10 experimental research topics for STEM students in the Philippines:

  •  Assessing the effectiveness of locally sourced materials for disaster-resilient housing construction in typhoon-prone areas.
  •  Investigating the utilization of indigenous plants for natural remedies in Filipino traditional medicine.
  •  Studying the impact of volcanic soil on crop growth and agriculture in volcanic regions of the Philippines.
  •  Analyzing the water quality and purification methods in remote island communities.
  •  Exploring the feasibility of using bamboo as a sustainable construction material in the Philippines.
  •  Investigating the potential of using solar stills for freshwater production in water-scarce regions.
  •  Studying the effects of climate change on the migration patterns of bird species in the Philippines.
  •  Analyzing the growth and sustainability of coral reefs in marine protected areas.
  •  Investigating the utilization of coconut waste for biofuel production.
  •  Studying the biodiversity and conservation efforts in the Tubbataha Reefs Natural Park.

Capstone Research Topics for STEM Students in the Philippines:

Capstone research projects are often more comprehensive and can address real-world issues. Here are 10 capstone research topics for STEM students in the Philippines:

  •  Designing a low-cost and sustainable sanitation system for informal settlements in urban Manila.
  •  Developing a mobile app for monitoring and reporting natural disasters in the Philippines.
  •  Assessing the impact of climate change on the availability and quality of drinking water in Philippine cities.
  •  Designing an efficient traffic management system to address congestion in major Filipino cities.
  •  Analyzing the health implications of air pollution in densely populated urban areas of the Philippines.
  •  Developing a renewable energy microgrid for off-grid communities in the archipelago.
  •  Assessing the feasibility of using unmanned aerial vehicles (drones) for agricultural monitoring in rural Philippines.
  •  Designing a low-cost and sustainable aquaponics system for urban agriculture.
  •  Investigating the potential of vertical farming to address food security in densely populated urban areas.
  •  Developing a disaster-resilient housing prototype suitable for typhoon-prone regions.

Experimental Quantitative Research Topics for STEM Students:

Experimental quantitative research involves the collection and analysis of numerical data to conclude. Here are 10 Experimental Quantitative Research Topics For STEM Students interested in experimental quantitative research:

  •  Examining the impact of different fertilizers on crop yield in agriculture.
  •  Investigating the relationship between exercise and heart rate among different age groups.
  •  Analyzing the effect of varying light intensities on photosynthesis in plants.
  •  Studying the efficiency of various insulation materials in reducing building heat loss.
  •  Investigating the relationship between pH levels and the rate of corrosion in metals.
  •  Analyzing the impact of different concentrations of pollutants on aquatic ecosystems.
  •  Examining the effectiveness of different antibiotics on bacterial growth.
  •  Trying to figure out how temperature affects how thick liquids are.
  •  Finding out if there is a link between the amount of pollution in the air and lung illnesses in cities.
  •  Analyzing the efficiency of solar panels in converting sunlight into electricity under varying conditions.

Descriptive Research Topics for STEM Students

Descriptive research aims to provide a detailed account or description of a phenomenon. Here are 10 topics for STEM students interested in descriptive research:

  •  Describing the physical characteristics and behavior of a newly discovered species of marine life.
  •  Documenting the geological features and formations of a particular region.
  •  Creating a detailed inventory of plant species in a specific ecosystem.
  •  Describing the properties and behavior of a new synthetic polymer.
  •  Documenting the daily weather patterns and climate trends in a particular area.
  •  Providing a comprehensive analysis of the energy consumption patterns in a city.
  •  Describing the structural components and functions of a newly developed medical device.
  •  Documenting the characteristics and usage of traditional construction materials in a region.
  •  Providing a detailed account of the microbiome in a specific environmental niche.
  •  Describing the life cycle and behavior of a rare insect species.

Research Topics for STEM Students in the Pandemic:

The COVID-19 pandemic has raised many research opportunities for STEM students. Here are 10 research topics related to pandemics:

  •  Analyzing the effectiveness of various personal protective equipment (PPE) in preventing the spread of respiratory viruses.
  •  Studying the impact of lockdown measures on air quality and pollution levels in urban areas.
  •  Investigating the psychological effects of quarantine and social isolation on mental health.
  •  Analyzing the genomic variation of the SARS-CoV-2 virus and its implications for vaccine development.
  •  Studying the efficacy of different disinfection methods on various surfaces.
  •  Investigating the role of contact tracing apps in tracking & controlling the spread of infectious diseases.
  •  Analyzing the economic impact of the pandemic on different industries and sectors.
  •  Studying the effectiveness of remote learning in STEM education during lockdowns.
  •  Investigating the social disparities in healthcare access during a pandemic.
  • Analyzing the ethical considerations surrounding vaccine distribution and prioritization.

Research Topics for STEM Students Middle School

Research topics for middle school STEM students should be engaging and suitable for their age group. Here are 10 research topics:

  • Investigating the growth patterns of different types of mold on various food items.
  • Studying the negative effects of music on plant growth and development.
  • Analyzing the relationship between the shape of a paper airplane and its flight distance.
  • Investigating the properties of different materials in making effective insulators for hot and cold beverages.
  • Studying the effect of salt on the buoyancy of different objects in water.
  • Analyzing the behavior of magnets when exposed to different temperatures.
  • Investigating the factors that affect the rate of ice melting in different environments.
  • Studying the impact of color on the absorption of heat by various surfaces.
  • Analyzing the growth of crystals in different types of solutions.
  • Investigating the effectiveness of different natural repellents against common pests like mosquitoes.

Technology Research Topics for STEM Students

Technology is at the forefront of STEM fields. Here are 10 research topics for STEM students interested in technology:

  • Developing and optimizing algorithms for autonomous drone navigation in complex environments.
  • Exploring the use of blockchain technology for enhancing the security and transparency of supply chains.
  • Investigating the applications of virtual reality (VR) and augmented reality (AR) in medical training and surgery simulations.
  • Studying the potential of 3D printing for creating personalized prosthetics and orthopedic implants.
  • Analyzing the ethical and privacy implications of facial recognition technology in public spaces.
  • Investigating the development of quantum computing algorithms for solving complex optimization problems.
  • Explaining the use of machine learning and AI in predicting and mitigating the impact of natural disasters.
  • Studying the advancement of brain-computer interfaces for assisting individuals with
  • disabilities.
  • Analyzing the role of wearable technology in monitoring and improving personal health and wellness.
  • Investigating the use of robotics in disaster response and search and rescue operations.

Scientific Research Topics for STEM Students

Scientific research encompasses a wide range of topics. Here are 10 research topics for STEM students focusing on scientific exploration:

  • Investigating the behavior of subatomic particles in high-energy particle accelerators.
  • Studying the ecological impact of invasive species on native ecosystems.
  • Analyzing the genetics of antibiotic resistance in bacteria and its implications for healthcare.
  • Exploring the physics of gravitational waves and their detection through advanced interferometry.
  • Investigating the neurobiology of memory formation and retention in the human brain.
  • Studying the biodiversity and adaptation of extremophiles in harsh environments.
  • Analyzing the chemistry of deep-sea hydrothermal vents and their potential for life beyond Earth.
  • Exploring the properties of superconductors and their applications in technology.
  • Investigating the mechanisms of stem cell differentiation for regenerative medicine.
  • Studying the dynamics of climate change and its impact on global ecosystems.

Interesting Research Topics for STEM Students:

Engaging and intriguing research topics can foster a passion for STEM. Here are 10 interesting research topics for STEM students:

  • Exploring the science behind the formation of auroras and their cultural significance.
  • Investigating the mysteries of dark matter and dark energy in the universe.
  • Studying the psychology of decision-making in high-pressure situations, such as sports or
  • emergencies.
  • Analyzing the impact of social media on interpersonal relationships and mental health.
  • Exploring the potential for using genetic modification to create disease-resistant crops.
  • Investigating the cognitive processes involved in solving complex puzzles and riddles.
  • Studying the history and evolution of cryptography and encryption methods.
  • Analyzing the physics of time travel and its theoretical possibilities.
  • Exploring the role of Artificial Intelligence  in creating art and music.
  • Investigating the science of happiness and well-being, including factors contributing to life satisfaction.

Practical Research Topics for STEM Students

Practical research often leads to real-world solutions. Here are 10 practical research topics for STEM students:

  • Developing an affordable and sustainable water purification system for rural communities.
  • Designing a low-cost, energy-efficient home heating and cooling system.
  • Investigating strategies for reducing food waste in the supply chain and households.
  • Studying the effectiveness of eco-friendly pest control methods in agriculture.
  • Analyzing the impact of renewable energy integration on the stability of power grids.
  • Developing a smartphone app for early detection of common medical conditions.
  • Investigating the feasibility of vertical farming for urban food production.
  • Designing a system for recycling and upcycling electronic waste.
  • Studying the environmental benefits of green roofs and their potential for urban heat island mitigation.
  • Analyzing the efficiency of alternative transportation methods in reducing carbon emissions.

Experimental Research Topics for STEM Students About Plants

Plants offer a rich field for experimental research. Here are 10 experimental research topics about plants for STEM students:

  • Investigating the effect of different light wavelengths on plant growth and photosynthesis.
  • Studying the impact of various fertilizers and nutrient solutions on crop yield.
  • Analyzing the response of plants to different types and concentrations of plant hormones.
  • Investigating the role of mycorrhizal in enhancing nutrient uptake in plants.
  • Studying the effects of drought stress and water scarcity on plant physiology and adaptation mechanisms.
  • Analyzing the influence of soil pH on plant nutrient availability and growth.
  • Investigating the chemical signaling and defense mechanisms of plants against herbivores.
  • Studying the impact of environmental pollutants on plant health and genetic diversity.
  • Analyzing the role of plant secondary metabolites in pharmaceutical and agricultural applications.
  • Investigating the interactions between plants and beneficial microorganisms in the rhizosphere.

Qualitative Research Topics for STEM Students in the Philippines

Qualitative research in the Philippines can address local issues and cultural contexts. Here are 10 qualitative research topics for STEM students in the Philippines:

  • Exploring indigenous knowledge and practices in sustainable agriculture in Filipino communities.
  • Studying the perceptions and experiences of Filipino fishermen in coping with climate change impacts.
  • Analyzing the cultural significance and traditional uses of medicinal plants in indigenous Filipino communities.
  • Investigating the barriers and facilitators of STEM education access in remote Philippine islands.
  • Exploring the role of traditional Filipino architecture in natural disaster resilience.
  • Studying the impact of indigenous farming methods on soil conservation and fertility.
  • Analyzing the cultural and environmental significance of mangroves in coastal Filipino regions.
  • Investigating the knowledge and practices of Filipino healers in treating common ailments.
  • Exploring the cultural heritage and conservation efforts of the Ifugao rice terraces.
  • Studying the perceptions and practices of Filipino communities in preserving marine biodiversity.

Science Research Topics for STEM Students

Science offers a diverse range of research avenues. Here are 10 science research topics for STEM students:

  • Investigating the potential of gene editing techniques like CRISPR-Cas9 in curing genetic diseases.
  • Studying the ecological impacts of species reintroduction programs on local ecosystems.
  • Analyzing the effects of microplastic pollution on aquatic food webs and ecosystems.
  • Investigating the link between air pollution and respiratory health in urban populations.
  • Studying the role of epigenetics in the inheritance of acquired traits in organisms.
  • Analyzing the physiology and adaptations of extremophiles in extreme environments on Earth.
  • Investigating the genetics of longevity and factors influencing human lifespan.
  • Studying the behavioral ecology and communication strategies of social insects.
  • Analyzing the effects of deforestation on global climate patterns and biodiversity loss.
  • Investigating the potential of synthetic biology in creating bioengineered organisms for beneficial applications.

Correlational Research Topics for STEM Students

Correlational research focuses on relationships between variables. Here are 10 correlational research topics for STEM students:

  • Analyzing the correlation between dietary habits and the incidence of chronic diseases.
  • Studying the relationship between exercise frequency and mental health outcomes.
  • Investigating the correlation between socioeconomic status and access to quality healthcare.
  • Analyzing the link between social media usage and self-esteem in adolescents.
  • Studying the correlation between academic performance and sleep duration among students.
  • Investigating the relationship between environmental factors and the prevalence of allergies.
  • Analyzing the correlation between technology use and attention span in children.
  • Studying how environmental factors are related to the frequency of allergies.
  • Investigating the link between parental involvement in education and student achievement.
  • Analyzing the correlation between temperature fluctuations and wildlife migration patterns.

Quantitative Research Topics for STEM Students in the Philippines

Quantitative research in the Philippines can address specific regional issues. Here are 10 quantitative research topics for STEM students in the Philippines

  • Analyzing the impact of typhoons on coastal erosion rates in the Philippines.
  • Studying the quantitative effects of land use change on watershed hydrology in Filipino regions.
  • Investigating the quantitative relationship between deforestation and habitat loss for endangered species.
  • Analyzing the quantitative patterns of marine biodiversity in Philippine coral reef ecosystems.
  • Studying the quantitative assessment of water quality in major Philippine rivers and lakes.
  • Investigating the quantitative analysis of renewable energy potential in specific Philippine provinces.
  • Analyzing the quantitative impacts of agricultural practices on soil health and fertility.
  • Studying the quantitative effectiveness of mangrove restoration in coastal protection in the Philippines.
  • Investigating the quantitative evaluation of indigenous agricultural practices for sustainability.
  • Analyzing the quantitative patterns of air pollution and its health impacts in urban Filipino areas.

Things That Must Keep In Mind While Writing Quantitative Research Title 

Here are few things that must be keep in mind while writing quantitative research tile:

1. Be Clear and Precise

Make sure your research title is clear and says exactly what your study is about. People should easily understand the topic and goals of your research by reading the title.

2. Use Important Words

Include words that are crucial to your research, like the main subjects, who you’re studying, and how you’re doing your research. This helps others find your work and understand what it’s about.

3. Avoid Confusing Words

Stay away from words that might confuse people. Your title should be easy to grasp, even if someone isn’t an expert in your field.

4. Show Your Research Approach

Tell readers what kind of research you did, like experiments or surveys. This gives them a hint about how you conducted your study.

5. Match Your Title with Your Research Questions

Make sure your title matches the questions you’re trying to answer in your research. It should give a sneak peek into what your study is all about and keep you on the right track as you work on it.

STEM students, addressing what STEM is and why research matters in this field. It offered an extensive list of research topics , including experimental, qualitative, and regional options, catering to various academic levels and interests. Whether you’re a middle school student or pursuing advanced studies, these topics offer a wealth of ideas. The key takeaway is to choose a topic that resonates with your passion and aligns with your goals, ensuring a successful journey in STEM research. Choose the best Experimental Quantitative Research Topics For Stem Students today!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

What are your chances of acceptance?

Calculate for all schools, your chance of acceptance.

Duke University

Your chancing factors

Extracurriculars.

research topics for senior high school stem students

100 Interesting Research Paper Topics for High Schoolers

What’s covered:, how to pick the right research topic, elements of a strong research paper.

  • Interesting Research Paper Topics

Composing a research paper can be a daunting task for first-time writers. In addition to making sure you’re using concise language and your thoughts are organized clearly, you need to find a topic that draws the reader in.

CollegeVine is here to help you brainstorm creative topics! Below are 100 interesting research paper topics that will help you engage with your project and keep you motivated until you’ve typed the final period. 

A research paper is similar to an academic essay but more lengthy and requires more research. This added length and depth is bittersweet: although a research paper is more work, you can create a more nuanced argument, and learn more about your topic. Research papers are a demonstration of your research ability and your ability to formulate a convincing argument. How well you’re able to engage with the sources and make original contributions will determine the strength of your paper. 

You can’t have a good research paper without a good research paper topic. “Good” is subjective, and different students will find different topics interesting. What’s important is that you find a topic that makes you want to find out more and make a convincing argument. Maybe you’ll be so interested that you’ll want to take it further and investigate some detail in even greater depth!

For example, last year over 4000 students applied for 500 spots in the Lumiere Research Scholar Program , a rigorous research program founded by Harvard researchers. The program pairs high-school students with Ph.D. mentors to work 1-on-1 on an independent research project . The program actually does not require you to have a research topic in mind when you apply, but pro tip: the more specific you can be the more likely you are to get in!

Introduction

The introduction to a research paper serves two critical functions: it conveys the topic of the paper and illustrates how you will address it. A strong introduction will also pique the interest of the reader and make them excited to read more. Selecting a research paper topic that is meaningful, interesting, and fascinates you is an excellent first step toward creating an engaging paper that people will want to read.

Thesis Statement

A thesis statement is technically part of the introduction—generally the last sentence of it—but is so important that it merits a section of its own. The thesis statement is a declarative sentence that tells the reader what the paper is about. A strong thesis statement serves three purposes: present the topic of the paper, deliver a clear opinion on the topic, and summarize the points the paper will cover.

An example of a good thesis statement of diversity in the workforce is:

Diversity in the workplace is not just a moral imperative but also a strategic advantage for businesses, as it fosters innovation, enhances creativity, improves decision-making, and enables companies to better understand and connect with a diverse customer base.

The body is the largest section of a research paper. It’s here where you support your thesis, present your facts and research, and persuade the reader.

Each paragraph in the body of a research paper should have its own idea. The idea is presented, generally in the first sentence of the paragraph, by a topic sentence. The topic sentence acts similarly to the thesis statement, only on a smaller scale, and every sentence in the paragraph with it supports the idea it conveys.

An example of a topic sentence on how diversity in the workplace fosters innovation is:

Diversity in the workplace fosters innovation by bringing together individuals with different backgrounds, perspectives, and experiences, which stimulates creativity, encourages new ideas, and leads to the development of innovative solutions to complex problems.

The body of an engaging research paper flows smoothly from one idea to the next. Create an outline before writing and order your ideas so that each idea logically leads to another.

The conclusion of a research paper should summarize your thesis and reinforce your argument. It’s common to restate the thesis in the conclusion of a research paper.

For example, a conclusion for a paper about diversity in the workforce is:

In conclusion, diversity in the workplace is vital to success in the modern business world. By embracing diversity, companies can tap into the full potential of their workforce, promote creativity and innovation, and better connect with a diverse customer base, ultimately leading to greater success and a more prosperous future for all.

Reference Page

The reference page is normally found at the end of a research paper. It provides proof that you did research using credible sources, properly credits the originators of information, and prevents plagiarism.

There are a number of different formats of reference pages, including APA, MLA, and Chicago. Make sure to format your reference page in your teacher’s preferred style.

  • Analyze the benefits of diversity in education.
  • Are charter schools useful for the national education system?
  • How has modern technology changed teaching?
  • Discuss the pros and cons of standardized testing.
  • What are the benefits of a gap year between high school and college?
  • What funding allocations give the most benefit to students?
  • Does homeschooling set students up for success?
  • Should universities/high schools require students to be vaccinated?
  • What effect does rising college tuition have on high schoolers?
  • Do students perform better in same-sex schools?
  • Discuss and analyze the impacts of a famous musician on pop music.
  • How has pop music evolved over the past decade?
  • How has the portrayal of women in music changed in the media over the past decade?
  • How does a synthesizer work?
  • How has music evolved to feature different instruments/voices?
  • How has sound effect technology changed the music industry?
  • Analyze the benefits of music education in high schools.
  • Are rehabilitation centers more effective than prisons?
  • Are congestion taxes useful?
  • Does affirmative action help minorities?
  • Can a capitalist system effectively reduce inequality?
  • Is a three-branch government system effective?
  • What causes polarization in today’s politics?
  • Is the U.S. government racially unbiased?
  • Choose a historical invention and discuss its impact on society today.
  • Choose a famous historical leader who lost power—what led to their eventual downfall?
  • How has your country evolved over the past century?
  • What historical event has had the largest effect on the U.S.?
  • Has the government’s response to national disasters improved or declined throughout history?
  • Discuss the history of the American occupation of Iraq.
  • Explain the history of the Israel-Palestine conflict.
  • Is literature relevant in modern society?
  • Discuss how fiction can be used for propaganda.
  • How does literature teach and inform about society?
  • Explain the influence of children’s literature on adulthood.
  • How has literature addressed homosexuality?
  • Does the media portray minorities realistically?
  • Does the media reinforce stereotypes?
  • Why have podcasts become so popular?
  • Will streaming end traditional television?
  • What is a patriot?
  • What are the pros and cons of global citizenship?
  • What are the causes and effects of bullying?
  • Why has the divorce rate in the U.S. been declining in recent years?
  • Is it more important to follow social norms or religion?
  • What are the responsible limits on abortion, if any?
  • How does an MRI machine work?
  • Would the U.S. benefit from socialized healthcare?
  • Elderly populations
  • The education system
  • State tax bases
  • How do anti-vaxxers affect the health of the country?
  • Analyze the costs and benefits of diet culture.
  • Should companies allow employees to exercise on company time?
  • What is an adequate amount of exercise for an adult per week/per month/per day?
  • Discuss the effects of the obesity epidemic on American society.
  • Are students smarter since the advent of the internet?
  • What departures has the internet made from its original design?
  • Has digital downloading helped the music industry?
  • Discuss the benefits and costs of stricter internet censorship.
  • Analyze the effects of the internet on the paper news industry.
  • What would happen if the internet went out?
  • How will artificial intelligence (AI) change our lives?
  • What are the pros and cons of cryptocurrency?
  • How has social media affected the way people relate with each other?
  • Should social media have an age restriction?
  • Discuss the importance of source software.
  • What is more relevant in today’s world: mobile apps or websites?
  • How will fully autonomous vehicles change our lives?
  • How is text messaging affecting teen literacy?

Mental Health

  • What are the benefits of daily exercise?
  • How has social media affected people’s mental health?
  • What things contribute to poor mental and physical health?
  • Analyze how mental health is talked about in pop culture.
  • Discuss the pros and cons of more counselors in high schools.
  • How does stress affect the body?
  • How do emotional support animals help people?
  • What are black holes?
  • Discuss the biggest successes and failures of the EPA.
  • How has the Flint water crisis affected life in Michigan?
  • Can science help save endangered species?
  • Is the development of an anti-cancer vaccine possible?

