CPM Educational Program

Expert textbook solutions.

Browse your textbook to find expert solutions, hints, and answers for all exercises. The solutions are always presented as a clear and concise, step-by-step explanation with included theory and helpful figures, graphs, and diagrams. Mathleaks covers the most commonly adopted textbooks with more than 250000 expert solutions.

Mathleaks Solver

With Mathleaks, you’re not tied to your textbook for solutions. Instead, scan and solve exercises with our math solver, which instantly reads the problem by using the camera on your smartphone or tablet. Access the solver through the Mathleaks app or on our website. The Mathleaks solver works for Pre-Algebra, Algebra 1, and Algebra 2.

Mathleaks Community

Get access to the world's most popular math community with Mathleaks. You can connect with other students all over the US who are studying with the same textbook or in the same math course.

Study math more efficiently using Mathleaks for CPM Educational Program textbooks.

  • Core Connections Integrated I, 2013
  • Core Connections Algebra 1, 2013
  • Core Connections Geometry, 2013
  • Core Connections Algebra 2, 2013
  • Core Connections Integrated I, 2014
  • Core Connections Integrated II, 2015
  • Core Connections: Course 1
  • Core Connections: Course 2
  • Core Connections: Course 3
  • Core Connections Integrated III, 2015

CPM Homework Banner

Home > CC3

© 2022 CPM Educational Program. All rights reserved.

2.1 The Rectangular Coordinate Systems and Graphs

x -intercept is ( 4 , 0 ) ; ( 4 , 0 ) ; y- intercept is ( 0 , 3 ) . ( 0 , 3 ) .

125 = 5 5 125 = 5 5

( − 5 , 5 2 ) ( − 5 , 5 2 )

2.2 Linear Equations in One Variable

x = −5 x = −5

x = −3 x = −3

x = 10 3 x = 10 3

x = 1 x = 1

x = − 7 17 . x = − 7 17 . Excluded values are x = − 1 2 x = − 1 2 and x = − 1 3 . x = − 1 3 .

x = 1 3 x = 1 3

m = − 2 3 m = − 2 3

y = 4 x −3 y = 4 x −3

x + 3 y = 2 x + 3 y = 2

Horizontal line: y = 2 y = 2

Parallel lines: equations are written in slope-intercept form.

y = 5 x + 3 y = 5 x + 3

2.3 Models and Applications

C = 2.5 x + 3 , 650 C = 2.5 x + 3 , 650

L = 37 L = 37 cm, W = 18 W = 18 cm

2.4 Complex Numbers

−24 = 0 + 2 i 6 −24 = 0 + 2 i 6

( 3 −4 i ) − ( 2 + 5 i ) = 1 −9 i ( 3 −4 i ) − ( 2 + 5 i ) = 1 −9 i

5 2 − i 5 2 − i

18 + i 18 + i

−3 −4 i −3 −4 i

2.5 Quadratic Equations

( x − 6 ) ( x + 1 ) = 0 ; x = 6 , x = − 1 ( x − 6 ) ( x + 1 ) = 0 ; x = 6 , x = − 1

( x −7 ) ( x + 3 ) = 0 , ( x −7 ) ( x + 3 ) = 0 , x = 7 , x = 7 , x = −3. x = −3.

( x + 5 ) ( x −5 ) = 0 , ( x + 5 ) ( x −5 ) = 0 , x = −5 , x = −5 , x = 5. x = 5.

( 3 x + 2 ) ( 4 x + 1 ) = 0 , ( 3 x + 2 ) ( 4 x + 1 ) = 0 , x = − 2 3 , x = − 2 3 , x = − 1 4 x = − 1 4

x = 0 , x = −10 , x = −1 x = 0 , x = −10 , x = −1

x = 4 ± 5 x = 4 ± 5

x = 3 ± 22 x = 3 ± 22

x = − 2 3 , x = − 2 3 , x = 1 3 x = 1 3

2.6 Other Types of Equations

{ −1 } { −1 }

0 , 0 , 1 2 , 1 2 , − 1 2 − 1 2

1 ; 1 ; extraneous solution − 2 9 − 2 9

−2 ; −2 ; extraneous solution −1 −1

−1 , −1 , 3 2 3 2

−3 , 3 , − i , i −3 , 3 , − i , i

2 , 12 2 , 12

−1 , −1 , 0 0 is not a solution.