Environment

  • What are the effects of deforestation on climate change?
  • Is climate change reversible?
  • How did the COVID-19 pandemic affect global warming and climate change?
  • Are carbon credits effective for offsetting emissions or just marketing?
  • Is nuclear power a safe alternative to fossil fuels?
  • Are hybrid vehicles helping to control pollution in the atmosphere?
  • How is plastic waste harming the environment?
  • Is entrepreneurism a trait people are born with or something they learn?
  • How much more should CEOs make than their average employee?
  • Can you start a business without money?
  • Should the U.S. raise the minimum wage?
  • Discuss how happy employees benefit businesses.
  • How important is branding for a business?
  • Discuss the ease, or difficulty, of landing a job today.
  • What is the economic impact of sporting events?
  • Are professional athletes overpaid?
  • Should male and female athletes receive equal pay?
  • What is a fair and equitable way for transgender athletes to compete in high school sports?
  • What are the benefits of playing team sports?
  • What is the most corrupt professional sport?

Where to Get More Research Paper Topic Ideas

If you need more help brainstorming topics, especially those that are personalized to your interests, you can use CollegeVine’s free AI tutor, Ivy . Ivy can help you come up with original research topic ideas, and she can also help with the rest of your homework, from math to languages.

Disclaimer: This post includes content sponsored by Lumiere Education.

Related CollegeVine Blog Posts

research topics for senior high school stem students

research topics for senior high school stem students

  • 2023 AERA in the News
  • 2022 AERA in the News
  • 2021 AERA In the News
  • 2020 AERA In the News
  • 2019 AERA In the News
  • 2018 AERA In the News
  • 2017 AERA In the News
  • 2016 AERA In the News
  • 2015 AERA In the News
  • 2014 AERA In the News
  • 2013 AERA In the News
  • AERA Speaking Out on Major Issues
  • 2023 AERA News Releases
  • 2022 AERA News Releases
  • 2021 AERA News Releases
  • 2020 AERA News Releases
  • 2019 AERA News Releases
  • 2018 AERA News Releases
  • 2017 AERA News Releases
  • 2016 AERA News Releases
  • 2015 AERA News Releases
  • 2014 AERA News Releases
  • 2013 AERA News Releases
  • 2012 AERA News Releases
  • 2011 News Releases
  • 2010 News Releases
  • 2009 News Releases
  • 2008 News Releases
  • 2007 News Releases
  • 2006 News Releases
  • 2005 News Releases
  • 2004 News Releases
  • AERA Research Archive
  • Trending Topic Research Files
  • Communication Resources for Researchers
  • AERA Highlights Archival Issues
  • AERA Video Gallery

research topics for senior high school stem students

Share 

 
STEM

Science, Technology Engineering, and Mathematics (STEM) is one of the most talked about topics in education, emphasizing research, problem solving, critical thinking, and creativity.

The following compendium of open-access articles are inclusive of all substantive AERA journal content regarding STEM published since 1969. This page will be updated as new articles are published. 


Jason Jabbari, Yung Chun, Wenrui Huang, Stephen Roll
October 2023
Researchers found that program acceptance was significantly associated with increased earnings and probabilities of working in a science, technology, engineering, and math (STEM) profession.


Robert R. Martinez, Jr., James M. Ellis
September 2023
Researchers found that STEM-CR involves four related yet distinct dimensions of Think, Know, Act, and Go. Results also demonstrated soundness of these STEM-CR dimensions by race and gender (key learning skills and techniques/Act).


Rosemary J. Perez, Rudisang Motshubi, Sarah L. Rodriguez
April 2023
Researchers found that because participants did not attend to how racism and White supremacy fostered negative climate, their strategies (e.g., increased recruitment, committees, workshops) left systemic racism intact and (un)intentionally amplified labor for racially minoritized graduate students and faculty champions who often led change efforts with little support.


Kathleen Lynch, Lily An, Zid Mancenido
, July 2022
Researchers found an average weighted impact estimate of +0.10 standard deviations on mathematics achievement outcomes.


Luis A. Leyva, R. Taylor McNeill, B R. Balmer, Brittany L. Marshall, V. Elizabeth King, Zander D. Alley
, May 2022
Researchers address this research gap by exploring four Black queer students’ experiences of oppression and agency in navigating invisibility as STEM majors.


Angela Starrett, Matthew J. Irvin, Christine Lotter, Jan A. Yow
, May 2022
Researchers found that the more place-based workforce development adolescents reported, the higher their expectancy beliefs, STEM career interest, and rural community aspirations.


Matthew H. Rafalow, Cassidy Puckett
May 2022
Researchers found that educational resources, like digital technologies, are also sorted by schools.


Pamela Burnard, Laura Colucci-Gray, Carolyn Cooke
 April 2022
This article makes a case for repositioning STEAM education as democratized enactments of transdisciplinary education, where arts and sciences are not separate or even separable endeavors.


Salome Wörner, Jochen Kuhn, Katharina Scheiter
, April 2022
Researchers conclude that for combining real and virtual experiments, apart from the individual affordances and the learning objectives of the different experiment types, especially their specific function for the learning task must be considered.


Seung-hyun Han, Eunjung Grace Oh, Sun “Pil” Kang
April 2022
Researchers found that the knowledge sharing mechanism and student learning outcomes can be explained in terms of their social capital within social networks.


Barbara Schneider, Joseph Krajcik, Jari Lavonen, Katariina Salmela-Aro, Christopher Klager, Lydia Bradford, I-Chien Chen, Quinton Baker, Israel Touitou, Deborah Peek-Brown, Rachel Marias Dezendorf, Sarah Maestrales, Kayla Bartz
March 2022 
Researchers found that improving secondary school science learning is achievable with a coherent system comprising teacher and student learning experiences, professional learning, and formative unit assessments that support students in “doing” science.


Paulo Tan, Alexis Padilla, Rachel Lambert
, March 2022
Researchers found that studies continue to avoid meaningful intersectional considerations of race and disability.


Ta-yang Hsieh, Sandra D. Simpkins
March 2022
Researchers found patterns with overall high/low beliefs, patterns with varying levels of motivational beliefs, and patterns characterized by domain differentiation.


Jonté A. Myers, Bradley S. Witzel, Sarah R. Powell, Hongli Li, Terri D. Pigott, Yan Ping Xin, Elizabeth M. Hughes
, February 2022
Findings of meta-regression analyses showed several moderators, such as sample composition, group size, intervention dosage, group assignment approach, interventionist, year of publication, and dependent measure type, significantly explained heterogeneity in effects across studies.


Grace A. Chen, Ilana S. Horn
, January 2022
The findings from this review highlight the interconnectedness of structures and individual lives, of the material and ideological elements of marginalization, of intersectionality and within-group heterogeneity, and of histories and institutions.


Victor R. Lee, Michelle Hoda Wilkerson, Kathryn Lanouette
December 2021
Researchers offer an interdisciplinary framework based on literature from multiple bodies of educational research to inform design, teaching and research for more effective, responsible, and inclusive student learning experiences with and about data.


Ido Davidesco, Camillia Matuk, Dana Bevilacqua, David Poeppel, Suzanne Dikker
December 2021
This essay critically evaluates the value added by portable brain technologies in education research and outlines a proposed research agenda, centered around questions related to student engagement, cognitive load, and self-regulation.


Guan K. Saw, Charlotte A. Agger
December 2021
Researchers found that during high school rural and small-town students shifted away from STEM fields and that geographic disparities in postsecondary STEM participation were largely explained by students’ demographics and precollege STEM career aspirations and academic preparation.


Kyle M. Whitcomb, Sonja Cwik, Chandralekha Singh
November 2021
Researchers found that on average across all years of study, underrepresented minority (URM) students experience a larger penalty to their mean overall and STEM GPA than even the most disadvantaged non-URM students.


Lana M. Minshew, Amanda A. Olsen, Jacqueline E. McLaughlin
, October 2021
Researchers found that the CA framework is a useful and effective model for supporting faculty in cultivating rich learning opportunities for STEM graduate students.


Xin Lin, Sarah R. Powell
, October 2021
Findings suggested fluency in both mathematics and reading, as well as working memory, yielded greater impacts on subsequent mathematics performance.


Christine L. Bae, Daphne C. Mills, Fa Zhang, Martinique Sealy, Lauren Cabrera, Marquita Sea
, September 2021
This systematic literature review is guided by a complex systems framework to organize and synthesize empirical studies of science talk in urban classrooms across individual (student or teacher), collective (interpersonal), and contextual (sociocultural, historical) planes.


Toya Jones Frank, Marvin G. Powell, Jenice L. View, Christina Lee, Jay A. Bradley, Asia Williams
 August/September 2021
Researchers found that teachers’ experiences of microaggressions accounted for most of the variance in our modeling of teachers’ thoughts of leaving the profession.


Ebony McGee, Yuan Fang, Yibin (Amanda) Ni, Thema Monroe-White
August 2021
Researchers found that 40.7% of the respondents reported that their career plans have been affected by Trump’s antiscience policies, 54.5% by the COVID-19 pandemic.


Martha Cecilia Bottia, Roslyn Arlin Mickelson, Cayce Jamil, Kyleigh Moniz, Leanne Barry
, May 2021
Consistent with cumulative disadvantage and critical race theories, findings reveal that the disproportionality of racially minoritized students in STEM is related to their inferior secondary school preparation; the presence of racialized lower quality educational contexts; reduced levels of psychosocial factors associated with STEM success; less exposure to inclusive and appealing curricula and instruction; lower levels of family social, cultural, and financial capital that foster academic outcomes; and fewer prospects for supplemental STEM learning opportunities. Policy implications of findings are discussed.


Iris Daruwala, Shani Bretas, Douglas D. Ready
 April 2021
Researchers describe how teachers, school leaders, and program staff navigated institutional pressures to improve state grade-level standardized test scores while implementing tasks and technologies designed to personalize student learning.


Michael A. Gottfried, Jay Plasman, Jennifer A. Freeman, Shaun Dougherty
March 2021
Researchers found that students with learning disabilities were more likely to earn more units in CTE courses compared with students without disabilities.


Ebony Omotola McGee
 December 2020
This manuscript also discusses how universities institutionalize diversity mentoring programs designed mostly to fix (read “assimilate”) underrepresented students of color while ignoring or minimizing the role of the STEM departments in creating racially hostile work and educational spaces.


Miray Tekkumru-Kisa, Mary Kay Stein, Walter Doyle
 November 2020
The purpose of this article is to revisit theory and research on tasks, a construct introduced by Walter Doyle nearly 40 years ago.


Elizabeth S. Park, Federick Ngo
November 2020
Researchers found that lower math placement may have supported women, and to a lesser extent URM students, in completing transferable STEM credits.


Karisma Morton, Catherine Riegle-Crumb
 August/September 2020
Results of regression analyses reveal that, net of school, teacher, and student characteristics, the time that teachers report spending on algebra and more advanced content in eighth grade algebra classes is significantly lower in schools that are predominantly Black compared to those that are not predominantly minority. Implications for future research are discussed.


Qi Zhang, Jessaca Spybrook, Fatih Unlu
, July 2020
Researchers consider strategies to maximize the efficiency of the study design when both student and teacher effects are of primary interest.


Jennifer Lin Russell, Richard Correnti, Mary Kay Stein, Ally Thomas, Victoria Bill, Laurie Speranzo
, July 20, 2020
Analysis of videotaped coaching conversations and teaching events suggests that model-trained coaches improved their capacity to use a high-leverage coaching practice—deep and specific prelesson planning conversations—and that growth in this practice predicted teaching improvement, specifically increased opportunities for students to engage in conceptual thinking.


Maithreyi Gopalan, Kelly Rosinger, Jee Bin Ahn
, April 21, 2020
The overarching purpose of this chapter is to explore and document the growth, applicability, promise, and limitations of quasi-experimental research designs in education research.


Thomas M. Philip, Ayush Gupta
, April 21, 2020
By bringing this collection of articles together, this chapter provides collective epistemic and empirical weight to claims of power and learning as co-constituted and co-constructed through interactional, microgenetic, and structural dynamics.


Steve Graham, Sharlene A. Kiuhara, Meade MacKay
, March 19, 2020
This meta-analysis examined if students writing about content material in science, social studies, and mathematics facilitated learning.


Janina Roloff, Uta Klusmann, Oliver Lüdtke, Ulrich Trautwein
, January 2020 
Multilevel regression analyses revealed that agreeableness, high school GPA, and the second state examination grade predicted teachers’ instructional quality.

: Contemporary Views on STEM Subjects and Language With English Learners
Okhee Lee, Amy Stephens
, 2020 
With the release of the consensus report , the authors highlight foundational constructs and perspectives associated with STEM subjects and language with English learners that frame the report.


Angela Calabrese Barton and Edna Tan
, 2020 
This essay presents a rightful presence framework to guide the study of teaching and learning in justice-oriented ways.


Day Greenberg, Angela Calabrese Barton, Carmen Turner, Kelly Hardy, Akeya Roper, Candace Williams, Leslie Rupert Herrenkohl, Elizabeth A. Davis, Tammy Tasker
, 2020
Researchers  report on how one community builds capacity for disrupting injustice and supporting each other during the COVID-19 crisis.


Tatiana Melguizo, Federick Ngo
, 2020
This study explores the extent to which “college-ready” students, by high school standards, are assigned to remedial courses in college.


Karisma Morton and Catherine Riegle-Crumb
, 2020
Results of regression analyses reveal that, net of school, teacher, and student characteristics, the time that teachers report spending on algebra and more advanced content in eighth grade algebra classes is significantly lower in schools that are predominantly Black compared to those that are not predominantly minority. Implications for future research are discussed.


Jonathan D. Schweig, Julia H. Kaufman, and V. Darleen Opfer
, 2020
Researchers found that there are both substantial fluctuations in students’ engagement in these practices and reported cognitive demand from day to day, as well as large differences across teachers.


David Blazar and Casey Archer
, 2020
Researchers found that exposure to “ambitious” mathematics practices is more strongly associated with test score gains of English language learners compared to those of their peers in general education classrooms.


Megan Hopkins, Hayley Weddle, Maxie Gluckman, Leslie Gautsch
, December 2019 
Researchers show how both researchers and practitioners facilitated research use.


Adrianna Kezar, Samantha Bernstein-Sierra
, October 2019
Findings suggest that Association of American Universities’ influence was a powerful motivator for institutions to alter deeply ingrained perceptions and behaviors.


Denis Dumas, Daniel McNeish, Julie Sarama, Douglas Clements
, October 2019
While students who receive a short-term intervention in preschool may not differ from a control group in terms of their long-term mathematics outcomes at the end of elementary school, they do exhibit significantly steeper growth curves as they approach their eventual skill level.


Jessica Thompson, Jennifer Richards, Soo-Yean Shim, Karin Lohwasser, Kerry Soo Von Esch, Christine Chew, Bethany Sjoberg, Ann Morris
, September 2019
Researchers used data from professional learning communities to analyze pathways into improvement work and reflective data to understand practitioners’ perspectives.


Ross E. O’Hara, Betsy Sparrow
, September 2019
Results indicate that interventions that target psychosocial barriers experienced by community college STEM students can increase retention and should be considered alongside broader reforms.


Ran Liu, Andrea Alvarado-Urbina, Emily Hannum
, September 2019
Findings reveal disparate national patterns in gender gaps across the performance distribution.


Adam Kirk Edgerton
, September 2019 
Through an analysis of 52 interviews with state, regional, and district officials in California, Texas, Ohio, Pennsylvania, and Massachusetts, the author investigates the decline in the popularity of K–12 standards-based reform.


Amy Noelle Parks
, September 2019 
The study suggests that more research needs to represent mathematics lessons from the perspectives of children and youth, particularly those students who engage with teachers infrequently or in atypical ways.


Rajeev Darolia, Cory Koedel, Joyce B. Main, J. Felix Ndashimye, Junpeng Yan
, September 30, 2019
Researchers found that differential access to high school courses does not affect postsecondary STEM enrollment or degree attainment.


Laura A. Davis, Gregory C. Wolniak, Casey E. George, Glen R. Nelson
, August 2019
The findings point to variation in informational quality across dimensions ranging from clarity of language use and terminology, to consistency and coherence of visual displays, which accompany navigational challenges stemming from information fragmentation and discontinuity across pages.


Juan E. Saavedra, Emma Näslund-Hadley, Mariana Alfonso
, August 12, 2019
Researchers present results from the first randomized experiment of a remedial inquiry-based science education program for low-performing elementary students in a developing country.


F. Chris Curran, James Kitchin
, July 2019
Researchers found suggestive evidence in some models (student fixed effects and regression with observable controls) that time on science instruction is related to science achievement but little evidence that the number of science topics/skills covered are related to greater science achievement.


Kathleen Lynch, Heather C. Hill, Kathryn E. Gonzalez, Cynthia Pollard
, June 2019
Programs saw stronger outcomes when they helped teachers learn to use curriculum materials; focused on improving teachers’ content knowledge, pedagogical content knowledge, and/or understanding of how students learn; incorporated summer workshops; and included teacher meetings to troubleshoot and discuss classroom implementation. We discuss implications for policy and practice.


Elizabeth Stearns, Martha Cecilia Bottia, Jason Giersch, Roslyn Arlin Mickelson, Stephanie Moller, Nandan Jha, Melissa Dancy
, June 2019 
Researchers found that relative advantages in college academic performance in STEM versus non-STEM subjects do not contribute to the gender gap in STEM major declaration.


Nicole Shechtman, Jeremy Roschelle, Mingyu Feng, Corinne Singleton
, May 2019
As educational leaders throughout the United States adopt digital mathematics curricula and adaptive, blended approaches, the findings provide a relevant caution.


Colleen M. Ganley, Robert C. Schoen, Mark LaVenia, Amanda M. Tazaz
, March 2019
Factor analyses support a distinction between components of general math anxiety and anxiety about teaching math.


Felicia Moore Mensah
, February 2019 
The implications for practice in both teacher education and science education show that educational and emotional support for teachers of color throughout their educational and professional journey is imperative to increasing and sustaining Black teachers.


Herbert W. Marsh, Brooke Van Zanden, Philip D. Parker, Jiesi Guo, James Conigrave, Marjorie Seaton
, February 2019 
Researchers evaluated STEM coursework selection by women and men in senior high school and university, controlling achievement and expectancy-value variables.


Yasemin Copur-Gencturk, Debra Plowman, Haiyan Bai
, January 2019 
The results showed that a focus on curricular content knowledge and examining students’ work were significantly related to teachers’ learning.


Rebecca Colina Neri, Maritza Lozano, Louis M. Gomez
, 2019
Researchers found that teacher resistance to CRE as a multilevel learning problem stems from (a) limited understanding and belief in the efficacy of CRE and (b) a lack of know-how needed to execute it.


Russell T. Warne, Gerhard Sonnert, and Philip M. Sadler
, 2019
Researchers  investigated the relationship between participation in AP mathematics courses (AP Calculus and AP Statistics) and student career interest in STEM.


Catherine Riegle-Crumb, Barbara King, and Yasmiyn Irizarry
, 2019 
Results reveal evidence of persistent racial/ethnic inequality in STEM degree attainment not found in other fields.


Eben B. Witherspoon, Paulette Vincent-Ruz, and Christian D. Schunn
, 2019 
Researchers found that high-performing women often graduate with lower paying, lower status degrees.


Bruce Fuller, Yoonjeon Kim, Claudia Galindo, Shruti Bathia, Margaret Bridges, Greg J. Duncan, and Isabel García Valdivia
, 2019
This article details the growing share of Latino children from low-income families populating schools, 1998 to 2010.


Rebekka Darner
, 2019
Drawing from motivated reasoning and self-determination theories, this essay builds a theoretical model of how negative emotions, thwarting of basic psychological needs, and the backfire effect interact to undermine critical evaluation of evidence, leading to science denial.


Okhee Lee
, 2019
As the fast-growing population of English learners (ELs) is expected to meet college- and career-ready content standards, the purpose of this article is to highlight key issues in aligning ELP standards with content standards.


Mark C. Long, Dylan Conger, and Raymond McGhee, Jr.
, 2019
The authors offer the first model of the components inherent in a well-implemented AP science course and the first evaluation of AP implementation with a focus on public schools newly offering the inquiry-based version of AP Biology and Chemistry courses.


Yasemin Copur-Gencturk, Joseph R. Cimpian, Sarah Theule Lubienski, and Ian Thacker
, 2019
Results indicate that teachers are not free of bias, and that teachers from marginalized groups may be susceptible to bias that favors stereotype-advantaged groups.


Geoffrey B. Saxe and Joshua Sussman
, 2019 
Multilevel analysis of longitudinal data on a specialized integers and fractions assessment, as well as a California state mathematics assessment, revealed that the ELs in LMR classrooms showed greater gains than comparison ELs and gained at similar rates to their EP peers in LMR classrooms.


Jordan Rickles, Jessica B. Heppen, Elaine Allensworth, Nicholas Sorensen, and Kirk Walters
, 2019 
The authors discuss whether it would have been appropriate to test for nominally equivalent outcomes, given that the study was initially conceived and designed to test for significant differences, and that the conclusion of no difference was not solely based on a null hypothesis test.


Soobin Kim, Gregory Wallsworth, Ran Xu, Barbara Schneider, Kenneth Frank, Brian Jacob, Susan Dynarski
, 2019
Using detailed Michigan high school transcript data, this article examines the effect of the MMC on various students’ course-taking and achievement outcomes.


Dario Sansone
, December 2018
Researchers found that students were less likely to believe that men were better than women in math or science when assigned to female teachers or to teachers who valued and listened to ideas from their students.


Ebony McGee
, December 2018
The authors argues that both racial groups endure emotional distress because each group responds to its marginalization with an unrelenting motivation to succeed that imposes significant costs.


Barbara Means, Haiwen Wang, Xin Wei, Emi Iwatani, Vanessa Peters
, November 2018
Students overall and from under-represented groups who had attended inclusive STEM high schools were significantly more likely to be in a STEM bachelor’s degree program two years after high school graduation.


Paulo Tan, Kathleen King Thorius
, November 2018 
Results indicate identity and power tensions that worked against equitable practices.


Caesar R. Jackson
, November 2018
This study investigated the validity and reliability of the Motivated Strategies for Learning Questionnaire (MSLQ) for minority students enrolled in STEM courses at a historically black college/university (HBCU).


Tuan D. Nguyen, Christopher Redding
, September 2018
The results highlight the importance of recruiting qualified STEM teachers to work in high-poverty schools and providing supports to help them thrive and remain in the classroom.