2.7 Linear Inequalities and Absolute Value Inequalities

[ −3 , 5 ] [ −3 , 5 ]

( − ∞ , −2 ) ∪ [ 3 , ∞ ) ( − ∞ , −2 ) ∪ [ 3 , ∞ )

x < 1 x < 1

x ≥ −5 x ≥ −5

( 2 , ∞ ) ( 2 , ∞ )

[ − 3 14 , ∞ ) [ − 3 14 , ∞ )

6 < x ≤ 9 ​ or ( 6 , 9 ] 6 < x ≤ 9 ​ or ( 6 , 9 ]

( − 1 8 , 1 2 ) ( − 1 8 , 1 2 )

| x −2 | ≤ 3 | x −2 | ≤ 3

k ≤ 1 k ≤ 1 or k ≥ 7 ; k ≥ 7 ; in interval notation, this would be ( − ∞ , 1 ] ∪ [ 7 , ∞ ) . ( − ∞ , 1 ] ∪ [ 7 , ∞ ) .

2.1 Section Exercises

Answers may vary. Yes. It is possible for a point to be on the x -axis or on the y -axis and therefore is considered to NOT be in one of the quadrants.

The y -intercept is the point where the graph crosses the y -axis.

The x- intercept is ( 2 , 0 ) ( 2 , 0 ) and the y -intercept is ( 0 , 6 ) . ( 0 , 6 ) .

The x- intercept is ( 2 , 0 ) ( 2 , 0 ) and the y -intercept is ( 0 , −3 ) . ( 0 , −3 ) .

The x- intercept is ( 3 , 0 ) ( 3 , 0 ) and the y -intercept is ( 0 , 9 8 ) . ( 0 , 9 8 ) .

y = 4 − 2 x y = 4 − 2 x

y = 5 − 2 x 3 y = 5 − 2 x 3

y = 2 x − 4 5 y = 2 x − 4 5

d = 74 d = 74

d = 36 = 6 d = 36 = 6

d ≈ 62.97 d ≈ 62.97

( 3 , − 3 2 ) ( 3 , − 3 2 )

( 2 , −1 ) ( 2 , −1 )

( 0 , 0 ) ( 0 , 0 )

y = 0 y = 0

not collinear

A: ( −3 , 2 ) , B: ( 1 , 3 ) , C: ( 4 , 0 ) A: ( −3 , 2 ) , B: ( 1 , 3 ) , C: ( 4 , 0 )

1
0 2
3 3
6 4
–3 0
0 1.5
3 3

d = 8.246 d = 8.246

d = 5 d = 5

( −3 , 4 ) ( −3 , 4 )

x = 0          y = −2 x = 0          y = −2

x = 0.75 y = 0 x = 0.75 y = 0

x = − 1.667 y = 0 x = − 1.667 y = 0

15 − 11.2 = 3.8 mi 15 − 11.2 = 3.8 mi shorter

6 .0 42 6 .0 42

Midpoint of each diagonal is the same point ( 2 , –2 ) ( 2 , –2 ) . Note this is a characteristic of rectangles, but not other quadrilaterals.

2.2 Section Exercises

It means they have the same slope.

The exponent of the x x variable is 1. It is called a first-degree equation.

If we insert either value into the equation, they make an expression in the equation undefined (zero in the denominator).

x = 2 x = 2

x = 2 7 x = 2 7

x = 6 x = 6

x = 3 x = 3

x = −14 x = −14

x ≠ −4 ; x ≠ −4 ; x = −3 x = −3

x ≠ 1 ; x ≠ 1 ; when we solve this we get x = 1 , x = 1 , which is excluded, therefore NO solution

x ≠ 0 ; x ≠ 0 ; x = − 5 2 x = − 5 2

y = − 4 5 x + 14 5 y = − 4 5 x + 14 5

y = − 3 4 x + 2 y = − 3 4 x + 2

y = 1 2 x + 5 2 y = 1 2 x + 5 2

y = −3 x − 5 y = −3 x − 5

y = 7 y = 7

y = −4 y = −4

8 x + 5 y = 7 8 x + 5 y = 7

Perpendicular

m = − 9 7 m = − 9 7

m = 3 2 m = 3 2

m 1 = − 1 3 ,   m 2 = 3 ;   Perpendicular . m 1 = − 1 3 ,   m 2 = 3 ;   Perpendicular .

y = 0.245 x − 45.662. y = 0.245 x − 45.662. Answers may vary. y min = −50 , y max = −40 y min = −50 , y max = −40

y = − 2.333 x + 6.667. y = − 2.333 x + 6.667. Answers may vary. y min = −10 ,   y max = 10 y min = −10 ,   y max = 10

y = − A B x + C B y = − A B x + C B

The slope for  ( −1 , 1 ) to  ( 0 , 4 ) is  3. The slope for  ( −1 , 1 ) to  ( 2 , 0 ) is  − 1 3 . The slope for  ( 2 , 0 ) to  ( 3 , 3 ) is  3. The slope for  ( 0 , 4 ) to  ( 3 , 3 ) is  − 1 3 . The slope for  ( −1 , 1 ) to  ( 0 , 4 ) is  3. The slope for  ( −1 , 1 ) to  ( 2 , 0 ) is  − 1 3 . The slope for  ( 2 , 0 ) to  ( 3 , 3 ) is  3. The slope for  ( 0 , 4 ) to  ( 3 , 3 ) is  − 1 3 .

Yes they are perpendicular.

2.3 Section Exercises

Answers may vary. Possible answers: We should define in words what our variable is representing. We should declare the variable. A heading.

2 , 000 − x 2 , 000 − x

v + 10 v + 10

Ann: 23 ; 23 ; Beth: 46 46

20 + 0.05 m 20 + 0.05 m

90 + 40 P 90 + 40 P

50 , 000 − x 50 , 000 − x

She traveled for 2 h at 20 mi/h, or 40 miles.

$5,000 at 8% and $15,000 at 12%

B = 100 + .05 x B = 100 + .05 x

R = 9 R = 9

r = 4 5 r = 4 5 or 0.8

W = P − 2 L 2 = 58 − 2 ( 15 ) 2 = 14 W = P − 2 L 2 = 58 − 2 ( 15 ) 2 = 14

f = p q p + q = 8 ( 13 ) 8 + 13 = 104 21 f = p q p + q = 8 ( 13 ) 8 + 13 = 104 21

m = − 5 4 m = − 5 4

h = 2 A b 1 + b 2 h = 2 A b 1 + b 2

length = 360 ft; width = 160 ft

A = 88 in . 2 A = 88 in . 2

h = V π r 2 h = V π r 2

r = V π h r = V π h

C = 12 π C = 12 π

2.4 Section Exercises

Add the real parts together and the imaginary parts together.

Possible answer: i i times i i equals -1, which is not imaginary.

−8 + 2 i −8 + 2 i

14 + 7 i 14 + 7 i

− 23 29 + 15 29 i − 23 29 + 15 29 i

8 − i 8 − i

−11 + 4 i −11 + 4 i

2 −5 i 2 −5 i

6 + 15 i 6 + 15 i

−16 + 32 i −16 + 32 i

−4 −7 i −4 −7 i

2 − 2 3 i 2 − 2 3 i

4 − 6 i 4 − 6 i

2 5 + 11 5 i 2 5 + 11 5 i

1 + i 3 1 + i 3

( 3 2 + 1 2 i ) 6 = −1 ( 3 2 + 1 2 i ) 6 = −1

5 −5 i 5 −5 i

9 2 − 9 2 i 9 2 − 9 2 i

2.5 Section Exercises

It is a second-degree equation (the highest variable exponent is 2).

We want to take advantage of the zero property of multiplication in the fact that if a ⋅ b = 0 a ⋅ b = 0 then it must follow that each factor separately offers a solution to the product being zero: a = 0 o r b = 0. a = 0 o r b = 0.