Joseph A. Taylor, Susan M. Kowalski, Joshua R. Polanin, Karen Askinas, Molly A. M. Stuhlsatz, Christopher D. Wilson, Elizabeth Tipton, Sandra Jo Wilson
, August 2018
The meta-analysis examines the relationship between science education intervention effect sizes and a host of study characteristics, allowing primary researchers to access better estimates of effect sizes for a priori power analyses. The results of this meta-analysis also support programmatic decisions by setting realistic expectations about the typical magnitude of impacts for science education interventions.


Brian A. Burt, Krystal L. Williams, Gordon J. M. Palmer
, August 2018
Three factors are identified as helping them persist from year to year, and in many cases through completion of the doctorate: the role of family, spirituality and faith-based community, and undergraduate mentors.


Anna-Lena Rottweiler, Jamie L. Taxer, Ulrike E. Nett
, June 2018
Suppression improved mood in exam-related anxiety, while distraction improved mood only in non-exam-related anxiety.


Gabriel Estrella, Jacky Au, Susanne M. Jaeggi, Penelope Collins
, April 2018
Although an analysis of 26 articles confirmed that inquiry instruction produced significantly greater impacts on measures of science achievement for ELLs compared to direct instruction, there was still a differential learning effect suggesting greater efficacy for non-ELLs compared to ELLs.


Heather C. Hill, Mark Chin
, April 2018
In this article, evidence from 284 teachers suggests that accuracy can be adequately measured and relates to instruction and student outcomes.


Darrell M. Hull, Krystal M. Hinerman, Sarah L. Ferguson, Qi Chen, Emma I. Näslund-Hadley
, April 20, 2018
Both quantitative and qualitative evidence suggest students within this culture respond well to this relatively simple and inexpensive intervention that departs from traditional, expository math instruction in many developing countries.


Erika C. Bullock
, April 2018
The author reviews CME studies that employ intersectionality as a way of analyzing the complexities of oppression.


Angela Calabrese Barton, Edna Tan
, March 2018 
Building a conceptual argument for an equity-oriented culture of making, the authors discuss the ways in which making with and in community opened opportunities for youth to project their communities’ rich culture knowledge and wisdom onto their making while also troubling and negotiating the historicized injustices they experience.


Sabrina M. Solanki, Di Xu
, March 2018 
Researchers found that having a female instructor narrows the gender gap in terms of engagement and interest; further, both female and male students tend to respond to instructor gender.


Susanne M. Jaeggi, Priti Shah
, February 2018
These articles provide excellent examples for how neuroscientific approaches can complement behavioral work, and they demonstrate how understanding the neural level can help researchers develop richer models of learning and development.


Danyelle T. Ireland, Kimberley Edelin Freeman, Cynthia E. Winston-Proctor, Kendra D. DeLaine, Stacey McDonald Lowe, Kamilah M. Woodson
, 2018
Researchers found that (1) identity; (2) STEM interest, confidence, and persistence; (3) achievement, ability perceptions, and attributions; and (4) socializers and support systems are key themes within the experiences of Black women and girls in STEM education.


Ann Y. Kim, Gale M. Sinatra, Viviane Seyranian
, 2018
Findings indicate that young women experience challenges to their participation and inclusion when they are in STEM settings.


Guan Saw, Chi-Ning Chang, and Hsun-Yu Chan
, 2018 
Results indicated that female, Black, Hispanic, and low SES students were less likely to show, maintain, and develop an interest in STEM careers during high school years.


Di Xu, Sabrina Solanki, Peter McPartlan, and Brian Sato
, 2018
This paper estimates the causal effects of a first-year STEM learning communities program on both cognitive and noncognitive outcomes at a large public 4-year institution.


Christina S. Chhin, Katherine A. Taylor, and Wendy S. Wei
, 2018
Data showed that IES has not funded any direct replications that duplicate all aspects of the original study, but almost half of the funded grant applications can be considered conceptual replications that vary one or more dimensions of a prior study.


Okhee Lee
, 2018
As federal legislation requires that English language proficiency (ELP) standards are aligned with content standards, this article addresses issues and concerns in aligning ELP standards with content standards in English language arts, mathematics, and science.


Jordan Rickles, Jessica B. Heppen, Elaine Allensworth, Nicholas Sorensen, and Kirk Walters
, 2018
Researchers found no statistically significant differences in longer term outcomes between students in the online and face-to-face courses. Implications of these null findings are discussed.


Colleen M. Ganley, Casey E. George, Joseph R. Cimpian, Martha B. Makowski
, December 2017 
Researchers found that perceived gender bias against women emerges as the dominant predictor of the gender balance in college majors.


James P. Spillane, Megan Hopkins, Tracy M. Sweet
, December 2017
This article examines the relationship between teachers’ instructional ties and their beliefs about mathematics instruction in one school district working to transform its approach to elementary mathematics education. 


Susan A. Yoon, Sao-Ee Goh, Miyoung Park
, December 6, 2017
Results revealed needs in five areas of research: a need to diversify the knowledge domains within which research is conducted, more research on learning about system states, agreement on the essential features of complex systems content, greater focus on contextual factors that support learning including teacher learning, and a need for more comparative research.


Candace Walkington, Virginia Clinton, Pooja Shivraj
, November 2017 
Textual features that make problems more difficult to process appear to differentially negatively impact struggling students, while features that make language easier to process appear to differentially positively impact struggling students.


Rebecca L. Matz, Benjamin P. Koester, Stefano Fiorini, Galina Grom, Linda Shepard, Charles G. Stangor, Brad Weiner, Timothy A. McKay
, November 2017
Biology, chemistry, physics, accounting, and economics lecture courses regularly exhibit gendered performance differences that are statistically and materially significant, whereas lab courses in the same subjects do not.


Adam V. Maltese, Christina S. Cooper
, August 2017
The results reveal that although there is no singular pathway into STEM fields, self-driven interest is a large factor in persistence, especially for males, and females rely more heavily on support from others.


Brian R. Belland, Andrew E. Walker, Nam Ju Kim
, August 2017
Scaffolding has a consistently strong effect across student populations, STEM disciplines, and assessment levels, and a strong effect when used with most problem-centered instructional and educational levels.


Di Xu, Shanna Smith Jaggars
, July 2017
The findings indicate a robust negative impact of online course taking for both subjects.


Maisie L. Gholson, Charles E. Wilkes
, June 2017
This chapter reviews two strands of identity-based research in mathematics education related to Black children, exemplified by Martin (2000) and Nasir (2002).


Sarah Theule Lubienski, Emily K. Miller, and Evthokia Stephanie Saclarides
, November 2017 
Using data from a survey of doctoral students at one large institution, this study finds that men submitted and published more scholarly works than women across many fields, with differences largest in natural/biological sciences and engineering. 


David Blazar, Cynthia Pollard
, October 2017
Drawing on classroom observations and teacher surveys, researchers find that test preparation activities predict lower quality and less ambitious mathematics instruction in upper-elementary classrooms.


Nicole M. Joseph, Meseret Hailu, Denise Boston
, June 2017
This integrative review used critical race theory (CRT) and Black feminism as interpretive frames to explore factors that contribute to Black women’s and girls’ persistence in the mathematics pipeline and the role these factors play in shaping their academic outcomes.


Benjamin L. Wiggins, Sarah L. Eddy, Daniel Z. Grunspan, Alison J. Crowe
, May 2017
Researchers describe the results of a quasi-experimental study to test the apex of the ICAP framework (interactive, constructive, active, and passive) in this ecological classroom environment.


Sean Gehrke, Adrianna Kezar
, May 2017 
This study examines how involvement in four cross-institutional STEM faculty communities of practice is associated with local departmental and institutional change for faculty members belonging to these communities.


Lawrence Ingvarson, Glenn Rowley
, May 2017
This study investigated the relationship between policies related to the recruitment, selection, preparation, and certification of new teachers and (a) the quality of future teachers as measured by their mathematics content and pedagogy content knowledge and (b) student achievement in mathematics at the national level. 


Will Tyson, Josipa Roksa
, April 2017
This study examines how course grades and course rigor are associated with math attainment among students with similar eighth-grade standardized math test scores. 


Anne K. Morris, James Hiebert
, March 2017
Researchers investigated whether the content pre-service teachers studied in elementary teacher preparation mathematics courses was related to their performance on a mathematics lesson planning task 2 and 3 years after graduation. 


Laura M. Desimone, Kirsten Lee Hill
, March 2017
Researchers use data from a randomized controlled trial of a middle school science intervention to explore the causal mechanisms by which the intervention produced previously documented gains in student achievement.


Okhee Lee
, March 2017
This article focuses on how the Common Core State Standards (CCSS) and the Next Generation Science Standards (NGSS) treat “argument,” especially in Grades K–5, and the extent to which each set of standards is grounded in research literature, as claimed.


Cory Koedel, Diyi Li, Morgan S. Polikoff, Tenice Hardaway, Stephani L. Wrabel
, February 2017
Researchers estimate relative achievement effects of the four most commonly adopted elementary mathematics textbooks in the fall of 2008 and fall of 2009 in California.


Mary Kay Stein, Richard Correnti, Debra Moore, Jennifer Lin Russell, Katelynn Kelly
, January 2017
Researchers argue that large-scale, standards-based improvements in the teaching and learning of mathematics necessitate advances in theories regarding how teaching affects student learning and progress in how to measure instruction.


Alan H. Schoenfeld
, December 2016
The author begins by tracing the growth and change in research in mathematics education and its interdependence with research in education in general over much of the 20th century, with an emphasis on changes in research perspectives and methods and the philosophical/empirical/disciplinary approaches that underpin them. 


Marcia C. Linn, Libby Gerard, Camillia Matuk, Kevin W. McElhaney
, December 2016
This chapter focuses on how investigators from varied fields of inquiry who initially worked separately began to interact, eventually formed partnerships, and recently integrated their perspectives to strengthen science education.

: Are Teachers’ Implicit Cognitions Another Piece of the Puzzle?
Almut E. Thomas
, December 2016
Drawing on expectancy-value theory, this study investigated whether teachers’ implicit science-is-male stereotypes predict between-teacher variation in males’ and females’ motivational beliefs regarding physical science. 

: A By-Product of STEM College Culture?
Ebony O. McGee
, December 2016 
The researcher found that the 38 high-achieving Black and Latino/a STEM study participants, who attended institutions with racially hostile academic spaces, deployed an arsenal of strategies (e.g., stereotype management) to deflect stereotyping and other racial assaults (e.g., racial microaggressions), which are particularly prevalent in STEM fields. 


James Cowan, Dan Goldhaber, Kyle Hayes, Roddy Theobald
, November 2016
Researchers discuss public policies that contribute to teacher shortages in specific subjects (e.g., STEM and special education) and specific types of schools (e.g., disadvantaged) as well as potential solutions.

: A Sociological Analysis of Multimethod Data From Young Women Aged 10–16 to Explore Gendered Patterns of Post-16 Participation
Louise Archer, Julie Moote, Becky Francis, Jennifer DeWitt, Lucy Yeomans
, November 2016
Researchers draw on survey data from more than 13,000 year 11 (age 15/16) students and interviews with 70 students (who had been tracked from age 10 to 16), focusing in particular on seven girls who aspired to continue with physics post-16, discussing how the cultural arbitrary of physics requires these girls to be highly “exceptional,” undertaking considerable identity work and deployment of capital in order to “possibilize” a physics identity—an endeavor in which some girls are better positioned to be successful than others.


Jeremy Roschelle, Mingyu Feng, Robert F. Murphy, Craig A. Mason
, October 2016
In a randomized field trial with 2,850 seventh-grade mathematics students, researchers evaluated whether an educational technology intervention increased mathematics learning.

: Making Research Participation Instructionally Effective
Sherry A. Southerland, Ellen M. Granger, Roxanne Hughes, Patrick Enderle, Fengfeng Ke, Katrina Roseler, Yavuz Saka, Miray Tekkumru-Kisa
, October 2016
As current reform efforts in science place a premium on student sense making and participation in the practices of science, researchers use a close examination of 106 science teachers participating in Research Experiences for Teachers (RET) to identify, through structural equation modeling, the essential features in supporting teacher learning from these experiences.


Brian R. Belland, Andrew E. Walker, Nam Ju Kim, Mason Lefler
, October 2016
This review addresses the need for a comprehensive meta-analysis of research on scaffolding in STEM education by synthesizing the results of 144 experimental studies (333 outcomes) on the effects of computer-based scaffolding designed to assist the full range of STEM learners (primary through adult education) as they navigated ill-structured, problem-centered curricula.


Vaughan Prain, Brian Hand
, October 2016
Researchers claim that there are strong evidence-based reasons for viewing writing as a central but not sole resource for learning, drawing on both past and current research on writing as an epistemological tool and on their professional background in science education research, acknowledging its distinctive take on the use of writing for learning. 


June Ahn, Austin Beck, John Rice, Michelle Foster
, September 2016
Researchers present analyses from a researcher-practitioner partnership in the District of Columbia Public Schools, where the researchers are exploring the impact of educational software on students’ academic achievement.


Barbara King
, September 2016
This study uses nationally representative data from a recent cohort of college students to investigate thoroughly gender differences in STEM persistence. 


Ryan C. Svoboda, Christopher S. Rozek, Janet S. Hyde, Judith M. Harackiewicz, Mesmin Destin
, August 2016
This longitudinal study draws on identity-based and expectancy-value theories of motivation to explain the socioeconomic status (SES) and mathematics and science course-taking relationship. 

Mathematics Course Placements in California Middle Schools, 2003–2013
Thurston Domina, Paul Hanselman, NaYoung Hwang, Andrew McEachin
, July 2016 
Researchers consider the organizational processes that accompanied the curricular intensification of the proportion of California eighth graders enrolled in algebra or a more advanced course nearly doubling to 65% between 2003 and 2013.


Lina Shanley
, July 2016
Using a nationally representative longitudinal data set, this study compared various models of mathematics achievement growth on the basis of both practical utility and optimal statistical fit and explored relationships within and between early and later mathematics growth parameters. 


Mimi Engel, Amy Claessens, Tyler Watts, George Farkas
, June 2016
Analyzing data from two nationally representative kindergarten cohorts, researchers examine the mathematics content teachers cover in kindergarten.


F. Chris Curran, Ann T. Kellogg
, June 2016
Researchers present findings from the recently released Early Childhood Longitudinal Study, Kindergarten Class of 2010–2011 that demonstrate significant gaps in science achievement in kindergarten and first grade by race/ethnicity.


Rachel Garrett, Guanglei Hong
, June 2016
Analyzing the Early Childhood Longitudinal Study–Kindergarten cohort data, researchers find that heterogeneous grouping or a combination of heterogeneous and homogeneous grouping under relatively adequate time allocation is optimal for enhancing teacher ratings of language minority kindergartners’ math performance, while using homogeneous grouping only is detrimental. 


Jennifer Gnagey, Stéphane Lavertu
, May 2016
This study is one of the first to estimate the impact of “inclusive” science, technology, engineering, and mathematics (STEM) high schools using student-level data. 


Hanna Gaspard, Anna-Lena Dicke, Barbara Flunger, Isabelle Häfner, Brigitte M. Brisson, Ulrich Trautwein, Benjamin Nagengast
, May 2016 
Through data from a cluster-randomized study in which a value intervention was successfully implemented in 82 ninth-grade math classrooms, researchers address how interventions on students’ STEM motivation in school affect motivation in subjects not targeted by the intervention.


Rebecca M. Callahan, Melissa H. Humphries
, April 2016 
Researchers employ multivariate methods to investigate immigrant college going by linguistic status using the Educational Longitudinal Study of 2002.


Federick Ngo, Tatiana Melguizo
, March 2016
Researchers take advantage of heterogeneous placement policy in a large urban community college district in California to compare the effects of math remediation under different policy contexts.

: An Analysis of German Fourth- and Sixth-Grade Classrooms
Steffen Tröbst, Thilo Kleickmann, Kim Lange-Schubert, Anne Rothkopf, Kornelia Möller
, February 2016 
Researchers examined if changes in instructional practices accounted for differences in situational interest in science instruction and enduring individual interest in science between elementary and secondary school classrooms.

: A Mixed-Methods Study
David F. Feldon, Michelle A. Maher, Josipa Roksa, James Peugh
, February 2016 
Researchers offer evidence of a similar phenomenon to cumulative advantage, accounting for differential patterns of research skill development in graduate students over an academic year and explore differences in socialization that accompany diverging developmental trajectories. 

 : The Influence of Time, Peers, and Place
Luke Dauter, Bruce Fuller
, February 2016 
Researchers hypothesize that pupil mobility stems from the (a) student’s time in school and grade; (b) student’s race, class, and achievement relative to peers; (c) quality of schooling relative to nearby alternatives; and (4) proximity, abundance, and diversity of local school options. 

: How Workload and Curricular Affordances Shape STEM Faculty Decisions About Teaching and Learning
Matthew T. Hora
, January 2016
In this study the idea of the “problem space” from cognitive science is used to examine how faculty construct mental representations for the task of planning undergraduate courses. 


Jessaca Spybrook, Carl D. Westine, Joseph A. Taylor
, January 2016
This article provides empirical estimates of design parameters necessary for planning adequately powered cluster randomized trials (CRTs) focused on science achievement. 


Paul L. Morgan, George Farkas, Marianne M. Hillemeier, Steve Maczuga
, January 2016
Researchers examined the age of onset, over-time dynamics, and mechanisms underlying science achievement gaps in U.S. elementary and middle schools. 

: Opportunity Structures and Outcomes in Inclusive STEM-Focused High Schools
Lois Weis, Margaret Eisenhart, Kristin Cipollone, Amy E. Stich, Andrea B. Nikischer, Jarrod Hanson, Sarah Ohle Leibrandt, Carrie D. Allen, Rachel Dominguez
, December 2015 
Researchers present findings from a three-year comparative longitudinal and ethnographic study of how schools in two cities, Buffalo and Denver, have taken up STEM education reform, including the idea of “inclusive STEM-focused schools,” to address weaknesses in urban high schools with majority low-income and minority students. 

: How Do They Interact in Promoting Science Understanding?
Jasmin Decristan, Eckhard Klieme, Mareike Kunter, Jan Hochweber, Gerhard Büttner, Benjamin Fauth, A. Lena Hondrich, Svenja Rieser, Silke Hertel, Ilonca Hardy
, December 2015
Researchers examine the interplay between curriculum-embedded formative assessment—a well-known teaching practice—and general features of classroom process quality (i.e., cognitive activation, supportive climate, classroom management) and their combined effect on elementary school students’ understanding of the scientific concepts of floating and sinking.

: An International Perspective
William H. Schmidt, Nathan A. Burroughs, Pablo Zoido, Richard T. Houang
, October 2015
In this paper, student-level indicators of opportunity to learn (OTL) included in the 2012 Programme for International Student Assessment are used to explore the joint relationship of OTL and socioeconomic status (SES) to student mathematics literacy. 


Xueli Wang
, September 2015
This study examines the effect of beginning at a community college on baccalaureate success in science, technology, engineering, and mathematics (STEM) fields. 

: Trends and Predictors
David M. Quinn, North Cooc
, August 2015
With research on science achievement disparities by gender and race/ethnicity often neglecting the beginning of the pipeline in the early grades, researchers address this limitation using nationally representative data following students from Grades 3 to 8. 


Shaun M. Dougherty, Joshua S. Goodman, Darryl V. Hill, Erica G. Litke, Lindsay C. Page
, May 2015
Researchers highlight a collaboration to investigate one district’s effort to increase middle school algebra course-taking.


David F. Feldon, Michelle A. Maher, Melissa Hurst, Briana Timmerman
, April 2015
This mixed-method study investigates agreement between student mentees’ and their faculty mentors’ perceptions of the students’ developing research knowledge and skills in STEM. 

: Reviving Science Education for Civic Ends
John L. Rudolph
, December 2014 
This article revisits John Dewey’s now-well-known address “Science as Subject-Matter and as Method” and examines the development of science education in the United States in the years since that address.


Dermot F. Donnelly, Marcia C. Linn Sten Ludvigsen
, December 2014
The National Science Foundation–sponsored report Fostering Learning in the Networked World called for “a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences”; we review research on science inquiry learning environments (ILEs) to characterize current platforms. 

: A Longitudinal Case Study of America’s Chemistry Teachers
Gregory T. Rushton, Herman E. Ray, Brett A. Criswell, Samuel J. Polizzi, Clyde J. Bearss, Nicholas Levelsmier, Himanshu Chhita, Mary Kirchhoff
, November 2014 
Researchers perform a longitudinal case study of U.S. public school chemistry teachers to illustrate a diffusion of responsibility within the STEM community regarding who is responsible for the teacher workforce. 

: Relations Between Early Mathematics Knowledge and High School Achievement
Tyler W. Watts, Greg J. Duncan, Robert S. Siegler, Pamela E. Davis-Kean
, October 2014
Researchers find that preschool mathematics ability predicts mathematics achievement through age 15, even after accounting for early reading, cognitive skills, and family and child characteristics.


T. Jared Robinson, Lane Fischer, David Wiley, John Hilton, III
, October 2014
The purpose of this quantitative study is to analyze whether the adoption of open science textbooks significantly affects science learning outcomes for secondary students in earth systems, chemistry, and physics.

: 1968–2009
Robert N. Ronau, Christopher R. Rakes, Sarah B. Bush, Shannon O. Driskell, Margaret L. Niess, David K. Pugalee
, October 2014 
We examined 480 dissertations on the use of technology in mathematics education and developed a Quality Framework (QF) that provided structure to consistently define and measure quality.


Andrew D. Plunk, William F. Tate, Laura J. Bierut, Richard A. Grucza
, June 2014
Using logistic regression with Census and American Community Survey (ACS) data (  = 2,892,444), researchers modeled mathematics and science course graduation requirement (CGR) exposure on (a) high school dropout, (b) beginning college, and (c) obtaining any college degree. 


Corey Drake, Tonia J. Land, Andrew M. Tyminski
, April 2014
Building on the work of Ball and Cohen and that of Davis and Krajcik, as well as more recent research related to teacher learning from and about curriculum materials, researchers seek to answer the question, How can prospective teachers (PTs) learn to read and use educative curriculum materials in ways that support them in acquiring the knowledge needed for teaching?


Lorraine M. McDonnell, M. Stephen Weatherford
, December 2013
This article draws on theories of political and policy learning and interviews with major participants to examine the role that the Common Core State Standards (CCSS) supporters have played in developing and implementing the standards, supporters’ reasons for mobilizing, and the counterarguments and strategies of recently emerging opposition groups.

: Motivation, High School Learning, and Postsecondary Context of Support
Xueli Wang
, October 2013 
This study draws upon social cognitive career theory and higher education literature to test a conceptual framework for understanding the entrance into science, technology, engineering, and mathematics (STEM) majors by recent high school graduates attending 4-year institutions. 


Philip M. Sadler, Gerhard Sonnert, Harold P. Coyle, Nancy Cook-Smith, Jaimie L. Miller
, October 2013
This study examines the relationship between teacher knowledge and student learning for 9,556 students of 181 middle school physical science teachers.

: Teaching Critical Mathematics in a Remedial Secondary Classroom
Andrew Brantlinger
, October 2013 
The researcher presents results from a practitioner research study of his own teaching of critical mathematics (CM) to low-income students of color in a U.S. context. 


Jason G. Hill, Ben Dalton
, October 2013
This study investigates the distribution of math teachers with a major or certification in math using data from the National Center for Education Statistics’ High School Longitudinal Study of 2009 (HSLS:09).


Kristin F. Butcher, Mary G. Visher
, September 2013
This study uses random assignment to investigate the impact of a “light-touch” intervention, where an individual visited math classes a few times during the semester, for a few minutes each time, to inform students about available services.


Janet M. Dubinsky, Gillian Roehrig, Sashank Varma
, August 2013 
Researchers argue that the neurobiology of learning, and in particular the core concept of  , have the potential to directly transform teacher preparation and professional development, and ultimately to affect how students think about their own learning. 

: The Impact of Undergraduate Research Programs
M. Kevin Eagan, Jr., Sylvia Hurtado, Mitchell J. Chang, Gina A. Garcia, Felisha A. Herrera, Juan C. Garibay
, August 2013 
Researchers’ findings indicate that participation in an undergraduate research program significantly improved students’ probability of indicating plans to enroll in a STEM graduate program.


Okhee Lee, Helen Quinn, Guadalupe Valdés
, May 2013
This article addresses language demands and opportunities that are embedded in the science and engineering practices delineated in “A Framework for K–12 Science Education,” released by the National Research Council (2011).


Liliana M. Garces
, April 2013 
This study examines the effects of affirmative action bans in four states (California, Florida, Texas, and Washington) on the enrollment of underrepresented students of color within six different graduate fields of study: the natural sciences, engineering, social sciences, business, education, and humanities.

: Learning Lessons From Research on Diversity in STEM Fields
Shirley M. Malcom, Lindsey E. Malcom-Piqueux
, April 2013
Researchers argue that social scientists ought to look to the vast STEM education research literature to begin the task of empirically investigating the questions raised in the   case. 


Roslyn Arlin Mickelson, Martha Cecilia Bottia, Richard Lambert
, March 2013
This metaregression analysis reviewed the social science literature published in the past 20 years on the relationship between mathematics outcomes and the racial composition of the K–12 schools students attend. 


Jeffrey Grigg, Kimberle A. Kelly, Adam Gamoran, Geoffrey D. Borman
, March 2013
Researchers examine classroom observations from a 3-year large-scale randomized trial in the Los Angeles Unified School District (LAUSD) to investigate the extent to which a professional development initiative in inquiry science influenced teaching practices in in 4th and 5th grade classrooms in 73 schools.


Angela Calabrese Barton, Hosun Kang, Edna Tan, Tara B. O’Neill, Juanita Bautista-Guerra, Caitlin Brecklin
, February 2013 
This longitudinal ethnographic study traces the identity work that girls from nondominant backgrounds do as they engage in science-related activities across school, club, and home during the middle school years. 

: A Review of the State of the Field
Shuchi Grover, Roy Pea
, January 2013 
This article frames the current state of discourse on computational thinking in K–12 education by examining mostly recently published academic literature that uses Jeannette Wing’s article as a springboard, identifies gaps in research, and articulates priorities for future inquiries.


Catherine Riegle-Crumb, Barbara King, Eric Grodsky, Chandra Muller
, December 2012 
This article investigates the empirical basis for often-repeated arguments that gender differences in entrance into science, technology, engineering, and mathematics (STEM) majors are largely explained by disparities in prior achievement. 


Richard M. Ingersoll, Henry May
, December 2012
This study examines the magnitude, destinations, and determinants of mathematics and science teacher turnover. 

: How Families Shape Children’s Engagement and Identification With Science
Louise Archer, Jennifer DeWitt, Jonathan Osborne, Justin Dillon, Beatrice Willis, Billy Wong
, October 2012 
Drawing on the conceptual framework of Bourdieu, this article explores how the interplay of family habitus and capital can make science aspirations more “thinkable” for some (notably middle-class) children than others.


Erin Marie Furtak, Tina Seidel, Heidi Iverson, Derek C. Briggs
, September 2012
This meta-analysis introduces a framework for inquiry-based teaching that distinguishes between cognitive features of the activity and degree of guidance given to students. 


Jaekyung Lee, Todd Reeves
, June 2012
This study examines the impact of high-stakes school accountability, capacity, and resources under NCLB on reading and math achievement outcomes through comparative interrupted time-series analyses of 1990–2009 NAEP state assessment data. 

: Toward a Theory of Teaching
Paola Sztajn, Jere Confrey, P. Holt Wilson, Cynthia Edgington
, June 2012
Researchers propose a theoretical connection between research on learning and research on teaching through recent research on students’ learning trajectories (LTs). 

: The Perspectives of Exemplary African American Teachers
Jianzhong Xu, Linda T. Coats, Mary L. Davidson
, February 2012 
Researchers argue both the urgency and the promise of establishing a constructive conversation among different bodies of research, including science interest, sociocultural studies in science education, and culturally relevant teaching. 


Rebecca M. Schneider, Kellie Plasman
, December 2011
This review examines the research on science teachers’ pedagogical content knowledge (PCK) in order to refine ideas about science teacher learning progressions and how to support them. 


Brian A. Nosek, Frederick L. Smyth
, October 2011 
Researchers examined implicit math attitudes and stereotypes among a heterogeneous sample of 5,139 participants. 


Libby F. Gerard, Keisha Varma, Stephanie B. Corliss, Marcia C. Linn
, September 2011
Researchers’ findings suggest that professional development programs that engaged teachers in a comprehensive, constructivist-oriented learning process and were sustained beyond 1 year significantly improved students’ inquiry learning experiences in K–12 science classrooms. 

: Teaching and Learning Impacts of Reading Apprenticeship Professional Development
Cynthia L. Greenleaf, Cindy Litman, Thomas L. Hanson, Rachel Rosen, Christy K. Boscardin, Joan Herman, Steven A. Schneider, Sarah Madden, Barbara Jones
, June 2011 
This study examined the effects of professional development integrating academic literacy and biology instruction on science teachers’ instructional practices and students’ achievement in science and literacy. 


Paul Cobb, Kara Jackson
, May 2011
The authors comment on Porter, McMaken, Hwang, and Yang’s recent analysis of the Common Core State Standards for Mathematics by critiquing their measures of the focus of the standards and the absence of an assessment of coherence. 


P. Wesley Schultz, Paul R. Hernandez, Anna Woodcock, Mica Estrada, Randie C. Chance, Maria Aguilar, Richard T. Serpe
, March 2011
This study reports results from a longitudinal study of students supported by a national National Institutes of Health–funded minority training program, and a propensity score matched control. 

: Three Large-Scale Studies
Jeremy Roschelle, Nicole Shechtman, Deborah Tatar, Stephen Hegedus, Bill Hopkins, Susan Empson, Jennifer Knudsen, Lawrence P. Gallagher
, December 2010 
The authors present three studies (two randomized controlled experiments and one embedded quasi-experiment) designed to evaluate the impact of replacement units targeting student learning of advanced middle school mathematics. 

: Examining Disparities in College Major by Gender and Race/Ethnicity
Catherine Riegle-Crumb, Barbara King
, December 2010 
The authors analyze national data on recent college matriculants to investigate gender and racial/ethnic disparities in STEM fields, with an eye toward the role of academic preparation and attitudes in shaping such disparities. 


Mary Kay Stein, Julia H. Kaufman
, September 2010 
This article begins to unravel the question, “What curricular materials work best under what kinds of conditions?” The authors address this question from the point of view of teachers and their ability to implement mathematics curricula that place varying demands and provide varying levels of support for their learning. 


Andy R. Cavagnetto
, September 2010
This study of 54 articles from the research literature examines how argument interventions promote scientific literacy. 


Victoria M. Hand
, March 2010
The researcher examined how the teacher and students in a low-track mathematics classroom jointly constructed opposition through their classroom interactions.


Terrence E. Murphy, Monica Gaughan, Robert Hume, S. Gordon Moore, Jr.
, March 2010
Researchers evaluate the association of a summer bridge program with the graduation rate of underrepresented minority (URM) students at a selective technical university. 

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

STEM as the most preferred strand of Senior High School Student's

Profile image of christian castro

2020, STEM as the most preferred strand of Senior High School Student's

Related Papers

Kieran Bentley

research topics for senior high school stem students

Participatory Educational Research

Danilo V . Rogayan Jr. , Clarisse Yimyr De Guzman

This qualitative descriptive research explored the perspectives of STEM (science, technology, engineering, and mathematics) senior high school students in a public secondary school in Zambales, Philippines on their reasons why they enrolled in STEM and their intent to pursue relevant career. A total of 20 Grade 12 students were purposively selected as participants of the research. The participants were interviewed using a validated structured interview guide. The recorded interviews were individually transcribed to arrive at an extended text. The extended texts were reviewed to generate themes and significant statements. The paper found out that senior high school students are generally interested in the field related to biology. The alignment to the preferred course in college is the primary reason of the participants for enrolling in STEM. Almost all the students wanted to pursue STEM-related careers after their university graduation. Further, personal aspiration is the main reason for the participants to pursue STEM-related professions. The study recommends that senior high schools may design various activities during the career week. These activities may include possible career paths in STEM-related courses, students' career and motivation, and their career aptitude. Teachers may also infuse innovative pedagogies for better STEM instruction. For the students to have more interest in science, it is recommended that STEM teachers undergo retooling or pursue advanced studies. Senior high schools may conduct career guidance seminars for the students to guide them on what strands they should take. The Department of Education (DepEd) may support the implementation of different programs regarding students’ career preparation. This program will help the students to be more aware on what career path they wanted to pursue, and to avoid pressures from peers. Schools may advocate a collaborative, authentic and goal-oriented learning environment with respect to the demand of Industrial Revolution 4.0.

Clifford Anderson

This study uses data collected at two National Summer Transportation Institute (NSTI) programs in Connecticut and Mississippi to investigate high school students’ perceptions and preferences about education in science, technology, engineering and mathematics (STEM). Family background has a significant impact on a high school student's interest in STEM, as shown during the student recruitment stage and by the analysis of the students' college education plans prepared upon graduation from the two NSTI programs. The building exercise and competition instrument is the most effective among the few examined, while passive learning is not what young people prefer when briefly introduced in the two NSTI programs.

STEM is a curriculum which is based on the idea of education the students in four specific disciplines -science, technology, engineering and mathematics, in an approach which it is based on real-life applications.

Eurasia journal of mathematics, science and technology education

Hersh C. Waxman

This study was grounded in the social cognitive career theoretical framework (Lent, Brown, & Hackett, 1994). The purpose of this four-year longitudinal study was to examine the factors that may have contributed to students’ motivation to develop STEM interest during secondary school years. The participants in our study were 9th- 11th grade high school students from a large K-12 college preparatory charter school system, Harmony Public Schools (HPS) in Texas. We utilized descriptive statistics and logistic regression analyses to carry out the study. The results revealed that three-year survey takers’ STEM major interest seemed to decrease steadily each year. Although there was a significant gender gap between males and females in STEM selection in 9th and 10th grade, this difference was not significant at the end of 11th grade. White and Asian students were significantly more likely to be interested in STEM careers. We also found that students who were most likely to choose a STEM ma...

Steve Alsop

Paul Canlas

Canadian Public Policy

Mitchell Steffler

Zahra Hazari

Alana Unfried , Latricia Townsend

The national economy is in need of more engineers and skilled workers in science, technology, and mathematics (STEM) fields who also possess competencies in critical-thinking, communication, and collaboration – also known as 21st century skills. In response to this need, educational organizations across the country are implementing innovative STEM education programs designed in part to increase student attitudes toward STEM subjects and careers. This paper describes how a team of researchers at The Friday Institute for Educational Innovation at North Carolina State University developed the Upper Elementary School and Middle/High School Student Attitudes toward STEM (S-STEM) Surveys to measure those attitudes. The surveys each consist of four, validated constructs which use Likert-scale items to measure student attitudes toward science, mathematics, engineering and technology, 21st century skills. The surveys also contain a comprehensive section measuring student interest in STEM car...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

maeve liston

Jim Morgan , Alpaslan Sahin

Colby Tofel-Grehl

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024
  • DOI: 10.17275/per.20.34.7.3
  • Corpus ID: 224982486

Pursuing STEM Careers: Perspectives of Senior High School Students

  • Renzo Jay L Rafanan , Clarisse Yimyr De Guzman , Danilo Jr. V. Rogayan
  • Published in Participatory Educational… 1 December 2020
  • Engineering, Education

Figures and Tables from this paper

figure 1

20 Citations

Graduate perspectives on the delivery of the senior high school – science, technology, engineering and mathematics program, challenges in stem learning: a case of filipino high school students, understanding stem career choices: a systematic mapping, college academic performance in science-related programs and senior high school strands: a basis for higher education admission policy, does senior high school strand matter in nursing students’ academic self-regulated learning and academic performance, agreeableness of stem students to the indicators of academic performance, analysis of barriers, supports and gender gap in the choice of stem studies in secondary education, challenges encountered by junior high school students in learning science: basis for action plan, teachers’ experiences and self-assessment in teaching biology in senior high school in the philippines, reflections beyond implementation: evaluation of the project-based learning in the research curriculum of the philippine science high school - luzon campuses, 89 references, the factors motivating students' stem career aspirations: personal and societal contexts, exploring students' perspectives of college stem: an analysis of course rating websites., developing middle school students' interests in stem via summer learning experiences: see blue stem camp, development of a senior high school career decision tool based on social cognitive career theory, growing the roots of stem majors: female math and science high school faculty and the participation of students in stem, how high school students envision their stem career pathways, why young filipino teachers teach, factors influencing on grade 12 students chosen courses in jagobiao national high school – senior high school department, performing a choice-narrative: a qualitative study of the patterns in stem students’ higher education choices, a model of factors contributing to stem learning and career orientation, related papers.

Showing 1 through 3 of 0 Related Papers

The senior high school students’ learning behavioral model of STEM in PBL

  • Published: 24 February 2010
  • Volume 21 , pages 161–183, ( 2011 )

Cite this article

research topics for senior high school stem students

  • Shi Jer Lou 1 ,
  • Yi Hui Liu 2 ,
  • Ru Chu Shih 3 &
  • Kuo Hung Tseng 4  

2368 Accesses

57 Citations

Explore all metrics

The purpose of the study was to explore a learning behavioral model of project-based learning (PBL) for senior high school students in the context of STEM (science, technology, engineering, and mathematics). Using “audio speakers” as the project theme, a series of tasks were designed to be solved using STEM knowledge via an online platform and student group discussions. A total of 84 volunteer students from a senior high school and a vocational school in Pingtung, Taiwan, were divided into 21 groups. Text analysis and questionnaire survey were administered. Data sources were the participants’ information collected via the STEM online platform and the questionnaire survey regarding STEM in PBL. The findings of the study are as follows: (1) the learning behavioral model for STEM in PBL showed a positive influence on students’ behavior in the form of cognition and behavioral intentions. In addition, cognition and behavioral intentions were positively influenced by attitude. The overall model fit was positive and could effectively explain senior high school and vocational school students’ learning behavior as related to STEM in PBL; (2) according to the results of the analysis of STEM from the online platform, students displayed a positive attitude, attained integrated conceptual and procedural knowledge, and demonstrated active behavioral intentions through STEM in PBL. In addition, the students’ creative and organized project outcomes revealed the effects of their behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

research topics for senior high school stem students

Similar content being viewed by others

research topics for senior high school stem students

Developing and Validating a Scale of STEM Project-Based Learning Experience

research topics for senior high school stem students

Investigating the role of self-selected STEM projects in fostering student autonomy and self-directed learning

research topics for senior high school stem students

The Challenge and Opportunities of STEM Learning Efficacy for Living Technology Through a Transdisciplinary Problem-Based Learning Activity

American Society for Engineering Education. (2004). Goals & srategies. http://www.engineeringk12.org/about/goals_strategies.htm2 . Accessed 24 May 2007.

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavior change. Psychological Review, 84 , 191–215.

Article   Google Scholar  

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory . New Jersey: Prentice-Hall.

Google Scholar  

Barak, M., & Zadok, Y. (2009). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education doi: 10.1007/s10798-007-9028-2 .

Berlin, D. F., & White, A. L. (1998). Integrated science and mathematics education: Evolution and implication of theoretical model. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 499–512). Dordrecht: Kluwer.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13 (3), 319–339.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theorical models. Management Science, 35 (8), 982–1003.

Davis, T. R. V., & Luthans, F. (1980). A social learning approach to organizational behavior. Academy of Management Review, 5 (2), 281–290.

Delisle, R. (1997). How to use problem-based learning in the classroom . Alexandria, VA: Association for Supervision and Curriculum Development.

Fishbein, M., & Ajzen, I. (1975). Beliefs, attitude, intentions and behavior: An introduction to theory and research . Boston, MA: Addition-Wesley.

Hassard, J. (2000). Science as inquiry . New Jersey: Good Year Books.

Huang, F. M. (2004). Statistical approach of social science-SEM . Taipei City: Wu Nan.

Jones, B. F., Rasmussen, C. M., & Moffitt, M. C. (1997). Real-life problem solving: A collaborative approach to interdisciplinary learning . Washington, DC: American Psychological Association.

Book   Google Scholar  

Jöreskog, K. G., & Sörbom, D. (1989). LISREL 7: A guide to the program and applications . Chicago: SPSS Inc.

Kesidou, S., & Koppal, M. (2004). Supporting goals-based learning with STEM outreach. Journal of STEM Education: Innovations and Research, 5 (3–4), 5–16.

Kline, R. B. (1998). Principles and practice of structural equation modeling . New York: Guilford Press.

Li, B. H. (2006). Current development of T&E (technology & engineering) courses in STEM education. Living Technology Education, 39 (7), 108–109.

Liao, K. L. (1982). Master of social learning theory—Albert Bandura . High-rank SEM application-guide of workshop of high-rank application in structural model . Taipei City: Asian Culture. Held by Taiwanese Association of Statistical Methodology.

Lin, K. Y. (2000). Primary study on the construction of technology learning website by the integration of MST orientation. Living Technology Education, 33 (2), 10–15.

Massachusetts Department of Education. (2001). Science and technology/engineering framework. http://www.doe.mass.edu/frameworks/scitech/2001/ . Accessed 4 May 2007.

MIT STEM: Curriculum. (n.d.). http://web.mit.edu/stem/program/Curriculum.html . Accessed 7 March 2007.

Moursund, D. (1999). Project-based learning using information technology . Eugene, OR: International society for technology in education.

Murphy, K. L., & Yakut, G. D. (2001). Role plays, panel discussions, and case studies: Project-based learning in a web-based course. Paper presented at the annual meeting of the American educational research association, 10–14 April 2001 Seattle, WA. (ERIC Document Reproduction Service No. ED 454 809).

Robert, J. S. (2004). Introduction to psychology (Y. J. Chen, Trans.). Taipei City: Yeh Yeh Book Gallery. (Original work published 2000).

Shaffer, D. R. (1995). Society and personality development (C. M. Lin, Trans.). Taipei: Psychology Publishing. (Original work published 1994).

Shyu, S. Y. (2001). How to turn the students into research masters by internet-online project learning and instructional innovation. Taiwan Education, 607 , 25–34.

Shyu, S. Y. (2004). Study on types of E-learning knowledge and information design. Journal of Education Research, 125 , 5–16.

Sung, D. Y. (1983). Albert Bandura’s social learning theory. Chinese Talk, 15 (11), 59–65.

Thomas, J. W., Mergendoller, J. R., & Michaelson, A. (1999). Project-based learning: A handbook for middle and high school teachers . Novato, CA: The Buck Institute for Education.

Tzou, H. Y. (2001). Curriculum, instruction and evaluation based project instruction. Journal of National University of Tainan, 34 , 155–194.

Download references

Author information

Authors and affiliations.

The Graduate Institute of Vocational and Technological Education, National Pingtung University of Science and Technology, No. 1, Xue Fu Road, Lao Bei Village, Nei-Pu Township, Pingtung County, Taiwan, ROC

Shi Jer Lou

Department of Industrial Technology Education, National Kaohsiung Normal University, No. 116, Heping 1st Rd., Lingya District, Kaohsiung City, 802, Taiwan, ROC

Department of Modern Languages, National Pingtung University of Science and Technology, No. 1, Xue Fu Road, Lao Bei Village, Nei-Pu Township, Pingtung County, Taiwan, ROC

Ru Chu Shih

Department of Business Administration, Meiho Institution of Technology, No. 23, Ping-Guan Road, Meiho Village, Nei-Pu Township, Pingtung County, Taiwan, ROC

Kuo Hung Tseng

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ru Chu Shih .

Rights and permissions

Reprints and permissions

About this article

Lou, S.J., Liu, Y.H., Shih, R.C. et al. The senior high school students’ learning behavioral model of STEM in PBL. Int J Technol Des Educ 21 , 161–183 (2011). https://doi.org/10.1007/s10798-010-9112-x

Download citation

Published : 24 February 2010

Issue Date : May 2011

DOI : https://doi.org/10.1007/s10798-010-9112-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • STEM integrated knowledge
  • Senior high school and vocational school students
  • Find a journal
  • Publish with us
  • Track your research

Educators: Start Early to Keep Students Engaged in STEM

research topics for senior high school stem students

  • Share article

A majority of students ages 12-18 are interested in careers in science, technology, engineering, or math, finds a 2023 survey sponsored by the Walton Family Foundation. But the survey also found that students, parents, and teachers say schools are not doing a good job preparing kids to pursue careers in those fields.