One, when no linear term is present (no x term), such as x 2 = 16. x 2 = 16. Two, when the equation is already in the form ( a x + b ) 2 = d . ( a x + b ) 2 = d .

x = 6 , x = 6 , x = 3 x = 3

x = − 5 2 , x = − 5 2 , x = − 1 3 x = − 1 3

x = 5 , x = 5 , x = −5 x = −5

x = − 3 2 , x = − 3 2 , x = 3 2 x = 3 2

x = −2 , 3 x = −2 , 3

x = 0 , x = 0 , x = − 3 7 x = − 3 7

x = −6 , x = −6 , x = 6 x = 6

x = 6 , x = 6 , x = −4 x = −4

x = 1 , x = 1 , x = −2 x = −2

x = −2 , x = −2 , x = 11 x = 11

z = 2 3 , z = 2 3 , z = − 1 2 z = − 1 2

x = 3 ± 17 4 x = 3 ± 17 4

One rational

Two real; rational

x = − 1 ± 17 2 x = − 1 ± 17 2

x = 5 ± 13 6 x = 5 ± 13 6

x = − 1 ± 17 8 x = − 1 ± 17 8

x ≈ 0.131 x ≈ 0.131 and x ≈ 2.535 x ≈ 2.535

x ≈ − 6.7 x ≈ − 6.7 and x ≈ 1.7 x ≈ 1.7

a x 2 + b x + c = 0 x 2 + b a x = − c a x 2 + b a x + b 2 4 a 2 = − c a + b 4 a 2 ( x + b 2 a ) 2 = b 2 − 4 a c 4 a 2 x + b 2 a = ± b 2 − 4 a c 4 a 2 x = − b ± b 2 − 4 a c 2 a a x 2 + b x + c = 0 x 2 + b a x = − c a x 2 + b a x + b 2 4 a 2 = − c a + b 4 a 2 ( x + b 2 a ) 2 = b 2 − 4 a c 4 a 2 x + b 2 a = ± b 2 − 4 a c 4 a 2 x = − b ± b 2 − 4 a c 2 a

x ( x + 10 ) = 119 ; x ( x + 10 ) = 119 ; 7 ft. and 17 ft.

maximum at x = 70 x = 70

The quadratic equation would be ( 100 x −0.5 x 2 ) − ( 60 x + 300 ) = 300. ( 100 x −0.5 x 2 ) − ( 60 x + 300 ) = 300. The two values of x x are 20 and 60.

2.6 Section Exercises

This is not a solution to the radical equation, it is a value obtained from squaring both sides and thus changing the signs of an equation which has caused it not to be a solution in the original equation.

He or she is probably trying to enter negative 9, but taking the square root of −9 −9 is not a real number. The negative sign is in front of this, so your friend should be taking the square root of 9, cubing it, and then putting the negative sign in front, resulting in −27. −27.

A rational exponent is a fraction: the denominator of the fraction is the root or index number and the numerator is the power to which it is raised.

x = 81 x = 81

x = 17 x = 17

x = 8 ,     x = 27 x = 8 ,     x = 27

x = −2 , 1 , −1 x = −2 , 1 , −1

y = 0 ,     3 2 ,     − 3 2 y = 0 ,     3 2 ,     − 3 2

m = 1 , −1 m = 1 , −1

x = 2 5 , ±3 i x = 2 5 , ±3 i

x = 32 x = 32

t = 44 3 t = 44 3

x = −2 x = −2

x = 4 , −4 3 x = 4 , −4 3

x = − 5 4 , 7 4 x = − 5 4 , 7 4

x = 3 , −2 x = 3 , −2

x = 1 , −1 , 3 , -3 x = 1 , −1 , 3 , -3

x = 2 , −2 x = 2 , −2

x = 1 , 5 x = 1 , 5

x ≥ 0 x ≥ 0

x = 4 , 6 , −6 , −8 x = 4 , 6 , −6 , −8

2.7 Section Exercises

When we divide both sides by a negative it changes the sign of both sides so the sense of the inequality sign changes.

( − ∞ , ∞ ) ( − ∞ , ∞ )

We start by finding the x -intercept, or where the function = 0. Once we have that point, which is ( 3 , 0 ) , ( 3 , 0 ) , we graph to the right the straight line graph y = x −3 , y = x −3 , and then when we draw it to the left we plot positive y values, taking the absolute value of them.