That is a problem, because recent technological advances—especially in the field of artificial intelligence—are poised to bring big changes to future jobs, particularly in the STEM fields. STEM occupations are projected to grow by almost 11 percent by 2031, according to the U.S. Bureau of Labor Statistics.

Many schools—at the elementary, middle, and high school levels—are integrating STEM learning into regular classroom instruction in some creative and relevant ways. Many are simultaneously figuring out how to encourage more girls and students of color to pursue studies in STEM areas, showing the kids how their participation could lead to lucrative careers down the road.

Photo illustration of teen boy working with model.

For this special report on STEM, the EdWeek Research Center asked this open-ended question: “How do schools get more students interested in STEM in elementary school and then maintain that interest throughout middle school and high school?” The EdWeek Research Center received nearly 800 responses from teachers, principals, and district leaders, and Education Week identified 25 of those responses that represented the major themes.

One big theme that emerged was that schools need to start earlier—in elementary school—and give young kids opportunities to do safe, hands-on science and solve developmentally appropriate, real-world problems. In other words, encourage children to investigate how the world works and how to fix its problems. Challenges around lack of time and resources, standardized testing, and professional development were common.

Following are the 25 responses, in the alphabetical order of the states where the educators work:

1    “We have a vertical plan for K-12, starting with weekly STEM classes in elementary, visiting the STEM festival in the spring, then in middle school hands-on STEM and Project Lead the Way classes with competitions and fairs, and in high school job shadowing and STEM career pathway courses .”

—District-level administrator | Arkansas

2    “ Science is often treated as a secondary subject in elementary schools due to students having deficits in English/language arts and math. We need to prevent that from happening and use science as a gateway to improving student performance in all subjects.”

—Middle school teacher | Science | California

3    “Stop teaching math *problems* and instead teach mathematical *techniques* to answer real-world questions . Do this with a diverse collection of media; yes, word problems but also problems with a picture of a real-life usage of the math problem, videos, in-class experiments, hands-on activities, etc. Use many representations of the underlying *meaning* of the math, not just shuffling digits around a paper.”

—High school teacher | Math/computer science/data science | California

4    “In a Title I school, all the emphasis is on catching students up to read at grade level. Our schools are graded based on standardized-test scores, so our curriculum is narrow and based on testing. The only way we can move toward more STEM is to move away from the focus on standardized testing .”

—Elementary school teacher | Math/computer science/data science | Colorado

5    “We barely have time to teach science.”

—Elementary school teacher | Florida

6    “This has been very difficult to maintain at my middle school. Science is always the last thing on the list, and not much importance is placed on it until 8th grade. This is when students have to take a science test that affects the school grade.”

—Middle school teacher | Science | Florida

7    “We have many elementary, middle, and high schools that are STEM-certified. The school I work at is one of them. We get students interested because we focus on the hands-on approach as well as emphasizing the attitude of not giving up but finding a different solution and trying again and again.”

—Elementary school teacher | Georgia

8    “There should be a program to retain women in STEM classes , as interest tends to drop off after middle school.”

—High school teacher | Math/computer science/data science | Illinois

9    “Students are interested in elementary, but maintaining interest is hard with the current school setup. The entire system would need to change.”

—High school teacher | Bilingual education/English as a second language | Iowa

10    “In order to attract students into STEM, it is important for students to experience ample opportunities to engage in STEM-centered project-based learning at the elementary level and throughout middle and high school. Traditional instruction and assessment do not foster interest in STEM or other 21st-century careers.”

—High school teacher | Fine arts | Kentucky

11    “They could do it by not simply teaching STEM but by teaching why these subjects are important and exploring their methods to developing knowledge. Kind of a zoomed-out explanation of how and why they should learn these subjects .”

—High school teacher | Louisiana

12    “For some of our schools like mine, due to the loss of Title I funding, we will no longer offer a full STEM class to all or any students for 2025-26. We try to integrate STEM into the general math, science, social studies, and language arts curricula.”

—Elementary school principal | Maryland

13    “They should include more labs and experiments , but many districts, like mine, now seem to rely on videos. This doesn't do much to stoke students’ interest in STEM. Also, we have a lack of teachers in areas of technology and computer science, which are the scientific fields many students are interested in.”

—High school teacher | Bilingual education/English as a second language | Massachusetts

14    “If you are integrating hands-on, project-based learning in elementary school, the curiosity will be there. My school has a dedicated class in middle school for STEM, which I teach, and over the course of a semester, we cover multiple areas of project-based learning that integrates science, math, technology, engineering, and design. The interest in that type of class was high enough that I was asked to teach a high school class based on hands-on learning, and it has become a forensic science class that everyone wants to take!”

—Middle school teacher | Missouri

15    “Our district needs to invest in science curriculum that interests students and gets them curious. Currently, 95 percent of our students say they hate science.”

—Middle school teacher | Math/computer science/data science | New Hampshire

16    “Introduce science early and have young students focus on experimentation. Ask questions , try to come up with ways to discover the answer. Seeing science as a tool and not just another subject can be inspiring and engaging.”

—High school teacher | Science | New York

17    “Stronger elementary programs .”

—District superintendent | New York

18    “There needs to be a focus on STEM curriculum in elementary. Testing needs to change. It impedes the problem-based learning that many STEM curricula utilize.”

—Elementary school teacher | Bilingual education/English as a second language | Ohio

19    “Prioritize STEM professional development for elementary and middle school teachers. Provide paid time for STEM teachers across the K-12 spectrum to meet and discuss/plan. Adopt and provide training for research-based methods of teaching STEM subjects (modeling, argument-driven inquiry, etc.).”

—High school teacher | Science | Ohio

20    “ Many STEM classes are offered after school . This is difficult for students who do not have any other transportation besides school buses.”

—Middle school teacher | English-language arts/literacy/reading | Oklahoma

21    “We have a solid K-5 STEM program that reaches every student. At the middle school level, we have STEM classes that reach about 66 percent of the students in 6th and 7th grade and we have a coding elective at the 8th grade level. Our high school is in the process of developing a solid STEM program.”

—Elementary school teacher | Pennsylvania

22    “We are a STEM-certified school and district. Integration of STEM education is how we have successfully built and maintained interest. Students in our district can fly a plane through our aeronautics program , before they can drive a car. There are so many STEM opportunities here!”

—Elementary school principal | Tennessee

23    “We have STEM as a special rotation, so students get STEM class every five days. Last year, we also had a bimonthly STEM club, which was well attended. Finally, we have a family STEM night each school year, and that is a big hit.”

—Elementary school teacher | Utah

24    “Raise teacher pay so that people with STEM skills are more willing to teach instead of making significantly more in the private sector.”

—High school teacher | Math/computer science/data science | Virginia

25    “ Show a passion for these subjects while teaching them and help students see the importance of learning these subjects, beyond the 'you will need this later.'”

—Elementary school teacher | Math/computer science/data science | Washington

Coverage of problem solving and student motivation is supported in part by a grant from The Lemelson Foundation, at www.lemelson.org . Education Week retains sole editorial control over the content of this coverage.

Photo illustration of young boy working on math problem.

Sign Up for EdWeek Update

Edweek top school jobs.

Image of a colander casting a shadow on a white paper as one way to view the eclipse using a household item.

Sign Up & Sign In

module image 9

shs-logo

Science, Technology, Engineering, and Mathematics (STEM) Strand

Overview of the stem strand.

Designed to prepare students who express keen interest in taking college degrees focused on Science, Technology, Engineering, and Mathematics (STEM), senior high school students will be exposed to learning activities that will hone their knowledge and skills in analyzing data, understanding real-world impacts, and conducting research.

The Objectives of the STEM Strand

The STEM strand is designed to nurture senior high school students’ curiosity, problem-solving abilities, and communication skills. With the STEM strand, graduates will:

  • Have developed a keener sense of creativity and ingenuity which is essential in coming up with new ideas and innovations
  • Be more inclined to experiment and be more open to risks
  • Be able to apply the knowledge they’ve learned in class in everyday scenarios, most especially in their future courses
  • Have the foundational competencies that will allow them to excel in their chosen courses and, eventually, help them qualify for jobs in the STEM strand

Advantages of the STEM Strand

The STEM strand gives senior high school students exposure to the intertwining disciplines (Science, Technology, Engineering, and Mathematics) to see how they work in real life. The STEM strand:

  • Builds resilience in a safe environment by allowing students to experiment and to naturally experience failures as part of the learning process
  • Encourages teamwork so students can find solutions to problems, record data, write reports, give presentations, and prepare them for STEM strand jobs
  • Teaches kids about the power and importance of technology, especially in today’s digital age
  • Fosters a habit of adaption when things don’t go as planned

doing stem

Possible College Courses Under the STEM Strand

Senior High School Students that pursue the STEM strand are more inclined towards complex scientific advancements and the future of modern technology. Many of our STEM students go on to apply for undergraduate programs and explore their preferred specialized fields. Through the courses under the STEM strands, these students continue to grow into the country’s future scientists, engineers, programmers, and trailblazers within their niche. The STEM strand course list can include the following degree programs:

  • Bachelor of Science in Engineering
  • Bachelor of Science in Computer Science / Data Science
  • Bachelor of Science in Information Technology / Information Systems
  • Bachelor of Science in Mathematics / Applied Mathematics
  • Bachelor of Science in Statistics
  • Bachelor of Science in Architecture
  • Bachelor of Science in Health Sciences / Life Sciences
  • Bachelor of Science in Applied Physics
  • Bachelor of Science in Food Technology
  • Bachelor of Science in Biology / Biochemistry / Chemistry

Possible Jobs in the STEM Strand

Our senior high school students go on to find relevant STEM strand jobs that match the skills and knowledge they’ve acquired from our curriculum. They will find plenty of opportunities, both in employment and in further studies in higher education. Senior high school graduates have found fulfilling and successful careers in the following jobs in the STEM strand:

  • Astrophysicist
  • Industrial Engineer
  • Chemical Engineer
  • Nutritionist
  • Marine Engineer

stem students

Science, Technology, Engineering, and Mathematics Strand Curriculum

The senior high school STEM strand provides a deep dive into hard sciences including Earth Science, Pre-Calculus and Basic Calculus, and Physics. These subjects will serve as preparation for students’ future undergraduate programs.

STEM stands for Science, Technology, Engineering, and Mathematics strand. Through the STEM strand, senior high school students are exposed to complex mathematical and science theories and concepts which will serve as a foundation for their college courses.

It’s important to remember that there is no right or wrong strand or track. When it comes to choosing a strand, students just have to choose one that they are genuinely interested in or would like to pursue in the future, as the strand they choose will provide them with the knowledge and skills they’ll need in college or future employment.

Graduates can take on jobs in the STEM strand, such as IT professionals, architects, agricultural engineers, food technologists, civil engineers, chemical engineers, industrial engineers, nurses, chemists, biologists, doctors, and pilots.

STEM graduates are very much in demand these days, due to the many infrastructure developments going on around the country and the opening of many foreign plants and companies.

No, you do not need to answer an entrance test to apply to OEd Senior High School. Senior high school applicants only need to fill out the application form online and submit their requirements via email. Once we have received all your requirements, we will evaluate your application before informing you of our decision. Please take note that this may take anywhere between 24 to 48 hours.

New K11 students are expected to submit the following:

  • Successful Online Registration;
  • Form 138/ Grade 10 Card;
  • Certificate of Completion;
  • Certificate of Good Moral;
  • NSO Certified Birth Certificate;
  • Form 137 or the Transcript of Records (School-to-School Transaction)

The tuition fee and other fees vary per program. Course Fee is charged on a per-course basis. To learn more about OED fees, please register at oedportal.amauonline.com or chat with us on facebook.com/OEducPh

shs-logo

AMA University Online Education (AMAOEd) is an online SHS education platform in the Philippines.

Quick Links

  • Social Highlights

Academic Programs

  • Online Basic Education
  • Online Junior High School
  • Online Senior High School

Academic Tracks

  • Junior High Requirements
  • Senior High Requirements

Contact Information

  • [email protected]
  • Mizheal +639171901136
  • Stefany +639171803256

AMA GROUP OFFICIAL WEBSITES | OEd.com.ph | OnlinePostGrad.com 2021 © OEd Senior High School. All Rights Reserved.

Privacy Policy | Sitemap

Nation’s Oldest and Most Prestigious High School STEM Competition Names Top 300 High School Scientists, Selected for Achievements in Innovation and Leadership

$1.2 Million Awarded to Nation’s Most Promising Teen Scientists and Their Schools at Regeneron Science Talent Search 2024, Marking the Largest Number of Entrants Since 1960s

WASHINGTON, D.C. (Jan. 10, 2024) – Society for Science (the Society) today announced the top 300 scholars in the Regeneron Science Talent Search 2024, the nation’s oldest and most prestigious science and math competition for high school seniors. The 300 scholars will be awarded $2,000 each and their schools will be awarded $2,000 for each enrolled scholar.

A map of all the states home to 2024 Regeneron STS Scholars

The Regeneron Science Talent Search scholars were selected from 2,162 entrants from 712 high schools across 46 states, Puerto Rico and 10 other countries – the highest number of entrants since 1969 and an increase of over 200 from 2023. Scholars were chosen based on their outstanding research, leadership skills, community involvement, commitment to academics, creativity in asking scientific questions and demonstration of exceptional promise as leaders in science, technology, engineering, and math (STEM) through original, independent research projects, essays, and recommendations. The 300 scholars hail from 196 American and international high schools in 36 states and China.

The full list of scholars can be viewed here .

“Congratulations to the top 300 scholars in this year’s Regeneron Science Talent Search,” said Maya Ajmera, President and CEO, Society for Science and Executive Publisher, Science News. “We received a record-breaking number of applications this year; interest in this prestigious competition is at an all-time high. I am truly impressed by the quality of the projects and the ingenuity that each student brings to the competition. Their diligence, passion, and perseverance should be celebrated.”

The Regeneron Science Talent Search recognizes and empowers our nation’s most promising young scientists who are generating innovative solutions to solve significant global challenges through rigorous research and discoveries. The competition provides students with a national stage to present new ideas and challenge conventional ways of thinking.

Now in its 102nd year, The Society has played a significant role in educating the public about scientific discoveries as well as in identifying future leaders in STEM. Regeneron has sponsored the Science Talent Search since 2017 as part of its deep commitment to supporting young scientists and future scientific innovation.

This year, research projects cover topics from artificial intelligence/machine learning assistance and detection to climate change prevention for wildfires, floods to drug discovery and more. Other students chose to focus on ways to tackle other pressing societal issues like teen mental health, anxiety, and suicide. With a total of 19 research categories, the top 5 categories among scholars’ projects this year include: Environmental Science, Medicine & Health, Cellular & Molecular Biology, Computational Biology and Behavioral and Social Sciences.

research topics for senior high school stem students

“Congratulations to the Regeneron Science Talent Search 2024 scholars, whose exceptional projects demonstrate their ability to use science to improve the world,” said Christina Chan, Senior Vice President, Corporate Affairs at Regeneron. “In partnership with the Society, we are proud to provide this prestigious national platform that recognizes, celebrates, and rewards students for their curiosity and innovation and encourages them to push the boundaries of science to tackle society’s most pressing issues.”

On January 24, 40 of the 300 scholars will be named Regeneron Science Talent Search finalists. The finalists will then compete for more than $1.8 million in awards during a week-long competition in Washington, D.C., taking place March 6-13, 2024.

For over eight decades the Science Talent Search has rewarded talented high school seniors who dedicate countless hours to original research projects and present their results in rigorous reports that resemble graduate school theses. Collectively, Science Talent Search alumni have received millions of dollars in scholarships and won Nobel Prizes, Fields Medals, MacArthur Fellowships, and many other accolades.

Important Dates for 202 4:

  • Top 40 Finalists Announced : January 24, 2024
  • Regeneron STS Finals Week : March 7-13, 2024
  • Public Exhibition of Projects : March 10, 2024
  • Winners Announced at Awards Ceremony : March 12, 2024
  • Top 300 Scholars
  • Notable STS Alumni
  • STS 2023 Video Highlights

About the Regeneron Science Talent Search

The Regeneron Science Talent Search, a program of Society for Science since 1942, is the nation’s oldest and most prestigious science and math competition for high school seniors. Each year, more than 2,000 student entrants submit original research in critically important scientific fields of study and are judged by leading experts in their fields. Unique among high school competitions in the U.S. and around the world, the Regeneron Science Talent Search focuses on identifying, inspiring and engaging the nation’s most promising young scientists who are creating the ideas that could solve society’s most urgent challenges.

In 2017,  Regeneron  became only the third sponsor of the Science Talent Search to help reward and celebrate the best and brightest young minds and encourage them to pursue careers in STEM as a way to positively impact the world. Through its 10-year, $100 million commitment, Regeneron nearly doubled the overall award distribution to $3.1 million annually, increasing the top award to $250,000 and doubling the awards for the top 300 scholars to $2,000 and their schools to $2,000 for each enrolled scholar to inspire more young people to engage in science.

Learn more at  https://www.societyforscience.org/regeneron-sts/ .

About Society for Science

Society for Science is a champion for science, dedicated to promoting the understanding and appreciation of science and the vital role it plays in human advancement. Established in 1921, Society for Science is best known for its award-winning journalism through Science News and Science News Explores, its world-class science research competitions for students, including the Regeneron Science Talent Search, the Regeneron International Science and Engineering Fair and the Thermo Fisher Scientific Junior Innovators Challenge, and its outreach and equity programming that seeks to ensure that all students have an opportunity to pursue a career in STEM. A 501(c)(3) membership organization, Society for Science is committed to inform, educate and inspire. Learn more at www.societyforscience.org and follow us on Facebook , Twitter , Instagram and Snapchat (Society4Science).

Media Contact Gayle Kansagor, Society for Science 703-489-1131, [email protected]

research topics for senior high school stem students

Tackling STEM Courses

  • Categories: Strategies for Learning , Transitioning to Harvard

A student looks through a microscope.

The STEM (Science, Technology, Engineering, Math) journey at Harvard is unique to each student and can involve several different interests, concentrations, and pathways. Whether you are probing your interest in STEM for the first time or have already explored STEM deeply here or in high school, there are strategies you can implement to help you succeed in your courses. 

What can be challenging about STEM courses at Harvard?

College STEM courses often cover a broader range of topics at an increased level of detail in comparison to many high school courses. Here are some of the challenges students may encounter as a result: 

  • STEM coursework requires the development of new study skills and course preparation techniques. 
  • Students are sometimes surprised by the amount of time needed to understand the material fully. 
  • Assignments often involve work beyond practicing what was explicitly taught in class, which means students must apply the material to less familiar contexts and combine ideas in novel ways. 
  • Assessments may be less frequent and cover a substantial amount of material. 

One step towards overcoming these challenges is to adjust your approach to learning to reflect the differences between STEM coursework in college and STEM coursework in high school. 

Learning approaches for STEM coursework:

  • Preview textbook readings or course slides before class to familiarize yourself with upcoming terms and topics. 
  • Previewing the material will help you stay engaged in lecture and engage in class by asking clarification questions.  
  • Review lecture slides or notes after class to practice recalling the big ideas and to guess what might be asked of you on a problem set or exam. 
  • Review or self-test in the hours after class or section to improve recall and prepare questions for office hours.  
  • Create a list of tasks, steps or problems needed to complete the assignment. 
  • Starting early can help prevent memory loss from class and allow you to take advantage of all the resources available in your courses, such as question centers, instructor office hours, or ARC Peer Tutoring . 
  • Spread the work over multiple sessions to allow time for you to try different approaches and avoid burnout.  
  • Engaging with other learners is important, but do so after you have attempted the assigned problems to ensure that you fully understand the work you are submitting. Be sure to adhere to the course collaboration policies. 
  • Start early. Give yourself time to get help if the problems seem too unfamiliar. It will be helpful to prepare questions that focus on connections between problems.  
  • Sometimes the problems look different on the surface, so it’s important to practice identifying structural similarities between the problems you’ve seen so far and what’s being asked on a particular assignment. 
  • Course office hours and question centers are a great way to get help with finding these connections. 
  • Talking through practice problems with an ARC Peer Tutor can help you discover structural similarities. 
  • Start studying for exams early – as early as the first homework assignment. By completing your homework in ways that help you construct robust memories of the concepts, you will already be studying for exams. 
  • When you complete an assignment, summarize the topics covered in each problem to synthesize the key takeaways. 
  • Review key topics regularly and continue to add to the list as the semester passes. Frequent review makes studying for exams easier because you will have thought about these big ideas relatively recently and you can then prioritize what you study based on your comfort with them. 
  • Experiment with self-testing and spaced repetition of various topics over multiple days to prevent yourself from cramming the night before the exam. 
  • Practice exactly what you’ll be asked to do. Many courses will offer practice exams with their solutions; however, you need to work out the answers to problems before you review the solutions. Experience generating your own solutions is what you need to succeed on exams. You can then prioritize your studying based on your performance on the practice exam.    

Additional strategies to help tackle your STEM coursework:

  • Recognize that success in STEM requires moving away from passive learning practices, where your instructor gives you information that you write down and then replicate on exams. 
  • By contrast, active learning means paying attention to points of confusion in lecture and following up with peers, tutors, teaching staff, and question centers to have them clarified. 
  • Start P-Set assignments early, so you have time to ask questions and to get help. 
  • Find a P-Set buddy or form a P-Set study group to review assignments after individual completion. 
  • The key is not to struggle alone: reach out to get the support you need!  
  • Academic coaching at the ARC is one piece of your STEM support system. Academic coaching focuses on skills such as time management, reading and note-taking, exam preparation, and other study strategies. Use the ARC Scheduler to make an appointment with one of the Academic Coaches to learn more. 
  • Peer tutoring at the ARC provides course specific support. Students can schedule appointments with peer tutors on the ARC Scheduler , where they will find tutoring support for most introductory STEM courses (and many other courses). Students can also request to be matched with a tutor through the ARC Matcher. 
  • Accountability Hours at the ARC are a great way to get started on assignments in the company of your peers. 
  • The ARC also offers Workshops specifically geared towards STEM students, including topics like effective study strategies for math and science, note-taking and class preparedness, and course correcting after exam results. 
  • Students should reach out to their academic adviser or course faculty with questions about STEM courses, sequencing courses, and balancing workload. 
  • Departmental Directors of Undergraduate Studies (DUSs) and Assistant Directors of Undergraduate Studies (ADUSs) are excellent sources of information about specific concentrations and courses. 
  • Grades 6-12
  • School Leaders

NEW: Classroom Clean-Up/Set-Up Email Course! 🧽

The Big List of Essay Topics for High School (120+ Ideas!)

Ideas to inspire every young writer!

What one class should all high schools students be required to take and pass in order to graduate?

High school students generally do a lot of writing, learning to use language clearly, concisely, and persuasively. When it’s time to choose an essay topic, though, it’s easy to come up blank. If that’s the case, check out this huge round-up of essay topics for high school. You’ll find choices for every subject and writing style.

  • Argumentative Essay Topics
  • Cause-and-Effect Essay Topics
  • Compare-Contrast Essay Topics
  • Descriptive Essay Topics
  • Expository and Informative Essay Topics
  • Humorous Essay Topics

Literary Essay Topics

  • Narrative and Personal Essay Topics
  • Personal Essay Topics
  • Persuasive Essay Topics

Research Essay Topics

Argumentative essay topics for high school.

When writing an argumentative essay, remember to do the research and lay out the facts clearly. Your goal is not necessarily to persuade someone to agree with you, but to encourage your reader to accept your point of view as valid. Here are some possible argumentative topics to try. ( Here are 100 more compelling argumentative essay topics. )

  • The most important challenge our country is currently facing is … (e.g., immigration, gun control, economy)
  • The government should provide free internet access for every citizen.
  • All drugs should be legalized, regulated, and taxed.
  • Vaping is less harmful than smoking tobacco.
  • The best country in the world is …
  • Parents should be punished for their minor children’s crimes.
  • Should all students have the ability to attend college for free?
  • Should physical education be part of the standard high school curriculum?

Should physical education be part of the standard high school curriculum?

WeAreTeachers

  • Schools should require recommended vaccines for all students, with very limited exceptions.
  • Is it acceptable to use animals for experiments and research?
  • Does social media do more harm than good?
  • Capital punishment does/does not deter crime.
  • What one class should all high schools students be required to take and pass in order to graduate?
  • Do we really learn anything from history, or does it just repeat itself over and over?
  • Are men and women treated equally?

Cause-and-Effect Essay Topics for High School

A cause-and-effect essay is a type of argumentative essay. Your goal is to show how one specific thing directly influences another specific thing. You’ll likely need to do some research to make your point. Here are some ideas for cause-and-effect essays. ( Get a big list of 100 cause-and-effect essay topics here. )

  • Humans are causing accelerated climate change.
  • Fast-food restaurants have made human health worse over the decades.
  • What caused World War II? (Choose any conflict for this one.)
  • Describe the effects social media has on young adults.

Describe the effects social media has on young adults.

  • How does playing sports affect people?
  • What are the effects of loving to read?
  • Being an only/oldest/youngest/middle child makes you …
  • What effect does violence in movies or video games have on kids?
  • Traveling to new places opens people’s minds to new ideas.
  • Racism is caused by …

Compare-Contrast Essay Topics for High School

As the name indicates, in compare-and-contrast essays, writers show the similarities and differences between two things. They combine descriptive writing with analysis, making connections and showing dissimilarities. The following ideas work well for compare-contrast essays. ( Find 80+ compare-contrast essay topics for all ages here. )

  • Public and private schools
  • Capitalism vs. communism
  • Monarchy or democracy
  • Dogs vs. cats as pets

Dogs vs. cats as pets

  • Paper books or e-books
  • Two political candidates in a current race
  • Going to college vs. starting work full-time
  • Working your way through college as you go or taking out student loans
  • iPhone or Android
  • Instagram vs. Twitter (or choose any other two social media platforms)

Descriptive Essay Topics for High School

Bring on the adjectives! Descriptive writing is all about creating a rich picture for the reader. Take readers on a journey to far-off places, help them understand an experience, or introduce them to a new person. Remember: Show, don’t tell. These topics make excellent descriptive essays.

  • Who is the funniest person you know?
  • What is your happiest memory?
  • Tell about the most inspirational person in your life.
  • Write about your favorite place.
  • When you were little, what was your favorite thing to do?
  • Choose a piece of art or music and explain how it makes you feel.
  • What is your earliest memory?

What is your earliest memory?

  • What’s the best/worst vacation you’ve ever taken?
  • Describe your favorite pet.
  • What is the most important item in the world to you?
  • Give a tour of your bedroom (or another favorite room in your home).
  • Describe yourself to someone who has never met you.
  • Lay out your perfect day from start to finish.
  • Explain what it’s like to move to a new town or start a new school.
  • Tell what it would be like to live on the moon.

Expository and Informative Essay Topics for High School

Expository essays set out clear explanations of a particular topic. You might be defining a word or phrase or explaining how something works. Expository or informative essays are based on facts, and while you might explore different points of view, you won’t necessarily say which one is “better” or “right.” Remember: Expository essays educate the reader. Here are some expository and informative essay topics to explore. ( See 70+ expository and informative essay topics here. )

  • What makes a good leader?
  • Explain why a given school subject (math, history, science, etc.) is important for students to learn.
  • What is the “glass ceiling” and how does it affect society?
  • Describe how the internet changed the world.
  • What does it mean to be a good teacher?

What does it mean to be a good teacher?

  • Explain how we could colonize the moon or another planet.
  • Discuss why mental health is just as important as physical health.
  • Describe a healthy lifestyle for a teenager.
  • Choose an American president and explain how their time in office affected the country.
  • What does “financial responsibility” mean?

Humorous Essay Topics for High School

Humorous essays can take on any form, like narrative, persuasive, or expository. You might employ sarcasm or satire, or simply tell a story about a funny person or event. Even though these essay topics are lighthearted, they still take some skill to tackle well. Give these ideas a try.

  • What would happen if cats (or any other animal) ruled the world?
  • What do newborn babies wish their parents knew?
  • Explain the best ways to be annoying on social media.
  • Invent a wacky new sport, explain the rules, and describe a game or match.

Explain why it's important to eat dessert first.

  • Imagine a discussion between two historic figures from very different times, like Cleopatra and Queen Elizabeth I.
  • Retell a familiar story in tweets or other social media posts.
  • Describe present-day Earth from an alien’s point of view.
  • Choose a fictional character and explain why they should be the next president.
  • Describe a day when kids are in charge of everything, at school and at home.

Literary essays analyze a piece of writing, like a book or a play. In high school, students usually write literary essays about the works they study in class. These literary essay topic ideas focus on books students often read in high school, but many of them can be tweaked to fit other works as well.

  • Discuss the portrayal of women in Shakespeare’s Othello .
  • Explore the symbolism used in The Scarlet Letter .
  • Explain the importance of dreams in Of Mice and Men .
  • Compare and contrast the romantic relationships in Pride and Prejudice .

Analyze the role of the witches in Macbeth.

  • Dissect the allegory of Animal Farm and its relation to contemporary events.
  • Interpret the author’s take on society and class structure in The Great Gatsby .
  • Explore the relationship between Hamlet and Ophelia.
  • Discuss whether Shakespeare’s portrayal of young love in Romeo and Juliet is accurate.
  • Explain the imagery used in Beowulf .

Narrative and Personal Essay Topics for High School

Think of a narrative essay like telling a story. Use some of the same techniques that you would for a descriptive essay, but be sure you have a beginning, middle, and end. A narrative essay doesn’t necessarily need to be personal, but they often are. Take inspiration from these narrative and personal essay topics.

  • Describe a performance or sporting event you took part in.
  • Explain the process of cooking and eating your favorite meal.
  • Write about meeting your best friend for the first time and how your relationship developed.
  • Tell about learning to ride a bike or drive a car.
  • Describe a time in your life when you’ve been scared.

Write about a time when you or someone you know displayed courage.

  • Share the most embarrassing thing that ever happened to you.
  • Tell about a time when you overcame a big challenge.
  • Tell the story of how you learned an important life lesson.
  • Describe a time when you or someone you know experienced prejudice or oppression.
  • Explain a family tradition, how it developed, and its importance today.
  • What is your favorite holiday? How does your family celebrate it?
  • Retell a familiar story from the point of view of a different character.
  • Describe a time when you had to make a difficult decision.
  • Tell about your proudest moment.

Persuasive Essay Topics for High School

Persuasive essays are similar to argumentative , but they rely less on facts and more on emotion to sway the reader. It’s important to know your audience, so you can anticipate any counterarguments they might make and try to overcome them. Try these topics to persuade someone to come around to your point of view. ( Discover 60 more intriguing persuasive essay topics here. )

  • Do you think homework should be required, optional, or not given at all?
  • Everyone should be vegetarian or vegan.
  • What animal makes the best pet?
  • Visit an animal shelter, choose an animal that needs a home, and write an essay persuading someone to adopt that animal.
  • Who is the world’s best athlete, present or past?
  • Should little kids be allowed to play competitive sports?
  • Are professional athletes/musicians/actors overpaid?
  • The best music genre is …

What is one book that everyone should be required to read?

  • Is democracy the best form of government?
  • Is capitalism the best form of economy?
  • Students should/should not be able to use their phones during the school day.
  • Should schools have dress codes?
  • If I could change one school rule, it would be …
  • Is year-round school a good idea?

A research essay is a classic high school assignment. These papers require deep research into primary source documents, with lots of supporting facts and evidence that’s properly cited. Research essays can be in any of the styles shown above. Here are some possible topics, across a variety of subjects.

  • Which country’s style of government is best for the people who live there?
  • Choose a country and analyze its development from founding to present day.
  • Describe the causes and effects of a specific war.
  • Formulate an ideal economic plan for our country.
  • What scientific discovery has had the biggest impact on life today?

Tell the story of the development of artificial intelligence so far, and describe its impacts along the way.

  • Analyze the way mental health is viewed and treated in this country.
  • Explore the ways systemic racism impacts people in all walks of life.
  • Defend the importance of teaching music and the arts in public schools.
  • Choose one animal from the endangered species list, and propose a realistic plan to protect it.

What are some of your favorite essay topics for high school? Come share your prompts on the WeAreTeachers HELPLINE group on Facebook .

Plus, check out the ultimate guide to student writing contests .

We Are Teachers

You Might Also Like

Parents should be punished for their minor children’s crimes.

100 Thought-Provoking Argumentative Writing Prompts for Kids and Teens

Practice making well-reasoned arguments using research and facts. Continue Reading

Copyright © 2024. All rights reserved. 5335 Gate Parkway, Jacksonville, FL 32256

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • NPJ Sci Learn

Logo of npjscilearn

Enhancing senior high school student engagement and academic performance using an inclusive and scalable inquiry-based program

Locke davenport huyer.

1 Institute of Biomedical Engineering, University of Toronto, Toronto, ON Canada

2 Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON Canada

Neal I. Callaghan

3 Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON Canada

4 George Harvey Collegiate Institute, Toronto District School Board, Toronto, ON Canada

Edward Scherer

Andrey i. shukalyuk, margaret jou, dawn m. kilkenny.

5 Institute for Studies in Transdisciplinary Engineering Education & Practice, University of Toronto, Toronto, ON Canada

Associated Data

The data that support the findings of this study are available upon reasonable request from the corresponding author DMK. These data are not publicly available due to privacy concerns of personal data according to the ethical research agreements supporting this study.

The multi-disciplinary nature of science, technology, engineering, and math (STEM) careers often renders difficulty for high school students navigating from classroom knowledge to post-secondary pursuits. Discrepancies between the knowledge-based high school learning approach and the experiential approach of future studies leaves some students disillusioned by STEM. We present Discovery , a term-long inquiry-focused learning model delivered by STEM graduate students in collaboration with high school teachers, in the context of biomedical engineering. Entire classes of high school STEM students representing diverse cultural and socioeconomic backgrounds engaged in iterative, problem-based learning designed to emphasize critical thinking concomitantly within the secondary school and university environments. Assessment of grades and survey data suggested positive impact of this learning model on students’ STEM interests and engagement, notably in under-performing cohorts, as well as repeating cohorts that engage in the program on more than one occasion. Discovery presents a scalable platform that stimulates persistence in STEM learning, providing valuable learning opportunities and capturing cohorts of students that might otherwise be under-engaged in STEM.

Introduction

High school students with diverse STEM interests often struggle to understand the STEM experience outside the classroom 1 . The multi-disciplinary nature of many career fields can foster a challenge for students in their decision to enroll in appropriate high school courses while maintaining persistence in study, particularly when these courses are not mandatory 2 . Furthermore, this challenge is amplified by the known discrepancy between the knowledge-based learning approach common in high schools and the experiential, mastery-based approaches afforded by the subsequent undergraduate model 3 . In the latter, focused classes, interdisciplinary concepts, and laboratory experiences allow for the application of accumulated knowledge, practice in problem solving, and development of both general and technical skills 4 . Such immersive cooperative learning environments are difficult to establish in the secondary school setting and high school teachers often struggle to implement within their classroom 5 . As such, high school students may become disillusioned before graduation and never experience an enriched learning environment, despite their inherent interests in STEM 6 .

It cannot be argued that early introduction to varied math and science disciplines throughout high school is vital if students are to pursue STEM fields, especially within engineering 7 . However, the majority of literature focused on student interest and retention in STEM highlights outcomes in US high school learning environments, where the sciences are often subject-specific from the onset of enrollment 8 . In contrast, students in the Ontario (Canada) high school system are required to complete Level 1 and 2 core courses in science and math during Grades 9 and 10; these courses are offered as ‘applied’ or ‘academic’ versions and present broad topics of content 9 . It is not until Levels 3 and 4 (generally Grades 11 and 12, respectively) that STEM classes become subject-specific (i.e., Biology, Chemistry, and/or Physics) and are offered as “university”, “college”, or “mixed” versions, designed to best prepare students for their desired post-secondary pursuits 9 . Given that Levels 3 and 4 science courses are not mandatory for graduation, enrollment identifies an innate student interest in continued learning. Furthermore, engagement in these post-secondary preparatory courses is also dependent upon achieving successful grades in preceding courses, but as curriculum becomes more subject-specific, students often yield lower degrees of success in achieving course credit 2 . Therefore, it is imperative that learning supports are best focused on ensuring that those students with an innate interest are able to achieve success in learning.

When given opportunity and focused support, high school students are capable of successfully completing rigorous programs at STEM-focused schools 10 . Specialized STEM schools have existed in the US for over 100 years; generally, students are admitted after their sophomore year of high school experience (equivalent to Grade 10) based on standardized test scores, essays, portfolios, references, and/or interviews 11 . Common elements to this learning framework include a diverse array of advanced STEM courses, paired with opportunities to engage in and disseminate cutting-edge research 12 . Therein, said research experience is inherently based in the processes of critical thinking, problem solving, and collaboration. This learning framework supports translation of core curricular concepts to practice and is fundamental in allowing students to develop better understanding and appreciation of STEM career fields.

Despite the described positive attributes, many students do not have the ability or resources to engage within STEM-focused schools, particularly given that they are not prevalent across Canada, and other countries across the world. Consequently, many public institutions support the idea that post-secondary led engineering education programs are effective ways to expose high school students to engineering education and relevant career options, and also increase engineering awareness 13 . Although singular class field trips are used extensively to accomplish such programs, these may not allow immersive experiences for application of knowledge and practice of skills that are proven to impact long-term learning and influence career choices 14 , 15 . Longer-term immersive research experiences, such as after-school programs or summer camps, have shown successful at recruiting students into STEM degree programs and careers, where longevity of experience helps foster self-determination and interest-led, inquiry-based projects 4 , 16 – 19 .

Such activities convey the elements that are suggested to make a post-secondary led high school education programs successful: hands-on experience, self-motivated learning, real-life application, immediate feedback, and problem-based projects 20 , 21 . In combination with immersion in university teaching facilities, learning is authentic and relevant, similar to the STEM school-focused framework, and consequently representative of an experience found in actual STEM practice 22 . These outcomes may further be a consequence of student engagement and attitude: Brown et al. studied the relationships between STEM curriculum and student attitudes, and found the latter played a more important role in intention to persist in STEM when compared to self-efficacy 23 . This is interesting given that student self-efficacy has been identified to influence ‘motivation, persistence, and determination’ in overcoming challenges in a career pathway 24 . Taken together, this suggests that creation and delivery of modern, exciting curriculum that supports positive student attitudes is fundamental to engage and retain students in STEM programs.

Supported by the outcomes of identified effective learning strategies, University of Toronto (U of T) graduate trainees created a novel high school education program Discovery , to develop a comfortable yet stimulating environment of inquiry-focused iterative learning for senior high school students (Grades 11 & 12; Levels 3 & 4) at non-specialized schools. Built in strong collaboration with science teachers from George Harvey Collegiate Institute (Toronto District School Board), Discovery stimulates application of STEM concepts within a unique term-long applied curriculum delivered iteratively within both U of T undergraduate teaching facilities and collaborating high school classrooms 25 . Based on the volume of medically-themed news and entertainment that is communicated to the population at large, the rapidly-growing and diverse field of biomedical engineering (BME) were considered an ideal program context 26 . In its definition, BME necessitates cross-disciplinary STEM knowledge focused on the betterment of human health, wherein Discovery facilitates broadening student perspective through engaging inquiry-based projects. Importantly, Discovery allows all students within a class cohort to work together with their classroom teacher, stimulating continued development of a relevant learning community that is deemed essential for meaningful context and important for transforming student perspectives and understandings 27 , 28 . Multiple studies support the concept that relevant learning communities improve student attitudes towards learning, significantly increasing student motivation in STEM courses, and consequently improving the overall learning experience 29 . Learning communities, such as that provided by Discovery , also promote the formation of self-supporting groups, greater active involvement in class, and higher persistence rates for participating students 30 .

The objective of Discovery , through structure and dissemination, is to engage senior high school science students in challenging, inquiry-based practical BME activities as a mechanism to stimulate comprehension of STEM curriculum application to real-world concepts. Consequent focus is placed on critical thinking skill development through an atmosphere of perseverance in ambiguity, something not common in a secondary school knowledge-focused delivery but highly relevant in post-secondary STEM education strategies. Herein, we describe the observed impact of the differential project-based learning environment of Discovery on student performance and engagement. We identify the value of an inquiry-focused learning model that is tangible for students who struggle in a knowledge-focused delivery structure, where engagement in conceptual critical thinking in the relevant subject area stimulates student interest, attitudes, and resulting academic performance. Assessment of study outcomes suggests that when provided with a differential learning opportunity, student performance and interest in STEM increased. Consequently, Discovery provides an effective teaching and learning framework within a non-specialized school that motivates students, provides opportunity for critical thinking and problem-solving practice, and better prepares them for persistence in future STEM programs.

Program delivery

The outcomes of the current study result from execution of Discovery over five independent academic terms as a collaboration between Institute of Biomedical Engineering (graduate students, faculty, and support staff) and George Harvey Collegiate Institute (science teachers and administration) stakeholders. Each term, the program allowed senior secondary STEM students (Grades 11 and 12) opportunity to engage in a novel project-based learning environment. The program structure uses the problem-based engineering capstone framework as a tool of inquiry-focused learning objectives, motivated by a central BME global research topic, with research questions that are inter-related but specific to the curriculum of each STEM course subject (Fig. ​ (Fig.1). 1 ). Over each 12-week term, students worked in teams (3–4 students) within their class cohorts to execute projects with the guidance of U of T trainees ( Discovery instructors) and their own high school teacher(s). Student experimental work was conducted in U of T teaching facilities relevant to the research study of interest (i.e., Biology and Chemistry-based projects executed within Undergraduate Teaching Laboratories; Physics projects executed within Undergraduate Design Studios). Students were introduced to relevant techniques and safety procedures in advance of iterative experimentation. Importantly, this experience served as a course term project for students, who were assessed at several points throughout the program for performance in an inquiry-focused environment as well as within the regular classroom (Fig. ​ (Fig.1). 1 ). To instill the atmosphere of STEM, student teams delivered their outcomes in research poster format at a final symposium, sharing their results and recommendations with other post-secondary students, faculty, and community in an open environment.

An external file that holds a picture, illustration, etc.
Object name is 41539_2020_76_Fig1_HTML.jpg

The general program concept (blue background; top left ) highlights a global research topic examined through student dissemination of subject-specific research questions, yielding multifaceted student outcomes (orange background; top right ). Each program term (term workflow, yellow background; bottom panel ), students work on program deliverables in class (blue), iterate experimental outcomes within university facilities (orange), and are assessed accordingly at numerous deliverables in an inquiry-focused learning model.

Over the course of five terms there were 268 instances of tracked student participation, representing 170 individual students. Specifically, 94 students participated during only one term of programming, 57 students participated in two terms, 16 students participated in three terms, and 3 students participated in four terms. Multiple instances of participation represent students that enrol in more than one STEM class during their senior years of high school, or who participated in Grade 11 and subsequently Grade 12. Students were surveyed before and after each term to assess program effects on STEM interest and engagement. All grade-based assessments were performed by high school teachers for their respective STEM class cohorts using consistent grading rubrics and assignment structure. Here, we discuss the outcomes of student involvement in this experiential curriculum model.

Student performance and engagement

Student grades were assigned, collected, and anonymized by teachers for each Discovery deliverable (background essay, client meeting, proposal, progress report, poster, and final presentation). Teachers anonymized collective Discovery grades, the component deliverable grades thereof, final course grades, attendance in class and during programming, as well as incomplete classroom assignments, for comparative study purposes. Students performed significantly higher in their cumulative Discovery grade than in their cumulative classroom grade (final course grade less the Discovery contribution; p  < 0.0001). Nevertheless, there was a highly significant correlation ( p  < 0.0001) observed between the grade representing combined Discovery deliverables and the final course grade (Fig. ​ (Fig.2a). 2a ). Further examination of the full dataset revealed two student cohorts of interest: the “Exceeds Expectations” (EE) subset (defined as those students who achieved ≥1 SD [18.0%] grade differential in Discovery over their final course grade; N  = 99 instances), and the “Multiple Term” (MT) subset (defined as those students who participated in Discovery more than once; 76 individual students that collectively accounted for 174 single terms of assessment out of the 268 total student-terms delivered) (Fig. 2b, c ). These subsets were not unrelated; 46 individual students who had multiple experiences (60.5% of total MTs) exhibited at least one occasion in achieving a ≥18.0% grade differential. As students participated in group work, there was concern that lower-performing students might negatively influence the Discovery grade of higher-performing students (or vice versa). However, students were observed to self-organize into groups where all individuals received similar final overall course grades (Fig. ​ (Fig.2d), 2d ), thereby alleviating these concerns.