( − ∞ , 3 4 ] ( − ∞ , 3 4 ]

[ − 13 2 , ∞ ) [ − 13 2 , ∞ )

( − ∞ , 3 ) ( − ∞ , 3 )

( − ∞ , − 37 3 ] ( − ∞ , − 37 3 ]

All real numbers ( − ∞ , ∞ ) ( − ∞ , ∞ )

( − ∞ , − 10 3 ) ∪ ( 4 , ∞ ) ( − ∞ , − 10 3 ) ∪ ( 4 , ∞ )

( − ∞ , −4 ] ∪ [ 8 , + ∞ ) ( − ∞ , −4 ] ∪ [ 8 , + ∞ )

No solution

( −5 , 11 ) ( −5 , 11 )

[ 6 , 12 ] [ 6 , 12 ]

[ −10 , 12 ] [ −10 , 12 ]

x > − 6 and x > − 2 Take the intersection of two sets . x > − 2 ,   ( − 2 , + ∞ ) x > − 6 and x > − 2 Take the intersection of two sets . x > − 2 ,   ( − 2 , + ∞ )

x < − 3   or   x ≥ 1 Take the union of the two sets . ( − ∞ , − 3 ) ∪ ​ ​ [ 1 , ∞ ) x < − 3   or   x ≥ 1 Take the union of the two sets . ( − ∞ , − 3 ) ∪ ​ ​ [ 1 , ∞ )

( − ∞ , −1 ) ∪ ( 3 , ∞ ) ( − ∞ , −1 ) ∪ ( 3 , ∞ )

[ −11 , −3 ] [ −11 , −3 ]

It is never less than zero. No solution.

Where the blue line is above the orange line; point of intersection is x = − 3. x = − 3.

( − ∞ , −3 ) ( − ∞ , −3 )

Where the blue line is above the orange line; always. All real numbers.

( − ∞ , − ∞ ) ( − ∞ , − ∞ )

( −1 , 3 ) ( −1 , 3 )

( − ∞ , 4 ) ( − ∞ , 4 )

{ x | x < 6 } { x | x < 6 }

{ x | −3 ≤ x < 5 } { x | −3 ≤ x < 5 }

( −2 , 1 ] ( −2 , 1 ]

( − ∞ , 4 ] ( − ∞ , 4 ]

Where the blue is below the orange; always. All real numbers. ( − ∞ , + ∞ ) . ( − ∞ , + ∞ ) .

Where the blue is below the orange; ( 1 , 7 ) . ( 1 , 7 ) .

x = 2 , − 4 5 x = 2 , − 4 5

( −7 , 5 ] ( −7 , 5 ]

80 ≤ T ≤ 120 1 , 600 ≤ 20 T ≤ 2 , 400 80 ≤ T ≤ 120 1 , 600 ≤ 20 T ≤ 2 , 400

[ 1 , 600 , 2 , 400 ] [ 1 , 600 , 2 , 400 ]

Review Exercises

x -intercept: ( 3 , 0 ) ; ( 3 , 0 ) ; y -intercept: ( 0 , −4 ) ( 0 , −4 )

y = 5 3 x + 4 y = 5 3 x + 4

72 = 6 2 72 = 6 2

620.097 620.097

midpoint is ( 2 , 23 2 ) ( 2 , 23 2 )

0 −2
3 2
6 6

x = 4 x = 4

x = 12 7 x = 12 7

y = 1 6 x + 4 3 y = 1 6 x + 4 3

y = 2 3 x + 6 y = 2 3 x + 6

females 17, males 56

x = − 3 4 ± i 47 4 x = − 3 4 ± i 47 4

horizontal component −2 ; −2 ; vertical component −1 −1

7 + 11 i 7 + 11 i

−16 − 30 i −16 − 30 i

−4 − i 10 −4 − i 10

x = 7 − 3 i x = 7 − 3 i

x = −1 , −5 x = −1 , −5

x = 0 , 9 7 x = 0 , 9 7

x = 10 , −2 x = 10 , −2

x = − 1 ± 5 4 x = − 1 ± 5 4

x = 2 5 , − 1 3 x = 2 5 , − 1 3

x = 5 ± 2 7 x = 5 ± 2 7

x = 0 , 256 x = 0 , 256

x = 0 , ± 2 x = 0 , ± 2

x = 11 2 , −17 2 x = 11 2 , −17 2

[ − 10 3 , 2 ] [ − 10 3 , 2 ]

( − 4 3 , 1 5 ) ( − 4 3 , 1 5 )

Where the blue is below the orange line; point of intersection is x = 3.5. x = 3.5.