An external file that holds a picture, illustration, etc.
Object name is 41539_2020_76_Fig2_HTML.jpg

a Linear regression of student grades reveals a significant correlation ( p  = 0.0009) between Discovery performance and final course grade less the Discovery contribution to grade, as assessed by teachers. The dashed red line and intervals represent the theoretical 1:1 correlation between Discovery and course grades and standard deviation of the Discovery -course grade differential, respectively. b , c Identification of subgroups of interest, Exceeds Expectations (EE; N  = 99, orange ) who were ≥+1 SD in Discovery -course grade differential and Multi-Term (MT; N  = 174, teal ), of which N  = 65 students were present in both subgroups. d Students tended to self-assemble in working groups according to their final course performance; data presented as mean ± SEM. e For MT students participating at least 3 terms in Discovery , there was no significant correlation between course grade and time, while ( f ) there was a significant correlation between Discovery grade and cumulative terms in the program. Histograms of total absences per student in ( g ) Discovery and ( h ) class (binned by 4 days to be equivalent in time to a single Discovery absence).

The benefits experienced by MT students seemed progressive; MT students that participated in 3 or 4 terms ( N  = 16 and 3, respectively ) showed no significant increase by linear regression in their course grade over time ( p  = 0.15, Fig. ​ Fig.2e), 2e ), but did show a significant increase in their Discovery grades ( p  = 0.0011, Fig. ​ Fig.2f). 2f ). Finally, students demonstrated excellent Discovery attendance; at least 91% of participants attended all Discovery sessions in a given term (Fig. ​ (Fig.2g). 2g ). In contrast, class attendance rates reveal a much wider distribution where 60.8% (163 out of 268 students) missed more than 4 classes (equivalent in learning time to one Discovery session) and 14.6% (39 out of 268 students) missed 16 or more classes (equivalent in learning time to an entire program of Discovery ) in a term (Fig. ​ (Fig.2h 2h ).

Discovery EE students (Fig. ​ (Fig.3), 3 ), roughly by definition, obtained lower course grades ( p  < 0.0001, Fig. ​ Fig.3a) 3a ) and higher final Discovery grades ( p  = 0.0004, Fig. ​ Fig.3b) 3b ) than non-EE students. This cohort of students exhibited program grades higher than classmates (Fig. 3c–h ); these differences were significant in every category with the exception of essays, where they outperformed to a significantly lesser degree ( p  = 0.097; Fig. ​ Fig.3c). 3c ). There was no statistically significant difference in EE vs. non-EE student classroom attendance ( p  = 0.85; Fig. 3i, j ). There were only four single day absences in Discovery within the EE subset; however, this difference was not statistically significant ( p  = 0.074).

An external file that holds a picture, illustration, etc.
Object name is 41539_2020_76_Fig3_HTML.jpg

The “Exceeds Expectations” (EE) subset of students (defined as those who received a combined Discovery grade ≥1 SD (18.0%) higher than their final course grade) performed ( a ) lower on their final course grade and ( b ) higher in the Discovery program as a whole when compared to their classmates. d – h EE students received significantly higher grades on each Discovery deliverable than their classmates, except for their ( c ) introductory essays and ( h ) final presentations. The EE subset also tended ( i ) to have a higher relative rate of attendance during Discovery sessions but no difference in ( j ) classroom attendance. N  = 99 EE students and 169 non-EE students (268 total). Grade data expressed as mean ± SEM.

Discovery MT students (Fig. ​ (Fig.4), 4 ), although not receiving significantly higher grades in class than students participating in the program only one time ( p  = 0.29, Fig. ​ Fig.4a), 4a ), were observed to obtain higher final Discovery grades than single-term students ( p  = 0.0067, Fig. ​ Fig.4b). 4b ). Although trends were less pronounced for individual MT student deliverables (Fig. 4c–h ), this student group performed significantly better on the progress report ( p  = 0.0021; Fig. ​ Fig.4f). 4f ). Trends of higher performance were observed for initial proposals and final presentations ( p  = 0.081 and 0.056, respectively; Fig. 4e, h ); all other deliverables were not significantly different between MT and non-MT students (Fig. 4c, d, g ). Attendance in Discovery ( p  = 0.22) was also not significantly different between MT and non-MT students, although MT students did miss significantly less class time ( p  = 0.010) (Fig. 4i, j ). Longitudinal assessment of individual deliverables for MT students that participated in three or more Discovery terms (Fig. ​ (Fig.5) 5 ) further highlights trend in improvement (Fig. ​ (Fig.2f). 2f ). Greater performance over terms of participation was observed for essay ( p  = 0.0295, Fig. ​ Fig.5a), 5a ), client meeting ( p  = 0.0003, Fig. ​ Fig.5b), 5b ), proposal ( p  = 0.0004, Fig. ​ Fig.5c), 5c ), progress report ( p  = 0.16, Fig. ​ Fig.5d), 5d ), poster ( p  = 0.0005, Fig. ​ Fig.5e), 5e ), and presentation ( p  = 0.0295, Fig. ​ Fig.5f) 5f ) deliverable grades; these trends were all significant with the exception of the progress report ( p  = 0.16, Fig. ​ Fig.5d) 5d ) owing to strong performance in this deliverable in all terms.

An external file that holds a picture, illustration, etc.
Object name is 41539_2020_76_Fig4_HTML.jpg

The “multi-term” (MT) subset of students (defined as having attended more than one term of Discovery ) demonstrated favorable performance in Discovery , ( a ) showing no difference in course grade compared to single-term students, but ( b outperforming them in final Discovery grade. Independent of the number of times participating in Discovery , MT students did not score significantly differently on their ( c ) essay, ( d ) client meeting, or ( g ) poster. They tended to outperform their single-term classmates on the ( e ) proposal and ( h ) final presentation and scored significantly higher on their ( f ) progress report. MT students showed no statistical difference in ( i ) Discovery attendance but did show ( j ) higher rates of classroom attendance than single-term students. N  = 174 MT instances of student participation (76 individual students) and 94 single-term students. Grade data expressed as mean ± SEM.

An external file that holds a picture, illustration, etc.
Object name is 41539_2020_76_Fig5_HTML.jpg

Longitudinal assessment of a subset of MT student participants that participated in three ( N  = 16) or four ( N  = 3) terms presents a significant trend of improvement in their ( a ) essay, ( b ) client meeting, ( c ) proposal, ( e ) poster, and ( f ) presentation grade. d Progress report grades present a trend in improvement but demonstrate strong performance in all terms, limiting potential for student improvement. Grade data are presented as individual student performance; each student is represented by one color; data is fitted with a linear trendline (black).

Finally, the expansion of Discovery to a second school of lower LOI (i.e., nominally higher aggregate SES) allowed for the assessment of program impact in a new population over 2 terms of programming. A significant ( p  = 0.040) divergence in Discovery vs. course grade distribution from the theoretical 1:1 relationship was found in the new cohort (S 1 Appendix , Fig. S 1 ), in keeping with the pattern established in this study.

Teacher perceptions

Qualitative observation in the classroom by high school teachers emphasized the value students independently placed on program participation and deliverables. Throughout the term, students often prioritized Discovery group assignments over other tasks for their STEM courses, regardless of academic weight and/or due date. Comparing within this student population, teachers spoke of difficulties with late and incomplete assignments in the regular curriculum but found very few such instances with respect to Discovery -associated deliverables. Further, teachers speculated on the good behavior and focus of students in Discovery programming in contrast to attentiveness and behavior issues in their school classrooms. Multiple anecdotal examples were shared of renewed perception of student potential; students that exhibited poor academic performance in the classroom often engaged with high performance in this inquiry-focused atmosphere. Students appeared to take a sense of ownership, excitement, and pride in the setting of group projects oriented around scientific inquiry, discovery, and dissemination.

Student perceptions

Students were asked to consider and rank the academic difficulty (scale of 1–5, with 1 = not challenging and 5 = highly challenging) of the work they conducted within the Discovery learning model. Considering individual Discovery terms, at least 91% of students felt the curriculum to be sufficiently challenging with a 3/5 or higher ranking (Term 1: 87.5%, Term 2: 93.4%, Term 3: 85%, Term 4: 93.3%, Term 5: 100%), and a minimum of 58% of students indicating a 4/5 or higher ranking (Term 1: 58.3%, Term 2: 70.5%, Term 3: 67.5%, Term 4: 69.1%, Term 5: 86.4%) (Fig. ​ (Fig.6a 6a ).

An external file that holds a picture, illustration, etc.
Object name is 41539_2020_76_Fig6_HTML.jpg

a Histogram of relative frequency of perceived Discovery programming academic difficulty ranked from not challenging (1) to highly challenging (5) for each session demonstrated the consistently perceived high degree of difficulty for Discovery programming (total responses: 223). b Program participation increased student comfort (94.6%) with navigating lab work in a university or college setting (total responses: 220). c Considering participation in Discovery programming, students indicated their increased (72.4%) or decreased (10.1%) likelihood to pursue future experiences in STEM as a measure of program impact (total responses: 217). d Large majority of participating students (84.9%) indicated their interest for future participation in Discovery (total responses: 212). Students were given the opportunity to opt out of individual survey questions, partially completed surveys were included in totals.

The majority of students (94.6%) indicated they felt more comfortable with the idea of performing future work in a university STEM laboratory environment given exposure to university teaching facilities throughout the program (Fig. ​ (Fig.6b). 6b ). Students were also queried whether they were (i) more likely, (ii) less likely, or (iii) not impacted by their experience in the pursuit of STEM in the future. The majority of participants (>82%) perceived impact on STEM interests, with 72.4% indicating they were more likely to pursue these interests in the future (Fig. ​ (Fig.6c). 6c ). When surveyed at the end of term, 84.9% of students indicated they would participate in the program again (Fig. ​ (Fig.6d 6d ).

We have described an inquiry-based framework for implementing experiential STEM education in a BME setting. Using this model, we engaged 268 instances of student participation (170 individual students who participated 1–4 times) over five terms in project-based learning wherein students worked in peer-based teams under the mentorship of U of T trainees to design and execute the scientific method in answering a relevant research question. Collaboration between high school teachers and Discovery instructors allowed for high school student exposure to cutting-edge BME research topics, participation in facilitated inquiry, and acquisition of knowledge through scientific discovery. All assessments were conducted by high school teachers and constituted a fraction (10–15%) of the overall course grade, instilling academic value for participating students. As such, students exhibited excitement to learn as well as commitment to their studies in the program.

Through our observations and analysis, we suggest there is value in differential learning environments for students that struggle in a knowledge acquisition-focused classroom setting. In general, we observed a high level of academic performance in Discovery programming (Fig. ​ (Fig.2a), 2a ), which was highlighted exceptionally in EE students who exhibited greater academic performance in Discovery deliverables compared to normal coursework (>18% grade improvement in relevant deliverables). We initially considered whether this was the result of strong students influencing weaker students; however, group organization within each course suggests this is not the case (Fig. ​ (Fig.2d). 2d ). With the exception of one class in one term (24 participants assigned by their teacher), students were allowed to self-organize into working groups and they chose to work with other students of relatively similar academic performance (as indicated by course grade), a trend observed in other studies 31 , 32 . Remarkably, EE students not only excelled during Discovery when compared to their own performance in class, but this cohort also achieved significantly higher average grades in each of the deliverables throughout the program when compared to the remaining Discovery cohort (Fig. ​ (Fig.3). 3 ). This data demonstrates the value of an inquiry-based learning environment compared to knowledge-focused delivery in the classroom in allowing students to excel. We expect that part of this engagement was resultant of student excitement with a novel learning opportunity. It is however a well-supported concept that students who struggle in traditional settings tend to demonstrate improved interest and motivation in STEM when given opportunity to interact in a hands-on fashion, which supports our outcomes 4 , 33 . Furthermore, these outcomes clearly represent variable student learning styles, where some students benefit from a greater exchange of information, knowledge and skills in a cooperative learning environment 34 . The performance of the EE group may not be by itself surprising, as the identification of the subset by definition required high performers in Discovery who did not have exceptionally high course grades; in addition, the final Discovery grade is dependent on the component assignment grades. However, the discrepancies between EE and non-EE groups attendance suggests that students were engaged by Discovery in a way that they were not by regular classroom curriculum.

In addition to quantified engagement in Discovery observed in academic performance, we believe remarkable attendance rates are indicative of the value students place in the differential learning structure. Given the differences in number of Discovery days and implications of missing one day of regular class compared to this immersive program, we acknowledge it is challenging to directly compare attendance data and therefore approximate this comparison with consideration of learning time equivalence. When combined with other subjective data including student focus, requests to work on Discovery during class time, and lack of discipline/behavior issues, the attendance data importantly suggests that students were especially engaged by the Discovery model. Further, we believe the increased commute time to the university campus (students are responsible for independent transit to campus, a much longer endeavour than the normal school commute), early program start time, and students’ lack of familiarity with the location are non-trivial considerations when determining the propensity of students to participate enthusiastically in Discovery . We feel this suggests the students place value on this team-focused learning and find it to be more applicable and meaningful to their interests.

Given post-secondary admission requirements for STEM programs, it would be prudent to think that students participating in multiple STEM classes across terms are the ones with the most inherent interest in post-secondary STEM programs. The MT subset, representing students who participated in Discovery for more than one term, averaged significantly higher final Discovery grades. The increase in the final Discovery grade was observed to result from a general confluence of improved performance over multiple deliverables and a continuous effort to improve in a STEM curriculum. This was reflected in longitudinal tracking of Discovery performance, where we observed a significant trend of improved performance. Interestingly, the high number of MT students who were included in the EE group suggests that students who had a keen interest in science enrolled in more than one course and in general responded well to the inquiry-based teaching method of Discovery , where scientific method was put into action. It stands to reason that students interested in science will continue to take STEM courses and will respond favorably to opportunities to put classroom theory to practical application.

The true value of an inquiry-based program such as Discovery may not be based in inspiring students to perform at a higher standard in STEM within the high school setting, as skills in critical thinking do not necessarily translate to knowledge-based assessment. Notably, students found the programming equally challenging throughout each of the sequential sessions, perhaps somewhat surprising considering the increasing number of repeat attendees in successive sessions (Fig. ​ (Fig.6a). 6a ). Regardless of sub-discipline, there was an emphasis of perceived value demonstrated through student surveys where we observed indicated interest in STEM and comfort with laboratory work environments, and desire to engage in future iterations given the opportunity. Although non-quantitative, we perceive this as an indicator of significant student engagement, even though some participants did not yield academic success in the program and found it highly challenging given its ambiguity.

Although we observed that students become more certain of their direction in STEM, further longitudinal study is warranted to make claim of this outcome. Additionally, at this point in our assessment we cannot effectively assess the practical outcomes of participation, understanding that the immediate effects observed are subject to a number of factors associated with performance in the high school learning environment. Future studies that track graduates from this program will be prudent, in conjunction with an ever-growing dataset of assessment as well as surveys designed to better elucidate underlying perceptions and attitudes, to continue to understand the expected benefits of this inquiry-focused and partnered approach. Altogether, a multifaceted assessment of our early outcomes suggests significant value of an immersive and iterative interaction with STEM as part of the high school experience. A well-defined divergence from knowledge-based learning, focused on engagement in critical thinking development framed in the cutting-edge of STEM, may be an important step to broadening student perspectives.

In this study, we describe the short-term effects of an inquiry-based STEM educational experience on a cohort of secondary students attending a non-specialized school, and suggest that the framework can be widely applied across virtually all subjects where inquiry-driven and mentored projects can be undertaken. Although we have demonstrated replication in a second cohort of nominally higher SES (S 1 Appendix , Supplementary Fig. 1 ), a larger collection period with more students will be necessary to conclusively determine impact independent of both SES and specific cohort effects. Teachers may also find this framework difficult to implement depending on resources and/or institutional investment and support, particularly if post-secondary collaboration is inaccessible. Offerings to a specific subject (e.g., physics) where experiments yielding empirical data are logistically or financially simpler to perform may be valid routes of adoption as opposed to the current study where all subject cohorts were included.

As we consider Discovery in a bigger picture context, expansion and implementation of this model is translatable. Execution of the scientific method is an important aspect of citizen science, as the concepts of critical thing become ever-more important in a landscape of changing technological landscapes. Giving students critical thinking and problem-solving skills in their primary and secondary education provides value in the context of any career path. Further, we feel that this model is scalable across disciplines, STEM or otherwise, as a means of building the tools of inquiry. We have observed here the value of differential inclusive student engagement and critical thinking through an inquiry-focused model for a subset of students, but further to this an engagement, interest, and excitement across the body of student participants. As we educate the leaders of tomorrow, we suggest that use of an inquiry-focused model such as Discovery could facilitate growth of a data-driven critical thinking framework.

In conclusion, we have presented a model of inquiry-based STEM education for secondary students that emphasizes inclusion, quantitative analysis, and critical thinking. Student grades suggest significant performance benefits, and engagement data suggests positive student attitude despite the perceived challenges of the program. We also note a particular performance benefit to students who repeatedly engage in the program. This framework may carry benefits in a wide variety of settings and disciplines for enhancing student engagement and performance, particularly in non-specialized school environments.

Study design and implementation

Participants in Discovery include all students enrolled in university-stream Grade 11 or 12 biology, chemistry, or physics at the participating school over five consecutive terms (cohort summary shown in Table ​ Table1). 1 ). Although student participation in educational content was mandatory, student grades and survey responses (administered by high school teachers) were collected from only those students with parent or guardian consent. Teachers replaced each student name with a unique coded identifier to preserve anonymity but enable individual student tracking over multiple terms. All data collected were analyzed without any exclusions save for missing survey responses; no power analysis was performed prior to data collection.

Summary of cohort participants in each term offering of Discovery ( N  = 268 instances of student participation).

TermClassGradeNumber of students
1  = 57 studentsBiology1117
Chemistry1119
124
Physics1117
2  = 63 studentsBiology117
1218
Chemistry1117
126
Physics1115
3  = 43 studentsBiology1118
Chemistry1114
Physics1211
4  = 52 studentsBiology1117
Chemistry1116
Physics1119
5  = 53 studentsBiology1216
Chemistry1124
126
Physics127

Ethics statement

This study was approved by the University of Toronto Health Sciences Research Ethics Board (Protocol # 34825) and the Toronto District School Board External Research Review Committee (Protocol # 2017-2018-20). Written informed consent was collected from parents or guardians of participating students prior to the acquisition of student data (both post-hoc academic data and survey administration). Data were anonymized by high school teachers for maintenance of academic confidentiality of individual students prior to release to U of T researchers.

Educational program overview

Students enrolled in university-preparatory STEM classes at the participating school completed a term-long project under the guidance of graduate student instructors and undergraduate student mentors as a mandatory component of their respective course. Project curriculum developed collaboratively between graduate students and participating high school teachers was delivered within U of T Faculty of Applied Science & Engineering (FASE) teaching facilities. Participation allows high school students to garner a better understanding as to how undergraduate learning and career workflows in STEM vary from traditional high school classroom learning, meanwhile reinforcing the benefits of problem solving, perseverance, teamwork, and creative thinking competencies. Given that Discovery was a mandatory component of course curriculum, students participated as class cohorts and addressed questions specific to their course subject knowledge base but related to the defined global health research topic (Fig. ​ (Fig.1). 1 ). Assessment of program deliverables was collectively assigned to represent 10–15% of the final course grade for each subject at the discretion of the respective STEM teacher.

The Discovery program framework was developed, prior to initiation of student assessment, in collaboration with one high school selected from the local public school board over a 1.5 year period of time. This partner school consistently scores highly (top decile) in the school board’s Learning Opportunities Index (LOI). The LOI ranks each school based on measures of external challenges affecting its student population therefore schools with the greatest level of external challenge receive a higher ranking 35 . A high LOI ranking is inversely correlated with socioeconomic status (SES); therefore, participating students are identified as having a significant number of external challenges that may affect their academic success. The mandatory nature of program participation was established to reach highly capable students who may be reluctant to engage on their own initiative, as a means of enhancing the inclusivity and impact of the program. The selected school partner is located within a reasonable geographical radius of our campus (i.e., ~40 min transit time from school to campus). This is relevant as participating students are required to independently commute to campus for Discovery hands-on experiences.

Each program term of Discovery corresponds with a five-month high school term. Lead university trainee instructors (3–6 each term) engaged with high school teachers 1–2 months in advance of high school student engagement to discern a relevant overarching global healthcare theme. Each theme was selected with consideration of (a) topics that university faculty identify as cutting-edge biomedical research, (b) expertise that Discovery instructors provide, and (c) capacity to showcase the diversity of BME. Each theme was sub-divided into STEM subject-specific research questions aligning with provincial Ministry of Education curriculum concepts for university-preparatory Biology, Chemistry, and Physics 9 that students worked to address, both on-campus and in-class, during a term-long project. The Discovery framework therefore provides students a problem-based learning experience reflective of an engineering capstone design project, including a motivating scientific problem (i.e., global topic), subject-specific research question, and systematic determination of a professional recommendation addressing the needs of the presented problem.

Discovery instructors were volunteers recruited primarily from graduate and undergraduate BME programs in the FASE. Instructors were organized into subject-specific instructional teams based on laboratory skills, teaching experience, and research expertise. The lead instructors of each subject (the identified 1–2 trainees that built curriculum with high school teachers) were responsible to organize the remaining team members as mentors for specific student groups over the course of the program term (~1:8 mentor to student ratio).

All Discovery instructors were familiarized with program expectations and trained in relevant workspace safety, in addition to engagement at a teaching workshop delivered by the Faculty Advisor (a Teaching Stream faculty member) at the onset of term. This workshop was designed to provide practical information on teaching and was co-developed with high school teachers based on their extensive training and experience in fundamental teaching methods. In addition, group mentors received hands-on training and guidance from lead instructors regarding the specific activities outlined for their respective subject programming (an exemplary term of student programming is available in S 2 Appendix) .

Discovery instructors were responsible for introducing relevant STEM skills and mentoring high school students for the duration of their projects, with support and mentorship from the Faculty Mentor. Each instructor worked exclusively throughout the term with the student groups to which they had been assigned, ensuring consistent mentorship across all disciplinary components of the project. In addition to further supporting university trainees in on-campus mentorship, high school teachers were responsible for academic assessment of all student program deliverables (Fig. ​ (Fig.1; 1 ; the standardized grade distribution available in S 3 Appendix ). Importantly, trainees never engaged in deliverable assessment; for continuity of overall course assessment, this remained the responsibility of the relevant teacher for each student cohort.

Throughout each term, students engaged within the university facilities four times. The first three sessions included hands-on lab sessions while the fourth visit included a culminating symposium for students to present their scientific findings (Fig. ​ (Fig.1). 1 ). On average, there were 4–5 groups of students per subject (3–4 students per group; ~20 students/class). Discovery instructors worked exclusively with 1–2 groups each term in the capacity of mentor to monitor and guide student progress in all project deliverables.

After introducing the selected global research topic in class, teachers led students in completion of background research essays. Students subsequently engaged in a subject-relevant skill-building protocol during their first visit to university teaching laboratory facilities, allowing opportunity to understand analysis techniques and equipment relevant for their assessment projects. At completion of this session, student groups were presented with a subject-specific research question as well as the relevant laboratory inventory available for use during their projects. Armed with this information, student groups continued to work in their classroom setting to develop group-specific experimental plans. Teachers and Discovery instructors provided written and oral feedback, respectively , allowing students an opportunity to revise their plans in class prior to on-campus experimental execution.

Once at the relevant laboratory environment, student groups executed their protocols in an effort to collect experimental data. Data analysis was performed in the classroom and students learned by trial & error to optimize their protocols before returning to the university lab for a second opportunity of data collection. All methods and data were re-analyzed in class in order for students to create a scientific poster for the purpose of study/experience dissemination. During a final visit to campus, all groups presented their findings at a research symposium, allowing students to verbally defend their process, analyses, interpretations, and design recommendations to a diverse audience including peers, STEM teachers, undergraduate and graduate university students, postdoctoral fellows and U of T faculty.

Data collection

Teachers evaluated their students on the following associated deliverables: (i) global theme background research essay; (ii) experimental plan; (iii) progress report; (iv) final poster content and presentation; and (v) attendance. For research purposes, these grades were examined individually and also as a collective Discovery program grade for each student. For students consenting to participation in the research study, all Discovery grades were anonymized by the classroom teacher before being shared with study authors. Each student was assigned a code by the teacher for direct comparison of deliverable outcomes and survey responses. All instances of “Final course grade” represent the prorated course grade without the Discovery component, to prevent confounding of quantitative analyses.

Survey instruments were used to gain insight into student attitudes and perceptions of STEM and post-secondary study, as well as Discovery program experience and impact (S 4 Appendix ). High school teachers administered surveys in the classroom only to students supported by parental permission. Pre-program surveys were completed at minimum 1 week prior to program initiation each term and exit surveys were completed at maximum 2 weeks post- Discovery term completion. Surveys results were validated using a principal component analysis (S 1 Appendix , Supplementary Fig. 2 ).

Identification and comparison of population subsets

From initial analysis, we identified two student subpopulations of particular interest: students who performed ≥1 SD [18.0%] or greater in the collective Discovery components of the course compared to their final course grade (“EE”), and students who participated in Discovery more than once (“MT”). These groups were compared individually against the rest of the respective Discovery population (“non-EE” and “non-MT”, respectively ). Additionally, MT students who participated in three or four (the maximum observed) terms of Discovery were assessed for longitudinal changes to performance in their course and Discovery grades. Comparisons were made for all Discovery deliverables (introductory essay, client meeting, proposal, progress report, poster, and presentation), final Discovery grade, final course grade, Discovery attendance, and overall attendance.

Statistical analysis

Student course grades were analyzed in all instances without the Discovery contribution (calculated from all deliverable component grades and ranging from 10 to 15% of final course grade depending on class and year) to prevent correlation. Aggregate course grades and Discovery grades were first compared by paired t-test, matching each student’s course grade to their Discovery grade for the term. Student performance in Discovery ( N  = 268 instances of student participation, comprising 170 individual students that participated 1–4 times) was initially assessed in a linear regression of Discovery grade vs. final course grade. Trends in course and Discovery performance over time for students participating 3 or 4 terms ( N  = 16 and 3 individuals, respectively ) were also assessed by linear regression. For subpopulation analysis (EE and MT, N  = 99 instances from 81 individuals and 174 instances from 76 individuals, respectively ), each dataset was tested for normality using the D’Agostino and Pearson omnibus normality test. All subgroup comparisons vs. the remaining population were performed by Mann–Whitney U -test. Data are plotted as individual points with mean ± SEM overlaid (grades), or in histogram bins of 1 and 4 days, respectively , for Discovery and class attendance. Significance was set at α ≤ 0.05.

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Supplementary information

Acknowledgements.

This study has been possible due to the support of many University of Toronto trainee volunteers, including Genevieve Conant, Sherif Ramadan, Daniel Smieja, Rami Saab, Andrew Effat, Serena Mandla, Cindy Bui, Janice Wong, Dawn Bannerman, Allison Clement, Shouka Parvin Nejad, Nicolas Ivanov, Jose Cardenas, Huntley Chang, Romario Regeenes, Dr. Henrik Persson, Ali Mojdeh, Nhien Tran-Nguyen, Ileana Co, and Jonathan Rubianto. We further acknowledge the staff and administration of George Harvey Collegiate Institute and the Institute of Biomedical Engineering (IBME), as well as Benjamin Rocheleau and Madeleine Rocheleau for contributions to data collation. Discovery has grown with continued support of Dean Christopher Yip (Faculty of Applied Science and Engineering, U of T), and the financial support of the IBME and the National Science and Engineering Research Council (NSERC) PromoScience program (PROSC 515876-2017; IBME “Igniting Youth Curiosity in STEM” initiative co-directed by DMK and Dr. Penney Gilbert). LDH and NIC were supported by Vanier Canada graduate scholarships from the Canadian Institutes of Health Research and NSERC, respectively . DMK holds a Dean’s Emerging Innovation in Teaching Professorship in the Faculty of Engineering & Applied Science, U of T.

Author contributions

LDH, NIC and DMK conceived the program structure, designed the study, and interpreted the data. LDH and NIC ideated programming, coordinated execution, and performed all data analysis. SD, ES, and MJ designed and assessed student deliverables, collected data, and anonymized data for assessment. SD assisted in data interpretation. AIS assisted in programming ideation and design. All authors provided feedback and approved the manuscript that was written by LDH, NIC and DMK.

Data availability

Competing interests.

The authors declare no competing interests.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

These authors contributed equally: Locke Davenport Huyer, Neal I. Callaghan.

Supplementary information is available for this paper at 10.1038/s41539-020-00076-2.

  • Future Students
  • Parents/Families
  • Alumni/Friends
  • Current Students
  • Faculty/Staff
  • MyOHIO Student Center
  • Visit Athens Campus
  • Regional Campuses
  • OHIO Online
  • Faculty/Staff Directory
  • University Community
  • Research & Impact
  • Alumni & Friends
  • Search All News
  • OHIO Today Magazine
  • Colleges & Campuses
  • For the Media

Helpful Links

Navigate OHIO

Connect With Us

Tech Savvy program bridges the gap in STEM exploration for area youth, highlights women in STEM fields

Tech Savvy 2024

Students in grades fifth through ninth from around the southeastern Ohio and West Virginia area had the opportunity to hear from OHIO experts and explore areas in STEM during the Tech Savvy program on May 11.

The one-day event provided an opportunity for youth in the area to come to Ohio University’s Athens campus to participate in a variety of workshops and engage with peers and experts in different STEM fields. In addition to introducing middle school students to different areas, the program also highlighted the women working in STEM fields with most of the presenters being women discussing their area of expertise and sharing their experiences.

Several esteemed OHIO faculty members, Ph.D. candidates and local scientists spearheaded workshops and presentations, sharing their expertise and igniting curiosity among the budding scientists in areas such as environmental research, psychology, human and plant biology, computer programming and more.

According to Dr. Sarah Wyatt, who gave opening and closing remarks for the program and who was the chair of the planning committee, programming like this is incredibly important for students in this area to ignite the spark of curiosity and innovation and for them to know working in these fields is possible regardless of their background.

“I walked in and saw engaged students,” John McCarthy, dean of the College of Health Sciences and Professions, said. “The Kids on Campus team knows kids and what motivates them. People like Sarah Wyatt have the knowledge to inspire them. Along with the supportive community, it was a winning combination and I’m thrilled that the College of Health Sciences and Professions could open our doors for the Tech Savvy event.”

Throughout the day, students choose from a variety of workshops focused on different subjects, such as Decoding DNA, Plants in Space, Measuring Your Mind, and more, while working in labs across campus. These workshops allowed for young students to get hands-on experience and a taste of what it could be like researching in a lab someday.

Following the workshops, students got to learn important soft skills through hands-on experiments that taught collaboration, attention to detail, how to resolve conflict and the importance of listening and understanding to others.

There was also an optional parent program for the guardians of the students participating that provided them with the tools to help their youth explore STEM careers, learn about college readiness and take part in STEM workshops themselves.

“We are grateful to the Paula Tolliver Appalachian OHIO STEM Fund who has helped make the Tech Savvy program possible,” Jo Ellen Sherow, program manager for Kids on Campus, said. “The program is a wonderful complement to our Kids on Campus offerings and allows us to provide students with a unique opportunity to explore, and be interested in, STEM fields. This year's event was a lot of fun, and we were thrilled to see so many students and parents excited to learn new things!”

Every year, Tech Savvy also has a keynote speaker that presents on a topic within their expertise. This year, the keynote speaker was Dr. Andrea Richard, an assistant professor in the Physics and Astronomy Department at Ohio University. Dr. Richard’s work is primarily related to indirect neutron-capture constraints for the astrophysical processes, and her research aims to answer the question of where everything we see around us comes from. She is actively involved in mentoring, policy advocacy, outreach, and diversity, equity, and inclusion initiatives.

Tech Savvy is sponsored by Ohio University, Kids on Campus, the College of Health Sciences and Professions, Undergraduate Admissions, the Academic Achievement Center, Student Financial Aid and Scholarships, the College of Arts and Sciences, the Department of Environmental and Plant Biology, the Department of Chemistry and Biochemistry, the Department of Physics and Astronomy, the Department of Psychology and the American Association of University Women (AAUW).

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

Publications

  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Internet & Technology

6 facts about americans and tiktok.

62% of U.S. adults under 30 say they use TikTok, compared with 39% of those ages 30 to 49, 24% of those 50 to 64, and 10% of those 65 and older.

Many Americans think generative AI programs should credit the sources they rely on

Americans’ use of chatgpt is ticking up, but few trust its election information, whatsapp and facebook dominate the social media landscape in middle-income nations, sign up for our internet, science, and tech newsletter.

New findings, delivered monthly

Electric Vehicle Charging Infrastructure in the U.S.

64% of Americans live within 2 miles of a public electric vehicle charging station, and those who live closest to chargers view EVs more positively.

When Online Content Disappears

A quarter of all webpages that existed at one point between 2013 and 2023 are no longer accessible.

A quarter of U.S. teachers say AI tools do more harm than good in K-12 education

High school teachers are more likely than elementary and middle school teachers to hold negative views about AI tools in education.

Teens and Video Games Today

85% of U.S. teens say they play video games. They see both positive and negative sides, from making friends to harassment and sleep loss.

Americans’ Views of Technology Companies

Most Americans are wary of social media’s role in politics and its overall impact on the country, and these concerns are ticking up among Democrats. Still, Republicans stand out on several measures, with a majority believing major technology companies are biased toward liberals.

22% of Americans say they interact with artificial intelligence almost constantly or several times a day. 27% say they do this about once a day or several times a week.

About one-in-five U.S. adults have used ChatGPT to learn something new (17%) or for entertainment (17%).

Across eight countries surveyed in Latin America, Africa and South Asia, a median of 73% of adults say they use WhatsApp and 62% say they use Facebook.

5 facts about Americans and sports

About half of Americans (48%) say they took part in organized, competitive sports in high school or college.

REFINE YOUR SELECTION

Research teams, signature reports.

research topics for senior high school stem students

The State of Online Harassment

Roughly four-in-ten Americans have experienced online harassment, with half of this group citing politics as the reason they think they were targeted. Growing shares face more severe online abuse such as sexual harassment or stalking

Parenting Children in the Age of Screens

Two-thirds of parents in the U.S. say parenting is harder today than it was 20 years ago, with many citing technologies – like social media or smartphones – as a reason.

Dating and Relationships in the Digital Age

From distractions to jealousy, how Americans navigate cellphones and social media in their romantic relationships.

Americans and Privacy: Concerned, Confused and Feeling Lack of Control Over Their Personal Information

Majorities of U.S. adults believe their personal data is less secure now, that data collection poses more risks than benefits, and that it is not possible to go through daily life without being tracked.

Americans and ‘Cancel Culture’: Where Some See Calls for Accountability, Others See Censorship, Punishment

Social media fact sheet, digital knowledge quiz, video: how do americans define online harassment.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

IMAGES

  1. 55 Brilliant Research Topics For STEM Students

    research topics for senior high school stem students

  2. Reasearch Ideas for High School Students

    research topics for senior high school stem students

  3. Research Titles for STEM Strand Student

    research topics for senior high school stem students

  4. Research paper topics for high school students

    research topics for senior high school stem students

  5. Research Topic Examples For Senior High School Students

    research topics for senior high school stem students

  6. 151+ Great Quantitative Research Topics For STEM Students

    research topics for senior high school stem students

VIDEO

  1. Bloomington High School STEM students heading to national competition

  2. Apex high school STEM students learn about aviation

COMMENTS

  1. 55 Brilliant Research Topics For STEM Students

    Interesting and Informative Research Topics For Senior High School STEM Students. Here are some descriptive research topics for STEM students in senior high. The scientific information concept and its role in conducting scientific research; The role of mathematical statistics in scientific research; A study of the natural resources contained in ...

  2. 11 STEM Research Topics for High School Students

    Topic 1: Artificial Intelligence (AI) AI stands at the forefront of technological innovation. Students can engage in research on AI applications in various sectors and the ethical implications of AI. This field is suitable for students with interests in computer science, AI, data analytics, and related areas. Topic 2: Applied Math and AI.

  3. 169+ Exciting Qualitative Research Topics For STEM Students

    161+ Exciting Qualitative Research Topics For STEM Students. Here are the most exciting and very interesting Qualitative Research Topics For STEM Students, high school students, nursing students, college students, etc. Biology Qualitative Research Topics. Impact of Ecosystem Restoration on Biodiversity; Ethical Considerations in Human Gene Editing

  4. 151+ Brilliant Qualitative Research Topics for STEM Students

    Qualitative Research Topics for STEM Students. 1. Studying how different types of dirt affect plant growth. 2. Checking how different plant foods impact how much crops grow. 3. Looking at how exercising affects your heart rate. 4. Testing which materials keep things warm the best.

  5. 200+ Experimental Quantitative Research Topics For Stem Students

    Here are 10 practical research topics for STEM students: Developing an affordable and sustainable water purification system for rural communities. Designing a low-cost, energy-efficient home heating and cooling system. Investigating strategies for reducing food waste in the supply chain and households.

  6. Enhancing senior high school student engagement and academic ...

    The multi-disciplinary nature of science, technology, engineering, and math (STEM) careers often renders difficulty for high school students navigating from classroom knowledge to post-secondary ...

  7. PDF Qualitative Research Topics for STEM Students

    Here's a list of over 200 qualitative research topics for STEM students: The Ethical Implications of CRISPR Technology in Genetic Engineering. Exploring the Societal Impact of Artificial Intelligence in Healthcare. User Experience and Human-Centered Design in Software Development.

  8. Factors Influencing Student STEM Learning: Self-Efficacy and ...

    Social, motivational, and instructional factors impact students' outcomes in STEM learning and their career paths. Based on prior research and expectancy-value theory, the study further explored how multiple factors affect students in the context of integrated STEM learning. High school STEM teachers participated in summer professional development and taught integrated STEM to students ...

  9. PDF Enhancing senior high school student engagement and academic ...

    Discovery, a term-long inquiry-focused learning model delivered by STEM graduate students in collaboration with high school teachers, in the context of biomedical engineering.

  10. (PDF) "Assessing the Experiential Learning and Scientific Process

    Process Skills of Senior High School S TEM Students: A Literature Review Dave M. Conchas , April Rose Y. Montilla , Kesia Dian C. R omblon , Michelle P. Torion ,

  11. Pursuing STEM Careers: Perspectives of Senior High School Students

    Abstract and Figures. This qualitative descriptive research explored the perspectives of STEM (science, technology, engineering, and mathematics) senior high school students in a public secondary ...

  12. 100 Interesting Research Paper Topics for High Schoolers

    For example, last year over 4000 students applied for 500 spots in the Lumiere Research Scholar Program, a rigorous research program founded by Harvard researchers. The program pairs high-school students with Ph.D. mentors to work 1-on-1 on an independent research project .

  13. Pursuing STEM Careers: Perspectives of Senior High School Students

    These challenges also affect how students learn in the STEM discipline in the senior high school. This qualitative study employed a case research design which sought to investigate nature of the challenges in STEM learning among senior high school students in the Philippines.

  14. Trending Topic Research: STEM

    Trending Topic Research File. Science, Technology Engineering, and Mathematics (STEM) is one of the most talked about topics in education, emphasizing research, problem solving, critical thinking, and creativity. The following compendium of open-access articles are inclusive of all substantive AERA journal content regarding STEM published since ...

  15. Pursuing STEM Careers: Perspectives of Senior High School Students

    This qualitative descriptive research explored the perspectives of STEM (science, technology, engineering, and mathematics) senior high school students in a public secondary school in Zambales, Philippines on their reasons why they enrolled in STEM and their intent to pursue relevant career. A total of 20 Grade 12 students were purposively ...

  16. STEM as the most preferred strand of Senior High School Student's

    This qualitative descriptive research explored the perspectives of STEM (science, technology, engineering, and mathematics) senior high school students in a public secondary school in Zambales, Philippines on their reasons why they enrolled in STEM and their intent to pursue relevant career.

  17. Factors Affecting Senior High School Students to Choose STEM as Their

    Moreover, based on the literature review, it was established that a student's Career Aim is the primary factor that prompts them to choose the STEM strand. Skills taught in the STEM strand, such as critical thinking and problem-solving, apply to practically all jobs and are in high demand for the majority.

  18. Pursuing STEM Careers: Perspectives of Senior High School Students

    This qualitative descriptive research explored the perspectives of STEM (science, technology, engineering, and mathematics) senior high school students in a public secondary school in Zambales, Philippines on their reasons why they enrolled in STEM and their intent to pursue relevant career. A total of 20 Grade 12 students were purposively selected as participants of the research. The ...

  19. Challenges in STEM Learning: A Case of Filipino High School Students

    This qualitative study employed a case research design which sought to investigate nature of the challenges in STEM learning among senior high school students in the Philippines. Semi-structured ...

  20. The senior high school students' learning behavioral model of STEM in

    The purpose of the study was to explore a learning behavioral model of project-based learning (PBL) for senior high school students in the context of STEM (science, technology, engineering, and mathematics). Using "audio speakers" as the project theme, a series of tasks were designed to be solved using STEM knowledge via an online platform and student group discussions. A total of 84 ...

  21. Educators: Start Early to Keep Students Engaged in STEM

    A majority of students ages 12-18 are interested in careers in science, technology, engineering, or math, finds a 2023 survey sponsored by the Walton Family Foundation. But the survey also found ...

  22. Senior High School STEM

    Overview of the STEM Strand. Designed to prepare students who express keen interest in taking college degrees focused on Science, Technology, Engineering, and Mathematics (STEM), senior high school students will be exposed to learning activities that will hone their knowledge and skills in analyzing data, understanding real-world impacts, and conducting research.

  23. Nation's Oldest and Most Prestigious High School STEM Competition Names

    The Regeneron Science Talent Search, a program of Society for Science since 1942, is the nation's oldest and most prestigious science and math competition for high school seniors. Each year, more than 2,000 student entrants submit original research in critically important scientific fields of study and are judged by leading experts in their ...

  24. Tackling STEM Courses

    The STEM (Science, Technology, Engineering, Math) journey at Harvard is unique to each student and can involve several different interests, concentrations, and pathways. Whether you are probing your interest in STEM for the first time or have already explored STEM deeply here or in high school, there are strategies you can implement to help you ...

  25. 120+ Fascinating Essay Topics for High School Students

    The following ideas work well for compare-contrast essays. ( Find 80+ compare-contrast essay topics for all ages here.) Public and private schools. Capitalism vs. communism. Monarchy or democracy. Dogs vs. cats as pets. WeAreTeachers. Paper books or e-books. Two political candidates in a current race.

  26. Enhancing senior high school student engagement and academic

    Introduction. High school students with diverse STEM interests often struggle to understand the STEM experience outside the classroom 1.The multi-disciplinary nature of many career fields can foster a challenge for students in their decision to enroll in appropriate high school courses while maintaining persistence in study, particularly when these courses are not mandatory 2.

  27. Inspiring the Next Generation of Women in STEM

    According to data from the National Center for Science and Engineering Statistics, in 2021, roughly one-third of females aged 18-74 worked in STEM, compared to 65% of males in the same age range. Gender disparities are even more pronounced across race, ethnicity, and disability status. I've identified two major factors: Lack of support ...

  28. Tech Savvy program bridges the gap in STEM exploration for area youth

    Students in grades fifth through ninth from around the southeastern Ohio and West Virginia area had the opportunity to hear from OHIO experts and explore areas in STEM during the Tech Savvy program on May 11. The one-day event provided an opportunity for youth in the area to come to Ohio University ...

  29. (PDF) Difficulties of Senior High School Science, Technology

    Difficulties of Senior High School Science, Technology, Engineering and Mathematics (STEM) Students in Research June 2020 TEST ENGINEERING AND MANAGEMENT 83(May-June 2020):8211-8220

  30. Internet & Technology

    Americans' Views of Technology Companies. Most Americans are wary of social media's role in politics and its overall impact on the country, and these concerns are ticking up among Democrats. Still, Republicans stand out on several measures, with a majority believing major technology companies are biased toward liberals. short readsApr 3, 2024.