( 3.5 , ∞ ) ( 3.5 , ∞ )

Practice Test

y = 3 2 x + 2 y = 3 2 x + 2

0 2
2 5
4 8

( 0 , −3 ) ( 0 , −3 ) ( 4 , 0 ) ( 4 , 0 )

( − ∞ , 9 ] ( − ∞ , 9 ]

x = −15 x = −15

x ≠ −4 , 2 ; x ≠ −4 , 2 ; x = − 5 2 , 1 x = − 5 2 , 1

x = 3 ± 3 2 x = 3 ± 3 2

( −4 , 1 ) ( −4 , 1 )

y = −5 9 x − 2 9 y = −5 9 x − 2 9

y = 5 2 x − 4 y = 5 2 x − 4

5 13 − 14 13 i 5 13 − 14 13 i

x = 2 , − 4 3 x = 2 , − 4 3

x = 1 2 ± 2 2 x = 1 2 ± 2 2

x = 1 2 , 2 , −2 x = 1 2 , 2 , −2

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites
  • Authors: Jay Abramson
  • Publisher/website: OpenStax
  • Book title: College Algebra
  • Publication date: Feb 13, 2015
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/college-algebra/pages/1-introduction-to-prerequisites
  • Section URL: https://openstax.org/books/college-algebra/pages/chapter-2

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

IMAGES

  1. Lesson 2 Homework 5.3 Answer Key › Athens Mutual Student Corner

    lesson 3 homework 1.6 answer key

  2. Eureka Math Grade 5 Lesson 2 Homework 5.1 Answer Key

    lesson 3 homework 1.6 answer key

  3. Lesson 3 Homework Answer Key

    lesson 3 homework 1.6 answer key

  4. My Homework Lesson 6 Answer Key

    lesson 3 homework 1.6 answer key

  5. corpsgre

    lesson 3 homework 1.6 answer key

  6. Lesson 6.1 Answer Key 4Th Grade › Athens Mutual Student Corner

    lesson 3 homework 1.6 answer key

VIDEO

  1. 3rd grade Module 6 Lesson 6 HW

  2. Eureka math grade 5 module 6 lesson 3 homework

  3. Unit 1, Lesson 3 Homework Help

  4. Chapter 3 Homework Help

  5. Unit 1 Part 3 Study Guide Answer Key 3

  6. CEC

COMMENTS

  1. CPM Homework Help : CC3 Lesson 3.1.6

    CPM Education Program proudly works to offer more and better math education to more students.

  2. cc3 - homework 3.1.6 - answer key.pdf - Lesson 3.1.6 REVIEW ...

    Lesson 3.1.6 - REVIEW & PREVIEW 3-59. fi'fa Write an expression that represents the perimeter of the shape built with algebra tiles at right. Then find the perimeter if x = 3 units and y = 7 units. 3-60. Simplify the following expressions by combining like terms.

  3. Answer Key Chapter 1 - College Algebra | OpenStax

    Learn college algebra with this free OpenStax textbook that covers chapter 1 topics such as equations, inequalities, functions, and graphs.

  4. CPM Algebra 1 HW Solutions - PBworks

    Answer Key 17 Lesson 3.1.5 3-42. a. x-values between $10 and $100 are appropriate. b. The x y pairs should be solutions to the equation y=0.15x, where y is the ...

  5. CPM Educational Program - solutions and answers - Mathleaks

    Browse your textbook to find expert solutions, hints, and answers for all exercises. The solutions are always presented as a clear and concise, step-by-step explanation with included theory and helpful figures, graphs, and diagrams.

  6. Mrs. Patterson's Math Class - Home

    Problems 9 - 12, use the graphs of f and g below to evaluate the limits, if they exist. o, 10. lim[f(x) g(x)] 12. does not exist. does not exist.

  7. Lesson 1.6 Name Use the Break Apart Strategy to Add Number ...

    COMMON CORE STANDARD3.NBT.A.2 Use place value understanding and properties of operations to perform multi-digit arithmetic.

  8. CPM Homework Help : CC3

    CPM Education Program proudly works to offer more and better math education to more students.

  9. GRADE 1 • MODULE 6 - U-46

    Module 6: Place Value, Comparison, Addition and Subtraction to 100 Lesson 1 Answer Key 1• 6 Set C 1. 1 11. 3 21. 4 2. 5 12. 3 22. 4 3. 5 13. 2 23.

  10. Answer Key Chapter 2 - College Algebra | OpenStax

    Answers may vary. Possible answers: We should define in words what our variable is representing. We should declare the variable. A heading.